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On the Spectra of Schrödinger Multiparticle Hamiltonians

by Walter Hunziker
Seminar für Theoretische Physik der ETH Zürich

(23. V. 66)

Abstract. For two-body potentials which are locally square-integrable and vanish (arbitrarily
slowly) at infinity, the spectrum of the Af-particle Hamiltonian in the center-of-mass frame is
shown to have the form which is commonly expected: it consists of a continuum rj^. (generated by
states in which the system is broken up into independent parts, and characterized, therefore, in
terms of the Hamiltonians of these parts), and, in the complement of ac, of eigenvalues only,
which are of finite multiplicity and can accumulate at most at the lower end of ac. Some properties
of the corresponding bound-state wave-functions are derived, and a problem is posed concerning
the generalization of Faddeev's equations to N > 3.

1. Introduction

For the purposes of time-independent scattering theory, S. Weinberg [1] *) and
C. van Winter [2] have independently derived a functional equation for the A^-particle
Green's function which is superior, in many respects, to the usual resolvent equations.
In the present paper, we want to apply this functional equation to the simpler task of
discussing the bound states below the continuum. Some results in this direction have
also been obtained by C. van Winter [2, 3], but since our objective here is not
scattering theory, we can manage with less restrictive assumptions on the potentials.
Essentially, we deal with potentials which are locally square-integrable and vanish
arbitrarily slowly at infinity (for the precise hypothesis see Theorem 2). The existence
of the continuum, which can be inferred from time-dependent scattering theory in the
case of short-range forces, is established as a consequence of the spatial cluster-
decomposition properties of the Hamiltonian.

2. The Spectrum of H

Using customary notation, we first recall some properties of the A^-particle
Hamiltonian

h=ÊtOï + Zv«(*cj h0 + v (1)

i-l i a

on the Hilbertspace §> L2fRSN)- For simplicity, we only treat the case of two-body
forces, a labels the (£) pairs of different particles, and xa denotes the relative
coordinates of the pair oc. The potentials Va axe always supposed to be real.

x) Numbers in brackets refer to References, page 462.
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Theorem 1 (Kato [4])

For any oc, let
Va(-)eL*(R3) + L°°(R3)2). (2)

Then DfVf) D DfH0) and, for any a > 0, there exists b < oo such that

11 Va u j | < a j | H0 u 11 4- b 11 u | j (3)

for all oc and all u e D(H0). H0 + V, defined on DfH0), is self-adjoint and bounded
from below.

If the potentials Vafxa) vanish as | xa | -> oo, we expect that the A^-particle system
can break up into parts which are independent, if they are far separated from each
other. To formulate this, let Dk= (Cx Ck) be a partition of the set of particles
ft N) into k subsets (clusters), and let ID be the sum ol all two-body potentials
which link particles in different clusters. We define

HA H-^y <4)

so that the Hamiltonian HD describes the system of noninteracting clusters Cx Ck.

Let u be a state of the A^-particle system in which the clusters are far separated from
each other, then H u Hv u, approximately. Therefore, we expect

a(HDJ c a(H) (5)

where a(A) denotes the spectrum of A. From here on, we fix the center-of-mass of the
A^-particle system without changing the notation : H0, H, and HD are now
Hamiltonians in the center-of-mass frame, acting on a Hilbertspace §> L2(3V_3). Except for
the explicit form (1) of H, everything said so far applies word for word in this modified
situation. If governed by the Hamiltonian HD the clusters Cx Ck (k > 2) can

still move freely relative to each other, hence a(HD is still continuous, extending
from some real number eD to + oo. Defining

oc U °(Hd.) [min eD + oo) (6)
Dk,k>-i Dy>2

we can now state our main result, which will be proved in Sections 4-6:

Theorem 2

For any a, let
Va(-)e L2fRZ) + L»(Ä») (7)

such that the L°°-component of Va can be chosen arbitrarily small, in the sense
of the Z.°°-norm. Then ac C ofH), and the part of afH) in the complement of ac

consists of eigenvalues only, which are of finite multiplicity and can accumulate at
most at the lower end of o\..

