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Finite Nuclear Size Effects in Internal Conversion

by Hans-Christian Pauli
Seminar für theoretische Physik der Universität Basel

(28. IV. 67)

Abstract. The process of internal conversion including finite nuclear size effects is reanalysed
for an arbitrary multipole order. It can be shown that the dependence on nuclear structure can be
described by two so called nuclear parameters which are —for a specific nuclear transition—independent

of the atomic subshells. These parameters may be determined by two or three conversion
experiments and checked by others. New formulas for the particle parameter and for the
conversion coefficients and their dependence on these nuclear parameters are derived. A recalculation
of the conversion coefficients and particle parameters including all finite nuclear size effects has
been performed as well as a comparison with the conversion coefficients as computed by Rose
or by Sliv. The agreement with Sliv's values is generally better than with those of Rose.

I. Introduction and Summary
An excited nucleus can decay by electromagnetic interactions. Internal conversion

belongs to these processes and competes with the usual gamma transition inasmuch
as the de-excitation takes place by the emission of an orbital electron instead of by
the emission of a photon, especially at low energies. Assuming the gamma transition
as the standard, the internal conversion transition probability We can be measured
in units of the photon transition probability W and this measure is the so called
"internal conversion coefficient (ICC)" i.e.

We

7

The internal conversion coefficient is a rather important tool for the determination
of the multipolarity L as well as for the parity ti of a nuclear transition. From these

quantum numbers limitations on the spin and parities of the involved nuclear levels
can be obtained.

In the first calculations of the internal conversion coefficients, as performed by
Rose [1] for the if-shell, neither the screening of the atomic electrons was taken into
account nor the finite nuclear size, but the nucleus was assumed to be a point charge.

The renounciation of the latter assumption i.e. the introduction of the finite
nuclear size leads to considerable corrections of the conversion coefficients. Firstly,
the radial wave functions of the electrons have a completely different behaviour near
the origin for a finite nucleus than for a point nucleus. Since the neighbourhood of
the nucleus contributes a large part to the radial matrix elements this—so called
static—effect is nonnegligible. Secondly, the correct treatment of the conversion
matrix elements gives rise to additional matrix elements which disappear in a point
nucleus approximation and wherein the operators of nuclear transition charges and
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currents are explicitely contained. Thus, detailed nuclear structure enters in these
additional terms and we shall call them dynamic in the following, contrary to the
above mentioned static effects which depend only on static nuclear charge distribution.

Especially for heavier nuclei the dynamic matrix elements may become important,

and the measurement of conversion coefficients may contribute to the investigation

of the dynamic nuclear structure.
The existence of nuclear structure effects in internal conversion—the so-called

penetration—was first suggested by Church and Weneser [2] for magnetic dipole
(M1) transitions. In subsequent work the theory was extended to other multipolari-
ties [3]. Calculations of the dynamic matrix elements were given only for the i?-shell
[4], and thus the considerations of Church and Weneser had to be restricted on this
shell. Nevertheless, penetration effects have to be expected also for the higher atomic
shells. Particular work for 7-subshell conversion coefficients has been done by Church
and Weneser [5] and Kramers and Nilsson [6], in order to explain the partially
very large anomalies of the conversion coefficients which have been observed in
hindered electric dipole (£1) transitions of low energy [7].

Although the theory of internal conversion including finite size effects is already
scetched by the above mentioned authors, we shall present in this paper a complete
and general reanalysis of the conversion process and obviously, repetitions can not
always be avoided. The main aim we persue in this reanalysis is to separate properly
the matrix elements which depend only on the electronic wave functions from those

carrying the nuclear information. We will show, that all nuclear structure effects can
be put into one nuclear parameter for magnetic and into two parameters for electric
multipole transitions. These well defined parameters are independent of the subshells
involved and can be determined by the measurement of one or two conversion coefficients

or particle parameters and checked by others. Once these parameters are
determined they should be verified by model dependent considerations.

Parallely to the investigation of the conversion coefficients we have reanalyzed
the angular correlation for conversion electrons including finite size effects. For the
standard y-y correlation we refer to the textbook literature [8] and restrict ourselves
on the so-called particle parameter which includes all modifications of the standard
theory through the introduction of conversion electrons. We shall present a considerable

simpler notation for the general particle parameter than the formulas of Bieden-
harn and Rose [9, 10, 11] or of Ivash [12], as well as explicit formulas for the particle
parameters for the K, LIt Ln, LHI, Mj, Mu, MIH, MIV, N,, subshells.

The investigation of nuclear structure by means of internal conversion presumes
the knowledge of the static conversion coefficients. Today, two tabulations of internal
conversion coefficients including the finite nuclear size are available.

The tabulation of Rose [13] takes only the static effects of the finite nuclear size

into account. Sliv and Band [14] include also dynamic effects by means of the very
rough model of the nuclear surface transition currents and charges. However, the
discrepancies of these two tables are in many cases too large to be only due to these
different assumptions. Such discrepancies can be expected to be significant only for
magnetic low energy transitions. Therefore, they have to be attributed to numerical
errors. In order to check their calculations we have performed a recalculation of the
conversion coefficients for the K- and the 7-shell with the same physical assumptions
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as Rose or Sliv. Although we agree very often with the values of Rose within the
combined limits of error, the agreement with Sliv's values is generally better,
especially at low energies.

In the following, we discuss in Chapter II the formulation of the interaction and
the separation of the general matrix elements into the static and dynamic parts.
In Chapter III the formulas of the particle parameters are derived. The dynamic
matrix elements are discussed in detail in Chapter IV, in order to simplify the theory
by means of the definition of the nuclear parameter. Finally we give in Chapter V an
outline of our numerical procedure as well as some selected numerical results.

II. Formulation of the Interaction
The total system consisting of the electron, the nucleus and the quantized radiation

field is described in a zero order approximation by the Hamiltonian1)

H0 Hn + Hy+ap + ß+V(re) (1)

where the two first terms represent the Hamiltonians of the free nucleus and the free
radiation field. The latter terms in Eq. (1) represent the electron, moving in the central

and static Coulomb potential. The interaction between the nucleus and electron
occurs via the electro-magnetic field, which is usually divided into a transverse part,
described by the vector potential A(r) for which div^4 0 (solenoidal fields), and a

longitudinal part causing the instanteous Coulomb interaction. With this gauge any
divergencies can be avoided [15]. Since the point charge interaction is already
contained in the unperturbed Hamiltonian, the interaction Hamiltonian is given by

HM =fdr (j„(r) + j.(r)) A(r) +Jdr dx' «fflffi - V(r) (2)

where j(r) and g(r) are the transition currents and charges of the nucleus and the
electron.

