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The Delay Time Operator for Simple Scattering Systems

by J.M. Jauch and J.-P. Marchand
Institute of Theoretical Physics, University of Geneva, Geneva, Switzerland

(8. X. 66)

1. Introduction

In this paper we shall give a new discussion of the concept of "delay-time"
associated with a collision process, and its relation to the phase shift in a single channel
scattering process.

This concept and a special case of the associated relation appeared in the published
literature first in a paper by Wigner [1] who in turn refers to an earlier unpublished
thesis by Eisenbud for a fuller discussion of it.

The concept was generalized by F. T. Smith [2] to the "delay-time matrix" for a

general multichannel process and he obtained generalized relations connecting this
matrix with the S-matrix.

We shall reformulate this concept here in the context of the scattering theory of
Jauch [3] which avoids the use of eigenfunction expansions. This enables us to give
a definition of the delay-operator Q for more general scattering systems (for which
the eigenfunction expansion need not be valid) and to determine at the same time the
condition of validity for the above mentioned relation between the operator Q and
the scattering operator S.

In this paper we shall do this for a simple scattering system, reserving the more
general multichannel case for a later publication.

The general relation between the operators Q and S was also derived with an
operator method by Goldberger and Watson [4], however we have found their
method unsuited for a mathematically rigorous treatment. In fact we did not succeed
in determining the conditions of validity of their formal manipulations. For this
reason we have adopted a different procedure designed to simplify the mathematical
aspects of the problem and to permit a derivation of this relation with meaningful
concepts.

We were motivated by the aim to determine the weakest possible conditions under
which the definition of the operator Q makes sense and is related to the S-operator
in the manner given by the above mentioned authors. It is clear that the asymptotic
condition and the completeness condition (these are the conditions I and II of reference

[3]) must be satisfied. We have found that in order to obtain the desired relation
a further condition is needed which expresses a regularity property of the wave
operators. In all applications known to us this condition is in fact satisfied, but it is
worth emphasizing that this third condition seems not derivable from the other two.
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Finally we should mention that the relation between delay-operator Q and the
S-operator are independent of the representations and can therefore be expressed in
principle as a general functional relations between these two operators. We have
found it not very convenient to do so. The most convenient form is obtained by using
the spectral representation of these operators with respect to a complete set of

commuting operators which contains among them the kinetic energy H0 since this
spectral representation can be proved to be quite generally valid [5] (in contradistinction

to the eigenfunction expansion which exists only under restrictive special
conditions) the generality of the relation is assured in spite of the special form under
which it is expressed.

2. Basic definitions

We shall be dealing with a simple scattering system represented for instance by
the scattering of a particle by a fixed center of force. Such a system is described by
the two operators H0 and H H0+ V, where H0 (1/2 pi) p2 represents the kinetic
energy of the particle and V the interaction which produces the scattering.

The exact form of H0 is not essential for the following, so that for instance the
relativistic form yp2 + pi2 for H0 would be equally admissible. Neither is it essential
that we consider the three-dimensional case for which p2 p\ + p\ + p\ where pi
are the components of the orthogonal directions. We can also include one- or two-
dimensional scattering problems with similar results. We shall however discuss explicitly

primarily the three-dimensional non-relativistic case in order not to obscure the
discussion with too much generality.

For a simple scattering system the operator V satisfies the asymptotic condition
of ref. [3] which guarantees the existence of the limits

Q± s-limV* Ut (1)
t—> =Foo

with Ut — e-'H°', V, e-,Hi, thereby defining the two wave operators Q±. They
satisfy the intertwining relation H0 Q± D± H and Q*_ ß_ Q*+ Q+ /,
Q- ÜL. Q+ Q*+. With their help one defines the S-operator : S Q*_ Q+.

The evolution of a pure state during the scattering process is given by tpt Vt f,
where rp =ip0\s the wave function of that state at the time t 0. To every such y>

one can associate two other states cpin ß* ip and cpout Q*_ %p, so that cpout S cpin.