2) feLP + Li means that there exists m /j, e i* and an fq e Li such that f(x) fp(x) A
fq(x) almost everywhere.
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The hypothesis of this theorem is satisfied, for example, if, lor any oc,

VJ • e L2(R3) A- LpfR*) 2 < p < oo

or if VJxx) is locally square-integrable and vanishes (arbitrarily slowly) as | xa | -> oo.

In particular, this covers the case of Coulomb-interactions.
Among other things, Theorem 2 provides a basis for perturbation theory. The

usual perturbation formalism for bound states has been justified to a large extent,
notably by F. Rellich [5] and T. Kato [6], but the underlying assumption is always
that one has to deal with an isolated eigenvalue of finite multiplicity.

3. Properties of Bound-State Wave-Functions

In this section, we want to apply Theorem 2 to obtain some information about the
behavior of bound-state wave-functions at infinity (in configuration space).

In the center-of-mass frame, we describe the positions of the N particles by relative
coordinates xx xm, m 3 N — 3, which are taken as linear combinations ot the
cartesian coordinates of the N particles. For any multiindex n (nx...nm),n{ integer
> 0, let xn denote the operator of multiplication by the monomial xf x^f, defined
on all elements of L2fRm) for which this product is again in L2fRm), and define

Dn=Ç]DfxfH>),
;< M-i*i

where k < n means kt < nt, i 1 m, and j n | nx + n2 + ¦ ¦ ¦ + nm. On Dn we
introduce the norm

11 u 11„ sup 11 xk W u 11 (8)
k < m

Z< l»|-|A|

Since Hl and xk axe closed, Dn, normed by || [[„, is complete.

Theorem 3 [7]

Under the hypothesis of Theorem 1, Dn is invariant under e~'Ht, — oo < t < 4- oo.
For any ue Dn, e~lHt uis continuous in t in the sense of the norm j[ 11„, and there
exists a constant cn such that

\\e-iHtu\\n<cnfl+\t\)^\\u\\n.

Now let q be a compact isolated subset of ofH), and let P denote the spectral
projection corresponding to q: P \ q dEfX), where H J A dEfl) is the spectral

representation of H.

Lemma 1

(a) For any n, Dn is invariant under P : P DnÇ_Dn.

(b) If P is of finite rank and Dn dense in .§, then the range of P is contained

inDn:P§>CDn.
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Proof :

(a) By hypothesis, there exists a C°°-function ffX) of compact support such that

ffX) 1 for X e q

f(X) 0 for X $ q Xe a(H)

Its Fourier-Transform

/(*) (2JT)-1 f dXeiUf(%)
— oo

belongs to the space S of rapidly decreasing functions, and, for any «e§, the
projection P u can be expressed by

400

Pu= I dt e-,Htfft) u
— oo

Now let ue Dn. Then, by Theorem 3, the integrand is a function of t with values
in Dn, and, in the sense of the norm (8), this function is continuous in t and vanishes
faster than any inverse power of t as | t J -> oo. Since Dn is complete, this implies
that the integral (as the limit of Riemann sums) converges in Dn. Hence ue Dn
implies P ue Dn.

(b) If P is of finite rank and Dn dense in .§, we have

P$> PDnCPDn=PDnCDn.
Combining this lemma with Theorem 2, we obtain

Theorem 4

Under the hypothesis of Theorem 2, the eigenvectors of H corresponding to
eigenvalues in the complement of ac, belong to Dfx") - for any multi-index n for
which Dn is dense in §.

For | n | 1, Dn is dense in §. It is somewhat annoying that, under the hypothesis
of Theorem 1, we are not able to assert the same for arbitrary n. However, if, for
example, each Va(xa) is a C°°-function on an open set of R? whose complement has

measure 0, then Dn § for all n fl). Thus, in all the cases commonly considered in
physics, the bound states below the continuum belong to Dfx") for all n, or, roughly
speaking, the bound-state wave-functions decrease faster than any inverse power of

\x\ as | x | -> oo. If the potentials Va are C°°-functions on all of R3, vanishing for
I xa I "*¦ °° and having bounded derivatives to all orders, the wave-functions of the
bound states belong to <ZfRm) [7].