The vector potential A(r) is expanded into multipole components according to [15]

A(r) =EZ l/-f- • Km(£) Alm(E) + aLM(M) ALM(M) + c. c.} (3)
q LM '

L>\
where the electric (E) and magnetic (M) multipole fields are given by [16]

ALM(M) y== îdqr) iL YLM(Z)

ALM(E) -| • ^7== /l(?r) iL YLM(r) (4)

For the spherical Bessel functions jL(q ¦ r) we use the same notation as Schiff [17].
The multipole fields, enclosed in a large sphere of radius R, can be understood

as photons with angular momentum L and magnetic quantum number M, wave
number q, parity (—)L and (—)L+1 for electric and magnetic fields, respectively, and
obey the "convention T" i.e. they are transformed under time-reversal-operation T as

x) Here and afterwards relativistic units are used throughout (H c 1, me 1, i.e. e2 a ^
1/137.
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With the normalization (3) the destruction and creation operators, aLM and a£M,
have the only nonvanishing matrix elements

< n I aLM \n +ly in + l\ apM \n> }/n + 1

where | w> represents an eigenstate with n photons in question.
In order to evaluate the transition amplitudes we consider a transition from an

initial state | iy where the nucleus is in the excited and the electron in the ground
(or bound) state, to a final state |/>, where the nucleus has transferred the energy
k to the electron. The eigenfunctions of Eq. (1) for the nucleus are represented by cp

and for the electron by y>. The transition matrixelement of the Coulomb interaction
(third term in (2)) is calculated by first order perturbation theory and that of the
current interaction by second order according to an emission and reabsorption of a

photon. Thus we have

»... - <«vwI ei'7e;'|-1 - FW I r,v>,>

27|/¥'{ iff I jnALM(n) | cpiy <y>/ | je AÌM(n) \ xpù

+

q-k
<<Pf\Jn ALM(n) | <pj) <y/ | j. Atm (ti)

q + k ^) (5)

The summation over q can be evaluated, replacing E by / dq Rjn and using the
relations [18]

and
jdi qTZk*- Jl(1 r) jL(q r') i ~ jL(k rK) hL(k r>) (6a)

o

fd1 ^éj2 Îl(1 r) jL(q r') i -~ jL(k r<) hL(k r>) - ^ • <r>+1) (6b)
o

In the above formula hL(kr) is the spherical Hankel function [17] and r<t r> are
the smaller or greater of r and r', respectively. Since magnetic and electric multipole
fields have different parity and different selection rules, it will be useful to split up
the total amplitude into the magnetic and electric components and to discuss each

part separately, i.e.

Hin, Z Hr-M(M) + Z Hlm(E) + H(E,L 0). (7)
L,M L,M

The last term represents the so called monopole transition amplitude.
Since the transition amplitude is easier to handle in the magnetic than in the

electric case, we start with the magnetic amplitudes.

Magnetic Multiftole Transitions

Inserting (4) and (6a) in Eq. (5)2) we obtain
oo

HLU(M) -^0^Jdrn dxe [j L iL YLM]+ [j L iL YLM]e jL(k r<) hL(k r>) (8)

o

2) The symbol / dx means an integration over a sphere of radius r.



Vol. 40, 1967 Finite Nuclear Size Effects in Internal Conversion 717

It is suitable to construct the matrixelements in the way that always r„ > re, since

we have much more knowledge of electronic than about nucleonic variables. Therefore
we write for (8)

ioo
oo

f dxn [jnLi>~ YLM]+ jL (k r) j dxe \j. L iL YLM\ hL(k r)
0 0

oo rn

+ f dxn [jn L iL YLM]+ hL(k r) f dxe [/. L iL YLM\e jL(k r)

- J dxn [j„ L iL YLM] + jL(k r) j dxe [j,LiL YLM\ hL (kr)\. (9)

o o I

In the first term of this equation the nucleonic and electronic variables are
separated exactly and the pure nucleonic integral is just the matrix element of a radiative
ML transition. The second and third terms are the so called penetration terms,
where such a factorability is not possible. Obviously the penetration terms disappear
in the approximation of a point nucleus. We denote the first term in Eq. (9) as static
and the penetration terms as dynamic matrix element since the latter depends explicitly

on a dynamic nuclear model. It is useful to have the gamma transition amplitude
as an overall factor and thus we write

OO

HLM(M) 4nik J dxn jn A+M(M) MLM(M) (10)

o

where the magnetic multipole field ALM(M) is defined in Eq. (4). In Eq. (10) we have
chosen the notation

MLM(M) M^M + MfM(M) (11)

with oo

4!,mM / dxe -M= iL Ylm K(k r) - (12)

o
y \ i

°° I r„ rn |

/ <*"t„ [jn L iL YLM]+ \hL ¦ j drejeLiL YLM jL- jL J dxe je L iL YLM hL(k r)\

MfM(M) 7 [ 7_ ° L

\/L(L + \) f dzn [/. L iL YL M]+ jL(h r)
0 (15>

where the indices (s) or (d) stand for "static" or "dynamic" matrix elements.

Electric Multiftole Transitions

The amplitude of an electric transition is obtained in a similar manner as in the
magnetic case, but the formulas are much more complicated. In precise analogy to
Eq. (8) we get from Eq. (5) using Eqs. (4) and (6b)

Hlm(£) IZziUjIdr" dr<[j {V x L) * Yl"£ V (F x L) iL Y*-^e iL(kr<) hL(kr>)

- k*L(L+l)(2L+l)jdXn d*e U d7 X L) iL YLU}+ [j (V X L) iL YLM\

xr^rZ.1-1. (14)
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This matrix element can be evaluated further by use of the well-known gradient
formula

VxL ~i[rA-V -drr\.

The operator j(r) ¦ ty can be integrated by parts in order to use the continuity equation

Vje + ikQe=0 Vjn-ikon 0.

After some straight forward calculations we get

Ioo/ dredxn Q+ Qe jL(krK) hL(kr>)
o

dr„L rn(iL YLM)+ j. dxe je r (iL YLh

re~'n

'ràr,it.e,q,lfLYL„ì*lfLYlu)r^r>'-' (15)

0

(2L4-1)

where we have introduced the operator

Q<= whw [*'*'¦ " Q° *" rliL Ylm (16a)

e.-?=^=r[.-*i.?-6l^f].*yUf. w
In the derivation of this result we have made use of the identity

1l(x) K-x(x) - Ìl-i(x) K(A ~2

and their derivatives.
It can now be seen at once that the last term in (15) cancels the corresponding

term of the multipole expansion of the Coulomb matrix elements in Eq. (2). Since
the expansion of the radiative field has no component 7 0, this term remains and
gives rise to the monopole term as discussed e.g. in ref. [3]. In the present paper we
shall neglect this monopole term since the strange surface integral in (15) is caused

by the integration by parts and not only non-negligible but in fact dominant, as

will be discussed in chapter IV. The further procedure is in precise analogy to the
magnetic case.

We write the pure transition amplitude

J dxnQ:jL(kr)=J dxnjnA+M(E)
o o

as an overall factor of the electric matrix element and get

HLM(E) 4nikj dxjn A+M(E) MLM(E) (17)

o
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where we have used the following notation

MLM(E) M?M(E) + MfM(E) (18)
with

M?M(E)=fdxeQ,kL(kr) (19a)

MfM(E)

l °° oo I r„ r„ j- 7 / **Jn r (iL Ylm)+ § dfìje r iL YLM + / drn QÎ \hL f dreQejL~jLj dre Qe hL\
0 r.-r„ 0 I 0 0 J

j dTnQ+njL(kr)

(19b)
The index (s) stands for "static" and (d) for "dynamic" matrix elements.

III. Density Matrix Formalism
The aim of this chapter is to deduce the density matrix of the conversion process

in order to get so called general or normalized particle parameters through comparison
with the normal density matrix for a gamma transition.