Let us now consider a sphere of radius r centered at the scattering center, and
denote by Pr the projection operator associated with the proposition that the
particle is inside this sphere. Thus in the Schrödinger representation the operator Pr
acts on wave functions cp(x) in the following manner

(p,d(»=|;w !or \x\<r. (2)v rY' w |0 for j * | > r

For any given state cp the quantity (cp, P, cp) (Pf^ represents the probability
of finding the particle inside the sphere of radius r. We may therefore interprete

+ 00

Tr(W) f <Pr\t dt (3)
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as the average total time spent by the particle inside the sphere of radius r, during
the scattering process described by the wave function ip. This time is in general finite
for finite r and any ip in the common range of the wave operators Q±. It also tends to
oo if r tends to oo.

We can introduce for comparison another quantity

Tr(v)=JI <Pr\ dt (4)

where cpt Ut cp and cp is either one of the two state vectors cpin or cpout (which we need
not specify here, since subsequently the choice will turn out to be irrelevant).

The quantity (4) has similar properties as (3) and it may be interpreted as the
average time spent by a free particle inside the sphere of radius r.

The difference between these two quantities (3) and (4) represents then the time
delay associated with a state cp and the sphere of radius r. We write for it

+ 00

A Tr(cp) J «PfVt 0+<p - <Pr>UtA dt (5)

—oo

where we have written ip Q+ cp (thereby choosing cp cpin).

The quantity (5) still depends on the radius r of the chosen sphere but it may
approach a finite limit as r tends to oo. The study of examples has shown that this
limit may not actually exist due to the presence of oscillating terms even in cases
where one would expect for physical reasons the notion of delay-time to be well
defined. Such oscillating terms can be suppressed easily by using not the straight-

2r
forward limit of A Tr(cp) for r ->¦ oo, but the "average limit" 1/r j dr A Tr(cp) for r -> oo.

r
The particular form of this averaging of the limit is not essential, we could use

just as well any of a number of averaging procedures which can be shown to give all
the same result.

By these considerations we are led to define the quantity
2r +00

<C>. S£m vjdrfdt (<Pr\^ - <PryVtJ ¦ (6)

r —oo

It is not difficult to verify that the right hand side of (6) defines a bounded symmetrical

sesquilinear functional on the entire space 3/. By the use of standard theorems

every such functional defines a unique, bounded, self adjoint operator Q, as we have
already anticipated with the notation

<Q\='{9,Q9)-
We may therefore give a well defined meaning to the expression

2r +0O

Q s Mm ifdrjdt U* (Q*+ Pr Q+ - Pr) U, (7)

r -co

as a bounded linear operator which we consider the definition of the "delay-operator" Q.
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3. Elementary properties of Q

Let A be a bounded linear operator, Ut a continuous unitary group and assume
that the integral +0O

B= f dtU* A Ut
— oo

exists for all cp in a Hilbert space. Let t be a fixed real number. Then we have

+00

BUr fdtU*AUt+r.
—00

Changing the variable of integration we obtain
+00

BUr= f dt U*_r A Ut=UTB
—00

Thus B commutes with all UT and hence with all functions of the UT, hence with the
generator G of UT as well as with its spectral projections.

Let us now consider the spectral representation [5] of the operator Q with respect
to a complete set of commuting observables of which we may choose G together with
an arbitrary commuting set X.

According to the theorem on the spectral representation [5], we can associate
with any cp e 'U a complex function <g X | cp) of the spectral variables g, X of G and X,
square integrable with respect to a uniquely defined measure class pi, so that [6]

(<P> V>) / {9 \g *><g *¦ I V) dfi
where •>

(cp\gX>=<gX\<p)* (8)

Any operator such as B which commutes with G can be written in "diagonal
form", that is we may define a family of operators B(g) operating for each g on square
integrable functions cpg(X) of the variable X with respect to a uniquely defined measure
class which we denote by dX, such that

<gX\Bcp)=(B(g)tpg)(X)

<pg(X)=<gX\<p). (9)

If we suppose in addition that the operator A is a well-defined integral operator
in the spectral representation {g, X} whose kernels <g X \ A | g' X'} are for any fixed
g, X, X' good testfunctions with respect to the distribution ô(g — g') the following
calculation takes on a well defined sense :

+00

<gX\ Bcp) J dg' dX' j dtigX j U* A Ut \g'X'> ig' X' \cp)

— CO

-fco

f dg' dX' J dt «-<(«-«')' <g X I A j g' X'y <g' X' I cp)

—00

[dX'2n<gX\A \gX'XgX' \<p)
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and we obtain the result :

<gx\B\g'X'y ô(g-g')a\B(g)\x'> I

WÌth
<*\B(g) \X'>==2n<gX\A \gX'y. \

We may now apply this description to the definition (7) of Q. Identifying G with
H0 and A with Q*+ Pr Q+ — Pr for each r and then passing to the limit r -> oo we
obtain first the result : Q commutes with H0.