4. The Continuous Spectrum

This section is devoted to the proof that acQ crfH). The argument given in
Section 2 can be made rigorous by aid of the following simple lemma, which we state
without proof:
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Lemma 2

Let H be a self-adjoint operator on a Hilbertspace §. Then X e cr(H) ii and only
if there exists a sequence {un} C D(H) with 11 u„ 11 1 and lim \\ fX — H) un\\ 0.

n—>oo

In our case, the states un will be constructed as states in which the clusters of a

given decomposition are more and more separated from each other. First, we want to
investigate in what sense the interaction between the clusters vanishes in this limit.

Let xx xN be the cartesian coordinates of the N particles. In (relative)
configuration space R3N~, we can choose, for any pair i, j fi A= j), the 3 N — 3 independent
coordinates x x{ — x} and xh fh 4= i, j), which shall be denoted by fx, xh). The norm
on § L2(Rm~3) is then given by

llMll2 cO' / \u(x' xh) \2 d3x TTdHh,
J h-^i,j

where cu > 0 is the modulus of a jacobian depending only on the masses and on the
choice of the pair i, j.

Let Dk=(Cx...Ck) be a decomposition of (1...N) into k clusters (k>2).
For any set s fsx sk) of k 3-vectors we define the operator Tfs) on § by

fTfs)u) fx, xf =ufx + ti- tj, xh + th)

where tt sm for l e Cm. In words : Tfs) is the unitary operator which represents a

translation of each cluster Cm, as a whole, by sm. Let \s\ minn+m \sn — sm\.
As [ s j -> oo, the clusters become more and more separated from each other, and the
interaction between them vanishes in the following sense :

Lemma 3

Under the hypothesis of Theorem 2,

lim 11 In Tfs) u 11 0 (9)
|s|-i-oo " "k "

for all m e £(#„).

Proof :

We only consider a single term Va of Iv For any e > 0, we can choose a splitting
VJ*) KA*) + Z,ooZ) (a.e) such that VJf-) e LPfR3) and that || Fa>0o(-) |L < e.

Then 11 Vaoo Tfs) u 11 < e \ \ u \ \ for all s, hence it suffices to prove (9) under the
hypothesis that Va(-) e L2(R3). T(s) is unitary and commutes with ü0 on D(H0).
Therefore, by (3),

11 Va T(s) u\\ <«]|Ü0M|| + ZIMI!

for all s and all u e D(H0). Providing D(H0) with the norm || H0 u || + || u \\, we see

that Va T(s) is a bounded operator from D(H0) into §, bounded uniformly in s. It is

sufficient, therefore, to prove (9) on a dense set in D(H0), for example on Q(Rm~s).
We can even restrict ourselves to states u of the form

ufx, xfi ffx) g(xh),
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with/e SfR3) and g e <5fRSN~6), since the finite linear combinations of such products
are dense in S(i?3A_3). Choosing the coordinates (x, xf) for the pair i, j oc, we then
obtain

11 VtJ T(s) u\\2 ctj 11 g\ || / dH | V{Jx) f(x + ti- tf \2

Now * and / belong to different clusters, so that j ti — tj j -> oo as j s | -> oo. Since

Vaf') G L2fR3) and/e S(i?3), the last integral vanishes as | s | ¦> oo, by the dominated

convergence theorem.

It is now a simple matter to show that ac C o"(ü). Let X e afHD By Lemma 2,

there exists a sequence {«J C DfH0) with || w„ || 1 and

lim 11 fX - HD un 11 0 (10)
n—>oo -V

On the other hand, the translation operators T(s) corresponding to the decomposition
Dk commute with HD on DfH0), hence

\\fX-H) Tfs) un\\< \\fX - #^) «J| + ||7flft T(s) un\\

By (10) and Lemma 3, the right hand side can be made arbitrarily small by first
choosing n and then | s | large enough. Since T(s) uneD(H0) and || T(s) u„\\ 1,

Lemma 2 applies and we conclude that X e a(H).
In the case of short-range forces, time-dependent scattering theory gives a

stronger result :

Theorem 5 (Hack [8])

For any a, let

VJ-)e L2(R3) + LP(R3) 2 < p < 3 (11)

Then, for any decomposition Dk, the two strong limits

exist on all of §.

s-lim eim e~mDf QP,

(In his proof, Hack assumes that VJ-) e L2fR3) and he establishes strong convergence

only on a subspace of so-called channel states. It is not difficult, however, to
extend his proof so that it covers Theorem 5). It follows that the operators Qjj are

isometric and satisfy
e~imQ% =Q±ke-mDk>,

hence the ranges of Q~f reduce the group e~,Ht and the parts of H in these invariant
subspaces are unitarily equivalent to HD This is much more, of course, than

oc C a(H) only.