In the former chapter we have calculated the general transition amplitude in
terms of transition currents and charges. In order to specify the different states, let
us introduce explicit quantum numbers. The nucleus is initially in the excited and
randomly oriented state with spin /;, and decays into the final state described by the
quantum spin number If, Mf under emission of an electron. The electron is characterised

in the initial state by the Dirac quantum number xit with random spin orientation

/j,{, and in the final state b}' the wave number ft and the intrinsic polarisation r.
Thus we have

Hint 4nik Z <IfMf\ L Atu(n) \ It M,-> ip, x j MLM(n) | x, ft> (20)
nLM

The final state of the electron can be expanded into the standing wave solutions
| x/u>, which are eigensolutions of the Dirac equation, i.e.

\p>^=Zs«a«ii(x) I *<">

where sx and «is defined in the appendix by Eq. (A 12). Thus, equation (20) becomes

Hint 4jiik Z <hMA h At„(n) | 77 M\> s+ a+Ax) ixfjt | MLM(n) \ xt fit> (21)

and the density matrix can be written

<m; \o\Mf>= Z st v <» «*>-W
Mj, ßi, r
nLM xß

nf U M' x' fi'
¦ <*>' | ML'M'(^') | Xi1*i>+ <Xl* | MLm(x) X{f*i>
¦ <rfMf\L AiM(n) | I, Mpy HfM'f\jn A+.M.(n') \ It M,->+ (22)
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The summation over the polarization x can be carried out as well as the summation
over the remaining azimuthal quantum numbers /ut, /u, /u', of the electron. We use the
Wigner-Eckart theorem [19], and introduce reduced matrix elements according to

¦ M - jx
(x ix i MLU(n) | x, ft> (-)»-" r; „ ;. <* || * l \\ xt>. (23)

Together with Eqs. (A 22) and (A 23) in the appendix, the relation

f-r +r-ï (h L A (it L' 1"
<*t„(r)a. ,,(x)

-4^Z(-)M (2* + D *.< (£_£,_ J) (-r' + 1i(2i + l)[2f + l)

i Ï k\\i Ï k\
X\xl2-xl20)\L'Lji\

can be derived.
The density matrix can now be written in the final form

a,;|'|M>7,i7-,',M,,,!HW'(.I-")&i'-'(
Mi MM'

X <IfMf\in AtM(7i) | /7 M,y HfM'f\jn A+.M,(ri) \ I, M,.)+

x ]/(2 L+l)(2L' +Ï) Bk(n L, ri L') (24)

This represents the density matrix of a pure gamma transition up to the factor Bk,
which we shall call the non normalized particle parameter for internal conversion.

This particle parameter Bk (jiL, n'L') is defined by
li ï ä\ f/ /' Äl

Bk(nL,n'L') (-)»-**Zf& j + 1) (2 f + 1) ^^ U" L ?J

with

IL L'k\

XQ>lX!(7tL)Q+(riL') (25)

&„(*£) (")L 2» (/pXTïj- s*+ <* II nL II *'> ¦ (26)

For the special case k 0, the particle parameter B0 is just the conversion coefficient,

i.e. for electric multipoles

*L=Z\QHKi(EL)\*=BJ<EL,EL) (27)

while for magnetic multipoles

ßL=Z\Q**i(ML)\2=Bo(ML>ML)- (28)
X

The particle parameter [9] is normalized corresponding to

&o=l
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and we define thus the normalized particle parameter to be

bk(jt L, ri 77) -1==3^k^L= (29)
y Ba(ji L, n L) B0(n' L', n' L')

Further Investigation of the Particle Parameter

The geometry factor of particle parameter does not depend neither on the angular
momentum / nor on the sign of x, and we can handle the magnetic and electric
transitions simultaneously. Although every wanted particle parameter can be obtained
by the general formula (29), we will go more into detail, in order to clarify the dependence

on the tensor parameter k, at least in the simplier cases.

First, we shall consider -pure multiftoles only, i.e. L L'. For the K, LT, Ln, Mj,
Mu shell, i.e. for /; 1/2, the normalized particle parameter bk can be written by use
of Eq. (A 28) as

HnLnL)-x + m*±I> L_ Igggj^gl (30)5,|»L,»L]-1+ 2L(L+\)-k(h + l) 2(2 1.4-17 Z\Qxx.(nL)\*
x t

Correspondingly we obtain an expression for j{ 3/2, that is for the Lln, Mln, MIV
subshell by help of Eq. (A 30).

u I T T\ 1
A (A4-1) r r, k(k + l)-3L (1.4-1) TA ,o^bk(nL,nL) 1 + -^^-1^— \cx(nL) + {L_x) {L + 2) ^L)\ (31)

with

cx(ji L)
|£)/2/+i(t^) 8^(^)1

and t 3i \
\Z]/2jïï (Î/2_2 3}J6->L)|

c2(ti L)
?IÖXX>^)I2

The second term cancels for dipole transitions i.e. c2(n 1) 0.

Considering the particle parameter for mixed multiftole transitions, i.e. L L' + 1,

and restricting ourselves first of all to /, x/2, that is to the K, LIt Ln, MIt Mu
subshells, the particle parameter bK (tiL, jiL') is independent of the tensor parameter
k, as can be seen by inserting Eq. (A 29) in eq.

bk(nL,ri 77) —
l/(2L + l) (2I/ + 1)

Re{E(-Y]/2L-\x | + 1 Qxx.(7iL)E(-)*'\/2~l7+x7T+lQx,>ci(7i'L')}
(32)

The mixed particle parameters for the Lnl, Mm and MIV shells, that is for jt 3/2,

can be reduced by means of Eq. (A 31) and is given by

bk(n L, ri 77) cL + k (k + 1) c2 (33)

with „
- Re{£CVi'ÜV i + (2 ?" + « Ö««/» L> QÌ471' L')}

-\/E\QXXi(nL)\*È\QXXi(x'L')\*
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The coefficients C(*'(/ /') are combinations of 3 /-symbols and are defined in the appendix,

Eqs. (A 31) and (A 32).
Similar relations could be derived for higher subshells, i.e. ]i 5/2, 7/2. In these

cases it is more economic, however, to use the general formula (29), directly. It should
be mentioned that similar formulas as Eqs. (30) and (32) have been given by Bieden-
harn and Rose [9, 10]. The particle parameters for mixed multipoles (Eqs. 32 and
33) carry the correct sign.