Consider furthermore the spectral representation with respect to H0 and an
arbitrary set X of commuting observables, or, what is often more convenient : with
respect to K y2 pi Ho and X (denoting the spectral variables {w, X} in the first and by
{k, X} in the second case). If the kernels <£ X | Q* Pr Q+ — Pr\ kX'y are well-defined
and if they are, for fixed variables k, X, X', good functions in k' (this property will
always be assumed in the sequal) Equations (10) read

<k X | Q | k' X'y ô (k - k') <X | Q(k) | X'y

2r

<X I Q(k) I X'y Um — f dr ~~ (kX\Q* PrQ,- Pr\k X'y (11)
r—>-oo r J aw

r

We say Q(k) are operators "on the energy shell".
It is well known that the S-operator is also an operator on the energy shell and

therefore also has the form

<kX\s\k'X'y ô(k- k') <X j S(k) | X'y.

Our aim is to derive a general relation between the S-operator and the Ç-operator
which can be expressed by the equation

<X | Q(k) j X'y Ì * fdX' <X' | s*(k) j xy A # i s(k) ] xy [a> kY\. (12)

In the equivalent operator form this equation may be written as

Q(k) - - i-*- In S(k) (13)

which corresponds to Equ. (285 a) in ref. [4].
In the particular case that S(k) is diagonal in the variables X it has the form S(k)

e2t<5(*) ¦ / where ò(k) defines the phase shift. The relation (12) resp. (13) takes then the
form

Q(k) 2dôY^- (14)

in which it was originally obtained.

4. An example

Before we proceed to a formal theorem and its proof we illustrate the main ideas
in the derivation of relation (13) with an example. We choose for this purpose a one-
dimensional scattering problem. In this case the S-matrix as well as the Ç-matrix are
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two-dimensional matrices since the "energy-shell" consist of exactly two points
which correspond to the two directions of motion on the line. This circumstance
enables us to simplify the notation a little by choosing for the variable k not the
variable in the spectrum of the operator K |/2 pi H0 but of the operator p instead.
This k extends then over the entire real axis and it is just the Fouriertransform of the
position variable x. The S-matrix is then formally one-dimensional and we can
suppress the variable X entirely.

In this representation the operator Pr (which now is interpreted as the projection
onto the segment (— r, + r)) becomes

<k | Pr | k'y I dx <k j xy (x | k'y. (15)

-r
Here

<k\xy —L eikx (16)
y2 ti

is the kernel of the Fouriertransformation.
By substituting (16) into (15) we find

<k\pr\k'y^YL Sin;(^-A) (17)

For a dense set of sufficient regular functions cp(k) from a linear test function space
we have the limiting relation

+ 0O

lim f dk' - sin^(5~A) <p(k') <p(k) (18)
r—*oo 71 k' — k

which represents the more general relation (valid for all cp e ?|)

l.i.m.<& I Prcp) <k \<p) (19)
r—>oo

Both of these relations are consequences of the operator relation

s-lim Pr I. (20)
r—*oo

The operators Q+ for instance satisfy an integral equation which can be written
in the following way [7] :

<k\Q+\ k'y =ô(k-k') + S^ZY^YY^y (2i)+ l ' m -cu + iO

This form shows that <A | Q+ \ k'y is always a distribution (which contains a <5-func-

tion) however <k\ V Q+ \ k'y may be and in fact is in all problems of physical interest
a bona fide integral kernel applicable to a dense set of cp(k) in L2.