5. The Functional Equation for G(z)

The main tool for the proof of the second part of Theorem 2 is the functional
equation of S. Weinberg and C. van Winter for the resolvent Gfz) fz — Ü)-1.
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In this section, we rederive this equation by analyzing perturbation graphs - a method
familiar to physicists, which can easily be justified in the present case.

z — ÜqZ1- By Theorem 1, Fa Gfz) is defined on all of § for z £ o"(ü0).

z f1 and, by (3),

Vet Gfz)
For Re z < 0 we have || Gfz) ||

Z G0(z) <2a + JIJ.
Since a can be chosen arbitrarily small, we conclude that

lim \\VaG0(z)
Rez-

0. (12)

Let M < 0 be such that 11 VaGfz) \ \ < (^)"1 for all a if Re z < M. Thus, for Re z < M,
the iteration solution of the resolvent equation

G(z) Gfz) + Gfz) V G(z)

exists and is given by the series

Gfz) £ Z G°(z) V«, Gfz) V^... Gfz) F% G0(z)
n 0 ax... a

(13)

which converges absolutely, in the sense of the operator norm. (This also exhibits
that H is bounded from below). Following S. Weinberg [1], we define the graph

representing the term Gg Vai G0 Vai G0 Va G0 of the series (13) to consist of N
horizontal lines (,particles') and n vertical lines (.interactions') linking just the
pairs of particles oq an from left to right.

For example, the graph

I

N-

represents the term G0 V2N G0 Vx2 G0 VX2 G0 VX3 G0. Now we turn to a classification
of these graphs :

(a) Each graph G consists of a certain number k of connected parts (1 < k < N)
- only the endpoints of the interactions counting as connections - and thus defines a

cluster-decomposition DfG) : two particles belong to the same cluster if their lines
belong to the same connected part of G.

(b) Dt C Dk means that Dk is obtained by further partitioning the clusters of
D[ fl < k). A graph G is called ördisconnected if Dl C DfG), i.e. if none of the
interactions of G link different clusters of Dt. Identifying graphs with terms in the
series (13), we find, for Re z < M,

2j (all /^-disconnected graphs) fz — Hn^-1 Gofz).
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(c) Let us cut a graph by a vertical line L (see Figure), and denote by DfL) the
decomposition defined by the subgraph to the left of L. First, let L be to the left of all
interactions, then DfL) DN (1) (2) fN). If we now shift L gradually to the
right through the whole graph, DfL) assumes the sequence of values

S=fDAr,DN_x,...Dk)

Di+X DD{, N>k>l, (14)

where Dk is the decomposition corresponding to the whole graph according to (a).
In this way, each graph G uniquely defines a sequence S(G) of type (14). Conversely,
for a given S of type (14), we define the class S to consist of all graphs G with SfG) S.

Any graph of class S has the form

Go II any interaction linking different\ /any Drdisconnected\
clusters of Di+X but not of D{ j \ graph J

(15)

where the 'factors' are ordered from left to right as i decreases.
Since the series (13) is absolutely convergent for Re z < M, we can rearrange it in

the following way: first, we sum over all graphs of a fixed class S. By (15), this yields

Gsfz) _27 (all graphs of class S)
k r /sum °î all potentials linking different\ /sum of all Drdiscon-

clusters of Di+X but not of D{ J \ nected graphs
G0fz)fJ

Gn fz) Vn n Gn (z)Vn „ ...Vn n Gn (z) (16)Off'- I %%_l -OjV-lv ' DN—lDN—2 Dh + lDk ukK ' y '

where VD.D._^ ID. - ID._V IDk being defined by (4).