Reduced Matrix Elements in Terms of radial Integrals
The evaluation of the reduced matrix elements as defined in Eq. (23) amounts to

the computation of the conversion matrix elements as defined in Eqs. (12) and (19).
Let us start with the magnetic amplitudes, defined as

ixii | MLM(M) | x,/it> ixn j M^M(M) + Mfu(M) \ xifx{y

We shall content ourselves with the static matrix element, since both static and dynamic

terms have the same angular dependence. We insert in Eq. (12) the nuclear
transition current

ie WfaWi-

The electronic charge e is omitted and already contained in the overall factor of
the general particle parameter. With Eq. (A 2) we obtain

Ioo<tf>£ I oLiLYLM | - S(x{) 0t%> f dr hL ux vx.

o

+ i- S(x) 0tx\aL iL YLM | *«> J dr hL ux. v\

The angular matrix element may be integrated by parts by means of

a(L iL YLM) cpH {o L) (ìl ylm 0JJP _ iL ylm a L 0^
and,thus

ixfx | M^M(M) | «liU,> -^|^rtp)- <^_» I iL Ylm I *£{> K«{(ML)
with

CO

K4M L)= f dr hL(k r) (ux. vx + vx. ux)

o

The angular matrix element still contains all selection rules.
The explicit evaluation in terms of 3/-symbols, Eq. (A 9) leads to

iX/X | M^M(M) \ K, /X{> (-)'-> lh LM
1 (-)i + V2ih+L-l S(x) {x + }

\/i, M -fi]
l/(2L-H)(2/4-l)(2/,-H) (U j L\

x V—4»i(t+i) — U/2 -v,o j R«*i(ML) ¦
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For the dynamic matrix element we obtain the same result except that the radial
integral Rxx. is replaced by

o

with

/dTnjnLg<$li(r)(iLYLM)<
o

oo

/ dxnjnhjL(kr) (iLYLMy
T(ML)=^- (34)

t r

g?JfM hL(k r) J dr jL(k r) (ux. vK + vx. ux) - jL(k r) J dr hL(k r) (ux.vx + vx.ux). (35)
o o

Finally we get for the reduced matrix element

<« i ml „>, (_,.««...-; sW<„+«, ^7L7,^!)'I+- $, -i o

x[Ä„,(4fi) + r„,(ML)]. (36)

For electric transitions the procedure is quite analogous and again we shall
consider only the static part.

oo

ix [x | M^M(M) | k.^ y^^- | {ikj.r-e-^ r) hL(k r) iL YLM dx

o

The transition charge density qe is defined as

Qe V>f Vi

and thus we get by use of Eq. (A 6) in the appendix

ixLi | M$M(E) | x.tlxty y=+~ «P£ I iL YLM I <*>«> 7^(7-£)
with

oo

Ä**,(£ L)=Jdr\kr hL(k r) \ux. vx - vx. ux] + (A r AL(Ä r)) [«„. w„ + vx. vx_

Inserting Eq. (A 6) we have

<*, i ms,.*) Kw - (-)-(^ £ _;) (-)«« .^-^"^'Jl'-^g"^

In the dynamic matrix element the radial integral RHHi is replaced by
oo

/ dr{ijnfg'll.(r)+Qngx2l.(r)} (iL YLM) +

TXXt(E L) -^- (37)

j dx \ijn fhr jL(k r)+Q ^ r jL(k r)\ (iL YLM)+
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with

£li(r) -v (u"i v- - v*i Mx) + kr{hL f(r, 1L) - jL f(r, hL)}

gi%(r) (£ r hL(k r)) f(r, jL) - (A r jL(k r)) f(r, hL)

Y

f(r> h) =y dr \k r ÇL (ux. vx - vx. ux) + 1 r ÇL (ux. ux + vx. vx)j (38)

o

Finally we obtain the reduced matrix element for electric transitions

<x || el || xty (_)/-«»,^-« Y^^SBP^ (v, -XJ) ^EV
+ TXXi(EL)].

2 2

(39)

Together with Eqs. (37) and (39) the conversion coefficient can be written in
terms of radial integrals for electric transitions

M*«)=-kz (2y(i}+y- (v, - i/, o
)21 ^-»(£L)+T-<{E L) |2 (40a)

and for magnetic transitions

ßL(xt) * - kZ{2ii+l%+1)- (Ì!u\ LJ (» + ^2 I RXXi(ML) + TXXi(ML) \2

(40b)

IV. Further Investigation of the Dynamic Matrix Elements

In this chapter we shall discuss only the dynamic matrix element Txx. which is
defined in Eqs. (34) and (35) for magnetic transitions and in Eqs. (37) and (38) for
electric transitions.

In the expression of T the nominator and denominator is described by the same
nuclear transition operators which are, however, weighted by different radial
functions, and it is possible to obtain information on dynamic nuclear properties through
the internal conversion process. In general, however, the nuclear contribution to the
internal conversion will be small and outside the present experimental limits of error.
Only in those cases where the gamma transition is hindered, while the conversion
is unhindered, dynamic nuclear effects may be expected. Especially in El and Ml
transitions many anomalies were observed which can be explained by dynamic or
penetration effects. It should be noted that anomalies may occur also in higher order
multipole transitions.

Let us assume that the nucleus is a homogenously charged sphere with sharp edge.
The radius of this sphere can be assumed to be

7? 1.20 A1'310-13 cm 0.00311 A1!3 Xc.

Inside the nucleus, the argument k r of the spherical Bessel or Hankel functions
is small compared to one, i.e. k r <^ 1. We may therefore restrict ourselves to the first
term of the series expansion,
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i.e.

,- ik r) - (kr)L h(kr)--i (2Z-1)!!WAr)- (21+1)!! W)- *
{kR)L+i ¦

The Coulomb functions and similarly the radial functions g$x.(r) may be expanded
into a power series of x r/R [20], i.e.

SX«;

and

with

ft ft

TZ**** g%(r) i^Ze»>x2m (41)
»1 0 ?H 0

7D M =iZ^ V ri -r**» a»)

éïl^^i-ZL
w=0

\X{ \ + \x \ + 1 - \ Xf \ + \x\ xxt>0p :
'

ft \ \ \ \ for ^
I Xi I + j x | | Xf | + | x I + 1 x x{ < 0

The dynamic matrix elements can now be written

T (EL) - i (2Z- + 1)!! 1 L Y1 d n{p) 4- e È^]i^i^^-T- ,L+1) k{kR)L (1 + C) ^oamVm + em $m

r,Xi.(M I) ,¦ (2 £ + 1) ~^wZ im W
where

„BO <If\ÌÌjnrxP+2m YL]\IÒ c ^R
>m " <If\\enxLYLl\Ii> L + l 'l0

tifi) <If\\Qn*fi+2m Yl\\Ij> jtp) iIf\\j„LxP+2m YL \\ I{>
" '

<If\\QnxLYL\\Ii> Am ' <If\\ìnL^YL\\I^ ' K '

In the above expressions the parameters rjm, £m and Xm contain all nuclear information

and could be evaluated if a specific nuclear model is assumed. The coefficients
dm, em and fm can be calculated exactly for any specific static charge distribution of
the nucleus and are given in the appendix for our used charge distribution. As long
as we deal only with small energies, the assumption of a sharp edged sphere seems to
be reasonable and the introduction of a more physical charge distribution would not
change these coefficients appreciably [3].

In Table 1 we give the Dirac quantum number x, the quantities ft, ft and q
| x( | + | x | (see Eq. (37)) for all possibilities of the ejected electron. The dynamic
matrix element Txx. is proportional to the product of the normalization coefficients
of the bound and continuum states, i.e. Txx. ~ a0A0 ~ 7?'. For a definite multipole
transition L the partial wave with the lowest value of | x | is characterized by q

7+1. The corresponding matrix element is therefore about a factor 100 larger
compared to the others, which we will neglect in the following. The number of model
independent nuclear parameter can be further reduced.