The S-matrix itself (as a two-dimensional matrix) may be written in the following
way: We introduce indices r, s which may assume values + 1, and denote j/ß2 by
I k I. Then

<r\S(\k\)\sy ors-2ni^AL<\k\r V Q4 k\sy. (22)
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If we insert the spectral representation of Pr into the expression (7) in order to
obtain the spectral representation of Q we find ourselves quickly in the presence of
terms of the form

-f OO

—oo

We are interested in the limit r -> oo (before or after the averaging over r, as the
case may be) and look to Equ. (18) to give us the answer. But we find (18) not applicable

since the function which multiplies <k\ Pr\ k'y in (23) is singular at the point
k k' and it is therefore not a good testfunction for a sequence of distributions
<A | Pr\ k'y tending to ô (k — k'). Consequently we write the expression (23) in the
form

+ 00

£dk,<k\Pr\k'y^vQ+]k1 (23)

— oo

and study the limit (r -> oo) of the kernel

<ft | Pr | k'y
k'-k

In the present example this amounts to studying the limit of the integral

+ 0O

^TJWL*<*') (23)

—oo

as r -> oo with tp(k) in a testfunction space of infinitely differentiable functions.
Under these conditions we can develop cp(k') according to

cp(k') cp(k) + (k' - k) cp' (k + 6 (k' - k)) (24)

with o < e < 1

so that (23) becomes

+ 00
1 sin r (k'— k)^tW*
+ 00

1 sin r (ft' —ft) f 1 sin »-(A' —ft)**> If I ^y- + J *" ir ^S^- 9'{k+e (k' - *)) (25)
— oo

The first term on the right of (25) is identically zero for all r because of the
antisymmetry of the integrand. The second term can be evaluated in the limit by using
formula (18) (with cp' replacing cp) and all the higher order terms vanish in the limit
r -> oo. Consequently we find

+ 0O

^v^ift'-V ?(*w(*). (26)
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A relation of this kind explains in a qualitative way the appearance of the
derivative of S(k) in the relation (13). At the same time it is made plausible that the
condition Pr -> / is not sufficient for the validity of relation (13). The kernels
(k | V Q+ | k'y resp. (k | ß* V \ k'y should belong to a testfunction space on which

(a) The kernels (k J Pr J k'y converge to ò (k — k!) as r -> oo

(b) The kernels P(ljk' - k) (k\Pr\k'y converge to - Ò' (k - k') as r -> oo,
where convergence is defined as the numerical convergence of the definite integrals

respectively

f <ft|pr|ft-> <ft'| vQ+\ky dk,
ft' —ft ft'+ft

These remarks may suffice for the motivations of the conditions under which we can
affirm the theorem of the next section.

5. The main theorem

Theorem : Let the kernels (k X ] Pr \ k' X'y be distributions on a testfunction space
A containing at least the integral kernels (kX | V Q+ \ k' X'y and <[k X \ Q*_ V \ k' X'y
considered as functions of k' X' (for fixed k, X) or as functions of k, X (for fixed k', X'),
and suppose that the following assumptions hold for the distributions :

V—>oo
(a) <kX\Pr\k'X'y >ô(k-k')ô(À-X')
(b) P (--*_ -\ ikX\Pr\k' X'y YYl^, -ô' (k- k') Ò(X- X')

2f

(c) lim — f dr <k X I Pr \ k X'y 0 [X + X']
r—>oo r J

r

then the following relation holds

fdX" <X j S(k) j X"y <X" I Q(k) I X'y <X I (SQ) (k) | X'y
J

- i 2 dk
<" w I ^ ¦ w

Proof: We remark first that the relation (27) is easily seen to be equivalent with
either (12) or (13), by virtue of the unitarity of the S-matrix.

Multiplying (7) from the left by S Q*_ Q+, then applying the relations
Q*+ Q+ I and [S, Ut] 0 and finally writing out the spectral representation in the
variables {k, X} according to (11) we obtain the expression

r

(X I (S Q) (k) j X'y lim
1 f dr -2* - <kX I Q* \P„ Q,] IkX'y. (28)

1 '
r->.oo r J dm l - L r +-J | \ i

2r
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We now split the wave operators according to Q± I + T± to transform the
claimed relation (27) into

2r 2r

lim - fdr2-~ <kX\ [P., Tf I kX'y + lim - [ dr-^ <k ^ j T* [Pr, T+] j kX'y
r-yoo r J dm l L r» +J |

r-+oo r J dm I — l r> -t-j |

r r
1 dk d

dm dk
<X | R(k) | X'y (29)

We have replaced S by R S — I on the righthand side of (27) since I is independent
of k and therefore gives zero upon differentiation with respect to k.