The remaining finite sum over classes is carried out in two steps : first, we sum over
all S (DN Df with k>2. This is the sum of all disconnected graphs and defines
the disconnected part D(z) of Gfz) :

D(z)=2JGs(z). (17)
all S

with k>2

Similarly, we obtain the connected part C(z) by summing over all S with k 1

(sum of all connected graphs) :

C(z)=ZGs(z). (18)
allS

with k-l

Noting that each term in the last sum ends with a factor GD fz) Gfz), we finally
arrive at

Gfz) Dfz) + Cfz) D(z) + I(z) G(z) (19)

m S G»N& V»NOy-i G»k-i® ¦ ¦ ¦ GoSz) Vd,d, ¦ (20)
all S

with k =¦ 1

Note that D(z) and I(z) are defined for all z^ac, but that the functional Equation (19)
for G(z) is established, so far, only for Re z < M. As it stands, I(z) is defined on the
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intersection of the domains DfVf) only. However, it has a unique bounded extension,
since (20) implies

Kz)*= Z VD,D,GDfz)...VDNÜNiGDN(z) (21)
all S

with * -1

which, by Theorem 1, is bounded for z^ac. In the following, lfz) denotes the unique
bounded extension of the operator defined by (20).

Lemma 4

fa) lfz) and Dfz) axe holomorphic in z for z$oc.
(b) lim |j/(z)||=0.

Re 2—> — no

Proof :

If lfz)* is holomorphic in z for z £ oc, so is lfz), hence it suffices to prove assertions
(a) and (b) for the operator Vœ GDfz), where oc is any pair and D any decomposition of
(1 A?) into at least two clusters. Let DfHD) be normed by 11 u \\D 11 HD u \\ + \\ u \\.

For zfoc, GDfz) is a bounded operator from § onto DfHD), and holomorphic in z for
z<£oc. By Theorem 1, the norm || u \\D is equivalent to the norm || H0 u \\ + \\ u || on

DfHfi DfHf), hence Va is a bounded operator from DfHD) into §. This proves (a).
To prove (b), we note that an estimate of type (3) also holds if H0 is replaced by HD,
thus (b) follows in the same way as (12).

By Lemma 4(a), the functional equation

G(z) D(z) + I(z) G(z) (22)

with Dfz) and lfz) defined by (16) (17) (20), extends by analyticity from Re z < M
toallz$oc,z£ ofH). This is the final step in the derivation based on the perturbation
series (13). Of course, (22) can also be obtained from the resolvent equations which
link the various resolvents GD fz) [2].

6. The Discrete Spectrum

Lemma 5

If the potentials V^ satisfy the hypothesis of Theorem 2, then I(z) is a compact
operator for z $ ac.

Proof :

For each oc, there exists a sequence Vai„f • e L2fR3) such that VaJ • - Va( • e L°°(R3)
and, for n -> oo, || V^f) ~ K(') IL V 0. Let lfz) be defined by (20), with the
proviso that in the terms VD D (but not in the resolvents GD A the potentials Va axe

to be replaced by Van. Clearly, for z$ac,

lim ||/,(*)-/W||=0.n—*oo

On the other hand, it was shown by C. van Winter [2] and also by the author [9],
that each term in the sum (20) is a Hilbert-Schmidt operator, for z^ac, provided that
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all the potentials occurring explicitely (i. e. in the terms VD D) axe square-integrable.
Hence I(z), being the uniform limit of a sequence of Hilbert-Schmidt operators,
is compact for z$oc.

Combining Lemmas 4 and 5 we conclude (see appendix), that (1 — lfz))-1 is

meromorphic in z for z e oc, and that

Gfz) (1 -lfz))-1 Dfz)

for all z §É csc for which (1 — lfz))-1 exists (it might happen that Gfz) exists but not
(1 — lfz))-1. This point is further discussed in Section 7), thus Gfz) too is meromorphic
in the complement of oc. This proves that the part of afH) in the complement of ac

consists of eigenvalues only, which can accumulate at most at the lower end of ac.
To show the finite multiplicity, let z0 be a pole of Gfz) (eigenvalue of H) in the

complement of ac, and P the projection onto the corresponding subspace of
eigenvectors :

P lim fz — zfi Gfz)

On the other hand, by (22),

fz - z0) Gfz) (z- zfi Dfz) + lfz) fz - zf Gfz)

Since Dfz) and lfz) are holomorphic in a neighborhood oi z0, we obtain, for z -> z0:

P I(z0) P (23)

hence P is a compact projection and therefore of finite rank. This concludes the proof
of Theorem 2.