We consider first for magnetic multipole transitions the ratio

F --m t/0

which do not depend on the normalization coefficients and thus can be computed
directly by means of Eq. (A 21).
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Table 1

Selection rules for the outgoing electron (x) in dependence on the multipolarity L for electric
(left) and magnetic (right) transitions. Simultaneously, the values of p, p and q are given.

x{ X P *i X P P 1

-1 -L
L+l

L + 2

L + 2
L + l
L + 2

-1

-2

L
-(L+l)
L-l
-L
L + l
-(L + 2)

L + l
L+3

L+l
L + 3

L + 3

L + 5

L + 2

L + 2

L + 2

L + 2

L + 4
L + 4

L+l
L + 2

-2 -(L-l)
L
-(L+l)
7 + 2

L + 2

L + 2

L + 4
L + 4

L + l
L + 2

L + 3

L + 4

L+l
L + 2

L + 3

L + 4

-3 -(L-2)
L-l

L + 2

L + 2
L+l
L + 2

-3 L-2
-(L-l)

L+l
L + 3

L + 2

L + 2
L+l
L + 2

-L L + 4 L + 3 L L + 3 L + 4 L+3
L+l L + 4 L + 4 -(L + l) L + 5 L + 4 L + 4

-(L + 2) L + 6 L + 5 L + 2 L + 5 L + 6 L + 5

L + 3 L + 6 L + 6 -(L + 3) L + l L + 6 L + 6

We define now a nuclear parameter X, independent of any subshell, by

X X%+1) + Fx X[L+1) + F2 4L+1> + • • • (43)

where X\L+1) is defined in Eq. (42). The number of nuclear parameters in magnetic
transitions is thus reduced to one, which contains all nuclear information and which
has to be consistent with all conversion data of a distinct nuclear ML transition. The
dynamic matrix element can now finally be written

TXXi(M L) i i|A^ /„(*, «,) X Ò,, L+1 - (44)

For electric multipole transitions the same arguments as in the magnetic transitions

are valid and we define corresponding to Eqs. (40), (41) and (42) for all electric
multipole ordess (except electric dipole transitions)

v j^(v{0L+1)

t rb &L+2) + ex kr2) 7 e, # < *> +

Dm ~; Em f~- (45)

For the dynamic matrix element we get finally

T*x,(E L) *
k(kR)L(L+i)

(do(x> xi) V + eo(x> *i) S) àq,L+i ¦ (46)

The "nuclear current parameter" rj as well as the "nuclear charge parameter" |
does not depend on the subshell. - For electric dipole (Til) transitions, a strong
cancellation occurs in the dynamic coefficients of f. Thus, the q L + 1 2 term
is no longer the leading term and we have to include matrix elements with q 3.

We restrict in this case ourselves in Eq. (38) to the first term with m 0 and redefine

the nuclear charge parameter:

f z^rz 4L+2) (47)

DxVlL+1]' + D, „(L+ l)

ExS[L+v + E2 £(£+2) _

em
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the dynamic matrix elements can now be written

3
TXXi(El) 2RKi [d0i]ô ?,2 e0 Òq, 2 + e0 Sq, i) S] ¦ (48)

The restriction to the first term in the series expansion is necessary, since the
coefficients Em for q 2 are not the same ones as for q 3. However, the charge
parameter is not very important, and experimentally it is in most cases even consistent

with zero.
The above approximation i.e. the neglection of the dynamic matrix elements of

the higher partial waves, is only true, if

Vi+l < 10 (49)

where vt is one of the nuclear parameters (rj{, £{ or X{).
This condition is, however, rather weak and will be fulfilled in general.
We like to stress that, as long as the condition (49) holds the discussed neglections

will have little influence on the numerical values. The above equations of the dynamic
matrix elements must thus be regarded as exact relations.

Similar, but less general parametrizations have been given earlier in the literature.
In Table 2 we give a comparison between the present and the corresponding notation
of earlier authors [3, 6, 21].

Table 2

Different notations of the nuclear parameters. The present parameters are expressed in the nota¬
tion of other authors.

Present Corresponding notation Reference
of earlier authors

Remarks

''/I/;[f+l) / sii) V(L+1)\

Church and

Defined in [3] for the
iï-shell and correct
for j L —1/2, only.

1 + c

1 c<2'

(l+iL_\ s(2> + «,-) ]^f»;
Weneser [3] Church and Weneser

give also the relation
to the notation ol
Green and Rose [4]

1 + c ~ jsTff y 3 na. Emery and only for El

1 + c
—]/—
R2 \ ti a.

Perlman [21]
X

«(2)
*m

0, 1, 2,
2

— — As, s 0, 2, 4,
Kramers and
Nilsson [6]

only for ill
1 + c

X 1 Church and
Weneser [3]

We can separate the conversion coefficient into a static part depending only on
the electron wave functions and an "anomaly factor" A (a), which contains all nuclear
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information. For a specific subshell a, the conversion coefficient for magnetic
transition of multipolarity L can be written

ßL(a) ßf(o) A(o) (50)

with
A(o) 1 + bx(o) X + b2(o) X2

where ß^(o) is the "static conversion coefficient". In the approximation of Rose,
all penetration effects are neglected, i.e. X 0 and A 1. The surface model of Sliv
et al. assumes the value X{ 1 for the nuclear parameter.

A corresponding anomaly factor A (#) can be defined for the particle parameters
of the subshell, i.e.

m
A (a)

where A (a) is given by Eq. (50) and F by

h(o) bf(a)A(a) with A (a) -A%¦ (51a)

i» 1 + cx(a) X + c2(a) X2 (51b)

The conversion coefficient for an electric multipole transition can be factorized
in a similar way into a static part a^(cr) and a dynamic part, the anomaly factor
A(a).

0LL(a) a<?'(a) A(a) (52a)
with

A(o) l + ax(a) rj + a2(a) rj2 + as(a) rfi + aAp) | + a&(a) I2 (52b)

For the particle parameters of electric multipole transitions the anomaly factor r(a)
(Eq. 51a) is replaced by

J» 1 + cx(a) rj + 0,(0) rj2 + c3(o) rfi + cAp) | + cB(o) f2 (53)

The nonpenetration model of Rose, corresponds again to tji f; — 0 i.e. Zl (cr) 1,

while the connection with Sliv's surface model is given by rji 0 and |,- 1. Since
the coefficients ajo) and a5(cr) are usually much smaller than one, Zl(cr) 1 is also an
admittable approximation for electric multipoles, in Sliv's model.

V. Numerical Results and Discussion

Today, two tabulations of the internal conversion coefficients are available, i.e.
those of Rose [13] and those of Sliv [14]. Both authors include the screening of the
atomic electrons by the Thomas-Fermi-Dirac model as well as finite nuclear size

corrections, although the latter in a somewhat different manner. It is known, that
the two tabulations differ by larger amounts than could be understood by their
different inclusion of finite size effects. In order to check the results of Rose and
Sliv we have performed a recalculation of the internal conversion matrix elements
and phases. In the following we shall give an outline of our numerical procedure.

1. Numerical -procedure

The eigenvalues and eigenfunctions of the bound states were found with the help
of a method described by Rose [16] which we reproduce in outline in the following.
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As an approximate eigenvalue we choose W 1 — eqlmc c2 where eq represents
the binding energy of the electron. This values have been recently tabulated by
Hagström et al. [22]. The Dirac equation was solved numerically from the origin up
to a matching point r0 and the left side ratio gL(r0) (vxilxxx)r_ra was computed.