Further we carry out the following substitutions which are standard formulae of

scattering theory [7]

<ftA | VQ+\k' X'y

m' — m + i 0

<ftA \Dtv\k' X'y

<kX | T+ | k' X'y

<kX\T* ik'X'y-1 - I m'-m-iO \ (30)
<k X I R | k' X'y ô (k - k') a I R(k) j X'y

/ih
<X\ R(k) \X'y -2nif, <kX\ V Q, ikX'y11 dm ' T '

Let us examine the first part on the left hand side of Equ. (27). The variables X are

only trivially involved and we can omit writing them in the following

!oof dk' <k\Pr\ k'y <k' | VQ+ | ky \—
J i r i i -t-i m — m+iv
0

oo j

- f dk' <k\V Q+\ k'y <k' \Pr\ky
1

'

m'-m + i 0 \'
o

By using the formulae

x — i 0

and

:l

^P^)+mô(x);^ro-^p(l)-mô(x)

p( i \ B- (JL L_)
leu' — m) dm \k' — k ft' + ft/

we obtain
oo

<k I [ Pr, T+] \ky= f dk' Uk | Pr | k'y ik' | V Q+ | ky
o 1

oo

[P(^~) - jY_ + ni ô(k' - ä)] + f dk' ik \ V Q+ 1 k'y <*' | Pr | ky
0

[p(ft^)-ra^'^'-4-

dk

dm

dk

dw

15
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First we note that in the limit r -> oo the terms containing lj(k' + k) will just give
1/2 k by property (a) of the hypotheses. Then the terms containing P(l/(k' — k)) can
be evaluated in the limit r -> oo using property (b) of the hypotheses. Finally the
terms containing the (^-functions read

2 ft dX"{{kX\ V Q+ \kX"y<kX" | Pr \kX'y- <kX j Pr j kX"y <kX" \ V Q+ \kX'y}

(where we have restored the variable X) and they vanish when the averaging
2r

l\r\dr in (7) and the property (c) of the hypotheses are applied. (Without this averaging
r

the above expression would not be uniquely defined and an explicit calculation e.g.
in the example (17) would lead to the undertemined expression oo — oo.) The result is

lim - f dr <k\ [P., TA I ky
r-*oo r J

r

4c <k' \VQ.\ kyk, k
d~ + 4c <k\VQ,\ k'yk, k f - -! ik I V Q. \ky-YY-

dk' ' + i k h dm dk' + ' * * dm ft ' + ' dm

dk I d

dm (~ik\VQ+\ky- \ ik\VQ+\kyy

Since dmjdk kjpi it follows that djdk (dkjdm) — dkfdco ljk and therefore

R(k) -2ni-4 (4r <k\V Q,\ky- Y <k\VQ.\ ky)
dm \dk ' + ' ft 1

d
~dk

so that

}™^-<k\LPr,T+i\ky=Y-^^R(k). (31)

By restoring the variables X at their proper place we obtain the relation

2r

lim -1- f dr -p*- <ft X I [Pr, T.] k X'y
1 ^- 4v 0- I Wl I A'> • (32)

,^oo r J dm ' r + i dm dk ' v ' v '
r

This shows that the entire contribution (29) must come from the first term on the
left. Thus the relation (29) and with it the theorem is proved if we can prove that the
second term on the left of (29) is zero. That is we must prove the relation

2r

lim 1 [dr Y^Y. (kX\T*_ [Pr, TA \kX'y 0. (33)
r—>oo r J dm

r

This expression contains three kinds of terms, characterized by the number of <5-

functions contained in them. A straight forward calculation shows that the terms
which contain at least one (5-function exactly cancel each other. The remaining terms
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containing the two principal value parts read (without unessential constants and
averaging)

}™ f Jï-T W, k') With f(k,k')

CO

pßdk"r <*'1 ^, I *"><*" I va+\i>> _ <ft'i Fß+|ft"><ft"[pr[ft>i
7 I ft-ft" ft"+ft ft'+A" ft"-ft' J' ^ 'ft' + ft

Now we note from (a) that the functions fr (k, k') converge to zero uniformly in any
interval of k' which does not contain k, while for k' k they converge to a number
different from zero according to (b) and the convergence is not uniform in the
neighborhood of k. In any interval of uniform convergence limit and integral may be

interchanged in (34) whence

oo oo

*5, fÄ «*• k'] fÄ»^- *'> ° (35)

2k 2k

oo 2k
and the integration J" in (34) may be replaced by J".