7. Faddeev's Equations

(23) shows that, for z^ac,

Hf= zf implies /= lfz) f.
For N A 2, however, the reverse is not proved and probably false. Thus we cannot
conclude that (1 — lfz))-1 exists (for z ^ af whenever z is not an eigenvalue of H.
From all we know, the poles ot (1 — lfz))-1 need not even be real.

In the case A7 3, this annoying feature is avoided by L. D. Faddeev [10] in the
following way: he splits the Green's function into components

Gfz) Gfz) +2JRa(z)
a

where i?a G0 Va G or, in terms of graphs, Ra Z (of all graphs with Va as the
leftmost interaction). Instead of (22), L. D. Faddeev treats a linked set of equations for
the components Ra:

Ra=(Ga-G0)+2jGaVaRß

where Ga= fz — H0— VJ-1 is the disconnected part of Ra. This splitting into
components has the effect that, for z £ ac, the homogeneous equations

Hf=zf and fa=ZG,VJß
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are equivalent, if connected by

/=27/-. z GoZ/-
a

The author has tried, unsuccessfully so far, to find a generalization of Faddeev's
equations to N > 3 which still has this property. The analysis of graphs suggests
several ways of splitting Gfz) - or C(z) - into components (an example is (18)), and
linked sets of equations for these components can be derived along the lines followed
in Section 5. The unsolved problem is to show whether or not nontrivial solutions of
the homogeneous equations correspond to bound states.

Appendix

In this appendix we formulate and prove a theorem which seems to be known but
which we couldn't find in the literature.

Theorem

(a) Let C be the closure, in the sense of the operator norm, of the set of operators
of finite rank on a Banachspace B.

(b) Let A fz) be a C-valued function of the complex variable z, which is holomorphic
in an open, connected region G.

(c) Suppose that (1 — Afzfi)-1 exists for some z0eG. Then (1 — A(z))-1 is
meromorphic in z for z e G, i.e. its only possible singularities in G are poles.

Remark :

If B is a Hilbertspace, then C is the set of all compact operators on B. To our
knowledge, it is still open if the same is true for any Banachspace B.

Proof:

(a) The theorem holds if there exists a subspace R C B, dim R < oo, such that
the range of A fz) is contained in R for all z eG. To show this, let afz) be the restriction
of A (z) to R. Then

(1 - Atz))'1 1 + (1 - a(z))-1 Afz) (24)

whenever the right-hand side exists. In any basis of R, the determinant of 1 — afz) is

holomorphic in z e G and not identically zero, for a(z0) f f implies /= 0, by (c).
Hence (1 — afz))-1 and, by (24), (1 — Afz))-1 axe meromorphic in G.

(b) Now let A(z) satisfy the hypothesis of the theorem. For any z e G there exists
an operator F(z) of finite rank such that || A(z) — F(z) j| < 1/2, and, since A(z) is

continuous in z, a neighborhood U(z) C G of z such that

\\A(z') - F(z)\\ < 1 if z'eUfz) (25)

Let zx be an arbitrary point in G. We have to show that (1 — Afz))~l is meromorphic
in a neighborhood of zx. By the Heine-Borei theorem, there exists a sequence of points
sx sA- in G such that

z0 e Ufsf, zx e Ufsx), Ufst) n Ufsi+X) non-empty for *' 1 N — 1.
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Let efz) A (z) — F(sx). e(z) is holomorphic in G and 11 e(z) \\ < 1 for z e U(sx), by (25).
Thus (1 — e(z))~1 is holomorphic in U(sx), and

1 - A(z) [1 - F(sx) (1 - e(z))-1] (1 - e(z))

For z e U(sx), F(sx) (1 — e(z))~1 is of finite rank, with range contained in the range of
F(sx), and holomorphic in z. Also, by (c), [1 — F(sx) (1 — e(z0))-1]~1 exists. Thus, by
part (a) of the proof, (1 — A(z)p1 is meromorphic in U(sx). Since U(sx) D U(s2) is

open and non-empty, there exists a new z0 e U(s2) for which (1 — A(zf))-1 exists.

By the same analysis, we find that (1 — A(z))~1 is meromorphic in U(s2) U(sN).
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