Then, we choose a point rx ^> r0, where the asymptotic solutions [16] are exact

up to a relative error of about 10~4. The Dirac equation was solved numerically for
r < rx and the right side ratio QR(r0) (vxJuxi)r^ro at the matching point r0 was
computed.

The correct eigenvalue is defined by the relation qr ql at the matching point.
If this condition is not fulfilled a corrector formula leads to a better eigenvalue. With
the corrected eigenvalue the above procedure was repeated. As soon as the absolute
value of

SRÌro)
X ei.(r0)

1

was less than 10-4, the iteration was stopped. It should be mentioned, that because
of numerical instabilities the numerical solutions are very sensitive to the matching
point r0. We have obtained the most exact results choosing the matching point to be

a little smaller than the classical turning point. We have also checked the normalized
wave functions for a point nucleus of the K- and 7-subshell with the pure Coulomb
wave function. The agreement within 10~4 was better than over about 600 compton
wave lengths.

For the normalization of the continuum wave functions we use the following
method. For F s 0, the regular solutions of the Dirac equation are given by [20]

«L0) ]/-~- ft r it (ft r) f™ - S(x) y*L± ft r jj (ft r) (54)

and the irregular solutions by '

\/W+l
|/ np ftm, (ft r) <7f : S(x) |/-^J- ftr nj (ftr). (55)

In the above equations, ft is the momentum and l(x) is the "orbital angular momentum"

of the electron. The spherical Neumann functions are denoted by nv The
asymptotic behaviour of those solutions are discussed in (A 11). The general solution
of the Dirac equation for a zero potential is a combination of the regular and irregular
solutions. These equations and the asymptotic behaviour are sufficient to determine
the normalization and the phases of the partial waves. Since the actual potential
vanishes for large distances, the actual numerical wave functions will approach the
Z 0 limit, i.e.

ux a M<°> + b uf vx a v«» + b v^ (56)

We investigated the behaviour of the coefficients a and b in Eq. (56) and did not
compare the actual wave functions with the free particle or with the asymptotic
solutions. This method was found to converge rapidly. As soon as a and b were constant
within 3 • 10~3 over two wavelengths, the integration was stopped and the normalization

factor as well as the phase averaged over one wavelength. The numerical error
of about 1% of our conversion coefficients arises mainly from the relatively large
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error in the normalization of the continuum states and could be reduced easily by the
use of more computer time.

For the integration of the differential equations both, the Runge-Kutta and the
Adams-Moulton-Bashfort scheme [23] have been used. In the final calculations the
latter method has been preferred saving computer time. We have checked finally
our programs by the calculation of the conversion coefficients for a pure Coulomb
potential [1]. We found agreement within the estimated limit of error.

In our calculations screening was taken into account by the Thomas-Fermi-Dirac
model [24]. We used the same screening function for the bound states as well as for
the continuum states. By reasons of consistency, we have not included the hole as

introduced by Rose [13], especially since this hole would not change the conversion
coefficients by more than 1/2 percent, even in medium heavy nuclei.

2. Numerical results

The conversion coefficients in Sliv's and Rose's tables differ by rather large
amounts [25] which cannot be only due to their different handling of the penetration
effects. Thus, numerical inconsistencies may exist in one or both of the tables. A
possible explanation for these deviations was given by Bhalla et al. [26] pointing
out that the interpolated conversion coefficients fluctuate around a smooth curve
of calculated values and that the use of the eight-point interpolation formula may be

responsible for these fluctuations. In order to check the calculated results of Sliv
and to exclude these interpolation errors we have recalculated some 77-subshell
conversion coefficients and particle parameters at the same point as in Sliv's tables.
The errors of interpolation are still contained in the comparison with Rose's values.
The results of this recalculation are given in Tables 3-8.

A more concentrated and illustrative comparison is shown in figure 1 for electric
transitions. The values of Rose are compared with our static conversion coefficients
(i.e. A 1, see chapter IV) by computing the quantity

7-> _ <*L, Rose

oc$9>(ff)
"

Sliv's values are compared with our values for the surface model (SM) (i.e. r\
and f i 1, see chapter IV), i.e.' f />

£ _ <*L, Sliv
az.(CT)sM

Rose and Sliv estimate their computational error to be about 2%. Sliv suggests
that the error may pass over this limit for smaller Z and higher energies. Except some
coefficients in these areas we agree with Sliv's values within the combined limits of
error. As expected the agreement with Rose's calculation is better for larger energies
and smaller Z. Particular exceptions may be due to the above mentioned interpolation

uncertainty. The similar behaviour occurs in the comparison of the conversion
coefficients for magnetic transitions (see Figure 2). We have plotted the quantities

r> _ PL. Rose

ßf)(a)
and

5 fc say
ßL(d)sM
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Table 7

The results of our recalculation for magnetic dipole (Ml) transitions. The present conversion coefficients are presented in columns 3-5 for the
energies k 0.1 and k 1.0 (mec2). For comparison the results of Rose and Sliv are given in columns 1 and 2, respectively. The present particle

parameters are given in columns 7-9. The results of Sliv and Band (Li and Lu), and of Miranda et al. (Lin) are shown in column 6.

h a
(mc2)

Rose [13] Sliv [14] ßx°\a) bx(a) b2(a) Band et al. b2°)(Ml, a)
Miranda
et al. [29, 30]
b2(Ml)

cx(a) c2(<r)

<
o

0.1 Li 61 .106 1) .121 1) .120 1) -.201(-1) .101(-3) - .200( -2) -.155 -2) -.557(-2) .171(-5)
69 .238 1) .262 1) .259 1) -.290(-l) .210(-3) -.100( -1) -.796 -2) -.149(-1) .lll(-4)
81 .746 1) .801 1) .816 1) -.482(-l) .582(-3) -.470( -2) -.450 -2) -.292(-l) .125(-3)
88 .162 2) .156 2) .161 2) -.653(-l) ,106(-2) .130( -2) .115 -2) ,196(-2) -.113(-2)
95 .372 2) .316 2) .327 2) -.856(-l) .183(-2) .740( -2) .733 -2) -.343(-l) -.366(-3)

LU 61 .823 -1) .105 0) .100 0) -.420(-2) .448(-5) .346( 0) .351 0) -.243 (-2) .461 (-6)
69 .189 0) .236 0) .236 0) -.728(-2) .134(-4) .318( 0) .313 0) -.419(-2) .132(-5)
81 .728 0) .844 0) .835 0) -.157(-1) .629(-4) .259( 0) .255 0) -.896(-2) .580(-5)
88 .135 1) .178 1) .180 1) -.248(-l) .155(-3) .219( 0) .217 0) -.140(-1) .144(-4)
95 .344 1) .390 1) .405 1) -.375(-l) .354(-3) ,179( 0) .176 0) -,210(-1) .326(-4)

Liu 61 .183 -1) .201 -1) .193 -1) .727( 0) .930 0)
69 .324 -1) .357 -1) .347 -1) ,655( 0) .947 0)
81 .731 -1) .773 -1) .753 -1) .569( 0) .951 0)
88 .113 0) .115 0) .113 0) .517( 0) .947 0)
95 .153 0) .168 0) .166 0) .939( 0) .938 0)