o
"

o

In this remaining integral the limit cannot be taken inside since the convergence
of/r is not uniform. But we may split/r into a symmetric and an antisymmetric part
in k' as follows:

f(k, k') Sfr(k, k') + Ajr(k, k')

Sfr(k, k+x) Sfr (k, k-x)
Afr (k,k + x) - Afr (k, k-x)

and discuss the truncated integral (34) separately for the two parts.
From the symmetry of Sfr with respect to the integration domain it follows

immediately that (34) vanishes. The antisymmetric part Afr tends to zero uniformly on
the entire Ä'-halfaxis, and the argument used in (35) shows that (34) vanishes as well.
This proves the theorem.

6. Example: The elastic scattering of a spinless particle

In this last section we shall show that for the case of a spinless particle in three-
dimensional space the three conditions (a), (b) and (c) of the preceding section are
satisfied for any testfunction which is sufficiently differentiable.

In this example we may choose for the complete set of commuting observables

the operators K ]/2 pi H0, L2 and L3, with the spectral variables {k, I, m}.
Let us calculate

(k l m | Pr | k' l' m'y / ik l m \ q-& cpy ìq •& cp \ k' V m'y
Q <r

r n 2jt

fdQQ2 [ d&sinê f dcp x*(k q) Y*lm(ê, cp) Xl,(k' q) YVm,(ê, cp)
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where

xYkr) j/ *
Ji+ysM ¦

Integration over the angles gives

<k l m j Pr j k' l' m'y òf òmf <k\ Pr\ k'y
with

r

<k\Pr\k'y Jdo82%l(ko)Xl(k'Q).
0

The last integral can be referred to Lommels integral [8] and can be evaluated in the
following form :

<k pr I k'y ^ [yjkr) dd- Xl(k' r)-± Xl(kr) Xl(k' r)}. (36)

We may develop this expression into an asymptotic powers series in l\r by using

*<*>-KT 0-»(*-¥) +1 <))¦
We are now prepared to prove property (a). Since the higher order terms in ljr give
zero in the limit r -> oo we may write (k\ Pr\ k'y

V2 (ft' /, nl!— sin k.r
» *»- ft- I r* Sm (^ - T) ^s(kr--)- yi- sin (A r - r) cos [kr - —)j
1 fsinr(A'-ft) u sin r (ft' + ft) 1

~¥1 y-* "(_1) ä7^—)¦ (37)

The second term tends for r -> oo to a (5-function with support at the point k — k'
and thus does not contribute anything while the first term tends to ô (k' — k) (cf.
section 3). This verifies property (a).

Let us now verify property (b) that is

oo

hm ^ ^Y_ <k\Pr\k'y cp(k') cp'(k) (38)

o

for any testfunction cp(k). It suffices to verify this relation for leading terms (37) in
the asymptotic expansion of <(k j Pr \ k'y the other terms being zero in the limit
r -> oo.

We note that because property (a) is verified we may decompose the integral (38)
into two parts one on the interval (0, 2 k) and the other on (2 k, oo). The second

integral is then seen to vanish in the limit r -> oo because of (a).

By a reasoning which duplicates word for word that which lead us to Equ. (26)

we verify that a necessary and sufficient condition for the truth of Equ. (38) is

2k

lim if <^\YtL i— dk' 0 [k > 0]. (39)
r->oo J k ~ k

0
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This property results by direct evaluation for the leading term (37) of the asymptotic

expansion of the kernel fk \ Pr \ k'y. For the other terms it is true because these
terms are of order l\r or less and therefore tend to zero with r -> oo. This verifies
property (b).

Finally property (c) follows easily from the explicit form (35) of the leading term
in fk | Pr\k'y. Thus our three conditions for the validity of the proof of the main
theorem are verified in this case.

7. Conclusion

The main result of this paper is the derivation of the relation (13) between the
delay-time operator Q and the scattering operator S. This relation is valid for all
simple scattering systems for which the wave operators ß± satisfy the regularity
conditions that V Q± and Q*_ V have in the ^-representations integral kernels which
in both variables are functions from a testfunction space for which the conditions
(a), (b) and (c) are valid. The last three conditions are valid for elementary particles
with or without spin if the testfunction space contains for instance infinitely
differentiate functions only. We have shown this in section (6) for spinless particles.
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