1.0 Li 61 .203 -2) .209 -2) .203 -2) -.231(-1) .139(-3) .396 0) -.136(-1) .560(-5)
69 .394 -2) .422 -2) .415 -2) -.338(-l) .294(-3) .294 0) -.194(-1) .131(-4)
81 .117 -1) .123 -1) .122 -1) -.566(-l) .811(-3) .161 0) -.318(-1) .419(-4)
88 .255 -1) .232 -1) .234 -1) -.763(-l) .146(-2) .103 0) -.429(-l) .906(-4)
95 .582 -1) .451 -1) .465 -1) -.992(-l) .247(-2) .549 -1) -.562(-l) .174(-3)

Lu 61 .108 -3) .134 -3) .113 -3) -.124(-1) .395(-4) .376 0) -.753(-2) .565 (-5)
69 .262 -3) .326 -3) .292 -3) -,191(-1) .927(-4) .333 0) -.114(-1) .131(-4)
81 .112 -2) .123 -2) .117 -2) -.346(-l) .303(-3) .262 0) -.205(-l) .429(-4)
88 .241 -2) .271 -2) .266 -2) -.491(-1) .609(-3) .214 0) -.291(-1) .906(-4)
95 .684 -2) .620 -2) .632 -2) -.673(-l) .114(-2) .171 0) -.397(-l) .174(-3)

Liu 61 .218 -4) .245 -4) .217 -4) .932 0)
69 .390 -4) .420 -4) .390 -4) .902 0)
81 .833 -4) .871 -4) .838 -4) .916 0)
88 .121 -3) .131 -3) .124 -3) .925 0)
95 .172 -3) .192 -3) .180 -3) .931 0)

3
5'

o
O
a
<



The results of our recalculation for magnetic
the energies k 0.1 and k 1.0 (mec2). For

particle parameters are given in columns 7-

Table 8

quadrupole (M2) transitions. The present conversion coefficients are presented in columns 3-5 for
comparison the results of Rose and Sliv are given in columns 1 and 2, respectively. The present
9. The results of Sliv and Band (Li and Ln), and of Miranda et al. (Im) are shown in column 6.

Rose [13] Sliv [14]
(mc2)

bf)(a) bx(a) b2(a) Band et al. b^)(M2, a)
Miranda
et al. [29, 30]
62(M2)

Ci(cf) ^(a)

0.1 Li 61 .335 2) .338 2) .338 2) -.162(-1) .656 (-4) .139( 1) .139 1) -.162(-1) .657(-4)
69 .786 2) .772 2) .770 2) -.227(-l) .128(-3) .140( 1) .140 1) -.226(-l) .128(-3)
81 .269 3) .253 3) .252 3) -.361(-1) .326(-3) .140( 1) .140 D -.361(-1) .326(-3)
88 .569 3) .485 3) .499 3) -.478(-l) .573(-3) .140( 1) .140 1) -.478(-l) ,572(-3)
95 .123 4) .960 3) .990 3) -.614(-1) .942(-3) .139 1) -.614(-1) ,943(-3)

Ln 61 .334 1) .344 1) .338 1) -.226(-2) .I29(-5) .129( 1) .129 1) -.234(-2) .138(-5)
69 .707 1) .725 1) .720 1) -,379(-2) .362(-5) .130( 1) .130 1) -.391 (-2) ,387(-5)
81 .224 1) .206 2) .208 2) -,782(-2) .154(-4) ,131( 1) .131 1) -.805(-2) .163(-4)
88 .480 2) .371 2) .382 2) -.120(-1) .364(-4) .131( 1) .132 1) -.123(-1) ,384(-4)
95 .723 2) .675 2) .695 2) -.178(-1) .801 (-4) .132 1) -.182(-1) .840(-4)

Liu 61 .110 2) .112 2) .107 2) -.162(-1) .680(-4) .880(--2) .174 -1) -.290(-2) 0

69 .286 2) .273 2) .272 2) -.229(-l) .134(-3) .398(--1) .649 -1) -.102(-1) 0

81 .111 3) .985 2) .100 3) -.368(-l) .343(-3) .667(--1) .106 0) -,177(-1) .356(-8)
88 .242 3) .202 3) .207 3) -,489(-l) ,604(-3) .746(--1) .116 0) -.238(-l) .788(-8)
95 .524 3) .397 3) .423 3) -.629(-l) .995 (-3) .741 (--1) .116 0) -.308(-l) .148(^7)

1.0 Li 61 .696 -2) .701 -2) .689 -2) -.173(-1) .781(-4) .123 1) -.184(-1) .885(-4)
69 .145 -1) .140 -1) .139 -1) -.246(-l) .155(-3) .126 1) -.258(-l) .171(-3)
81 .426 -1) .391 -1) .397 -1) -.395(-l) .395(-3) .131 1) -.408(-l) ,420(-3)
88 .849 -1) .715 -1) .733 -1) -.523(-l) .690(-3) .133 1) -.536(-l) .722(-3)
95 .171 0) .132 0) .137 0) -.669(-l) ,112(-2) .135 1) -.680(-l) ,116(-2)

Lu 61 .620 -3) .662 -3) .618 -3) -.697 (-2) .123(-4) .128 1) -.724(-2) .133(-4)
69 .149 -2) .159 -2) .151 -2) -.104(-1) .274(-4) .128 1) -.108(-1) ,294(-4)
81 .560 -2) .547 -2) .542 -2) -.182(-1) .839(-4) .130 1) -.188(-1) .892(-4)
88 .118 -1) .112 -1) .113 -1) -.255(-l) .164(-3) .131 1) -.262(-l) ,173(-3)
95 .261 -1) .231 -1) .238 -1) -.346(-l) .301 (-3) .132 1) -.354(-l) .316(-3)

Lui 61 .197 -3) .196 -3) .190 -3) -.155(-1) .905(-4) -I-.173 -1) -.285(-2) .167(-9)
69 .462 -3) .444 -3) .435 -3) -.235(-l) .189(-3) -.259 0) -.241(-1) .582(-8)
81 .161 -2) .141 -2) .141 -2) -,408(-l) .510(-3) -.138 0) -.410(-1) .305(-7)
88 .335 -2) .274 -2) .276 -2) -.558(-l) .910(-3) -.605 -1) -.694(-l) .852(-7)
95 .683 -2) .528 -2) .538 -2) -.732(-l) .150(-2) + .143 -1) -.191 (-6) -.191(-6)
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The surface model (SM) leads to the nuclear parameters X{ 1 (see section IV) and
is included in ßL(o)SM.

A similar result has been obtained by Hager and Seltzer [27], who used a

screening function, obtained by non-relativistic Hartree-Fock calculations [28].
The recalculated particle parameters of the K, Lx and Ln shell agree very well

with the values of Sliv and Band [29], as can be seen in Tables 3-8, where we show

our results in the notation of Eq. (50)-(53). An investigation of the dynamic coefficients

and of the anomaly factor A, as defined in Eq. (52a) shows, that the particle
parameters may also depend considerably on nuclear structure effects. The fact, that

E1 L El L E1 L

1.20

1.10

-»- ¦ ft < M Z £s1.00 *^ ^R

A, x.
R.iN*\

E2 L E2 E2 L„|
.20 '"I.

Si.
1.10

^R

^1.00 fc
-*H

.90

61 69 81 88 95 61 69 81 88 95 61 69 81 88 95

Z 81 E2Z =81 E2 Z 81 E2

.20

1.10

A" R-/ X
s

05 .1 .2 .4 .7 1..05 .1 .2 .4 .7 lo 05 .1 .2 À .7 1.

Figure 1

Comparison of the present conversion coefficients with those of Rose (R) and those of Sliv (S)

for electric dipole and electric quadrupole transitions. The indices .1 and 1. represent the energies
k 0.1 and k 1.0 (m c2), respectively.
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most particle parameters are normal within the limits of error is regarded to be
accidental. For the Lm shell we have compared our results with the recent calculation
by Miranda et al. [30]. We agree well with the particle parameters of electric
transitions. There is, however, not as well for magnetic transitions.

We have performed a recalculation of the K- and 7-shell matrix elements and
phases for electric as well as magnetic transitions. We have restricted ourselves to
medium and heavy nuclear charge numbers and to small energies, where possible
large penetration effects may be significant. We have chosen the following values of
nuclear charges : Z 60, 64, 96

MM M1

1.20 ¦s:/ "i V.io / S _4-j ^,.00 à—
Rir^ »JM ^%. .*• **. /

^s
M2 M2M2

A/ S*s*.1.20

XlRi X'R.iX -X.10 S >4L
1 00 fe3*^7

61 69 81 88 95 61 69 81 88 95 61 69 81 88 95

Z=81 M1Z=81 MlZ 8 Ml

1.20

1.10

¦ ¦

^-*R X
n-

L
05 .1 .2 .4 .7 1.0.05 .1 .2 .4 .7 1.0 05 .1 .2 4 .7 1.0

Figure 2

Comparison ol the present conversion coefficients with those of Rose (R) and those of Sliv (S)
for magnetic dipole and magnetic quadrupole transitions. The indices .1 and 1. represent the

energies k 0.1 and k 1.0 (mec2), respectively.
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and the following energies :

k .02, .05, .10, .15, .20, .30, .40, .50, .70, 1.0

Furthermore we have calculated the M-shell conversion coefficients and particle
parameters including screening (TFD) and all finite nuclear size effects from

Z 72, 76, 96

The results of this calculation will be published separately.
About a dozen of highly hindered El transitions with anomalous conversion

coefficients or particle parameters have been investigated using our recalculated
values [31].
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VI. Appendixes

Aftftendix 1

Although the solutions of the Dirac equation for a central field are described
often in the literature [20], we shall give here a short survey and define the notation.

The Dirac equation
(ap + ß + V(r))ip=Wip, (Al)

with the momentum operator ft and the total energy W Vft2 + 1, has for the central
field V(r) the particular spinor solution designed by

The 4-component spinor as well as the two component spinor &x obey the "Convention
T" (cf. ref. [10]). This two component spinor is defined by

«S Z <^ - T V. r \j/x> i' Yhß_T(?) f (A3)
T

with

1,1/2 / | v-1/2 'r- ^ x VJ
The Dirac quantum number x is the eigenvalue of the equation

- (a L + 1) 0£ x 0% (A4)

and replaces the orbital quantum number / in the unrelativistic theory. It is restricted
to all positive and negative integers except zero, i.e.

x / (I + 1) - (j + xl2)2
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or
1= x for x> 0 1= -x- 1 for x < 0 (A5)

Sometimes the quantity 1 1 — S(x) is used.
The sign of x is designed by S(x).
The spinor 0X has further the property

ia?0^ S(x) &tx - (A6)

The matrix elements containing these spinors can be easily evaluated. We get for
the angular matrix element of the electric transitions

<0£ I iL YLM | 0p (-)"-1/27'-+L^j/lii±l

xi»üw+>)rt+i)ri+ii$$(^ì_;)j;.-;,y. n»

For magnetic transitions x has to be replaced by — x in Eq. (A 6). Thus we can

replace in Eq. (A 7) / by / to get the right selection rules for magnetic transitions.
The use of (A 23) leads finally to

<0£ | iL YLM | 0»y H,+i/Vi+/.-<|/l2-£±Al j/(2; + i) (2j{ + l)

for the electric transitions.
In Eq. (A 2) the radial functions ux and vx are real and solutions of the equations

-a;---~^+(W+l-V(r))vx ^=*-Vx-(W-l-V(r))ux. (A9)

The asymptotic behaviour of the radial functions is given by

^^Y^p±cos{pr+A"+o"{o))

Vx_^-Y^sin(ftr + Ax + ôx(0)); d„(0) -^n (AIO)

where phase A x depends on the specific potential and is zero in a Z 0 approximation
i.e.

Ax (Z 0) 0

For large distances the electron behaves like a plane wave carrying the intrinsic
spin orientation x. This plane wave can be expanded into the particular "spherical
waves" | x/x> of Eq. (A 2), i.e.

\p,r> N Z SKa^(r) \*/*> (An)
Xfi

\, }/^4v-r1kr\Ìl*>nf(>ll_T(?--z)- (A12)

The overall factor N is fixed by the asymptotic behaviour (A 10).

with _iAs= e ,A*
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Aftftendix 2

In chapter IV we have taken into account the finite nuclear size by the assumption
of a sharp edged sphere of radius R with homogeneous charge distribution. Inside
this nucleus the potential Vir) of the electron is described by

V(r) --§^(3-x2); x=~. (A13)

The solutions of the Dirac equation (A 9) in this potential are wel-lknown, and can
be given as a power series [20]. For x > 0, k \ x | we have

oo oo

ux xk+x Z an x2" ; vx xk Z bnx2n ¦ (A]4)
n=0 n=0

The coefficients an and bn are related through the recursion relations

R(W+1) + —~ u a2 J.

with

(2k + 2n+\)an

2 (n + 1) bn + x - [R (W - 1) + 1|*] «. + ^ «„_! (A15)

R (W+l) + (3aZ/2)
"¦»- 2A + 1 "¦>•

For K<0we obtain the solutions by interchanging ux and vx in (A 14) and by
replacing in (A 15) the charge Z and the energy W by their negative values.

In the following we compile the different radial functions gxxj(r) (i 1,3) and
their explicit dependence on the coefficients an and bn. Let us consider the following
expression :

x* Z <*«.

with

S(xi) Z anBm-n-KAm-n; * Xi > °
» 0

m m

S^)Z an-lAm-n-KBm-n; X X, < 0 (A16)

Here and in the following the solution of the recursion relations (A 15), for the
bound states and for the continuum states are denoted by minor and capital letters,
respectively. The quantities ft and ft are defined in Eq. (41). For the similar expressions

occurring in the definition of the functions g(r) we get
00

Ki t>X 7 Vx. UX XP Z ß™ X2""

m 0

With m

Z a«Bm-n + KAm-n: * "i > °
g n-0
rm m

Za«-lAm-n+KBm-n; *Xi<0 (A17)
n-0

and - Ä
U*i Ux + % Vk X" Z Ym X2m

m-0
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with "
Z an-lAm-n+bnBm-n; X X{ > 0

Ym m

Z anBm-n+ hnAm-n\ X X( < 0 (A18)
n-0

Using these expressions we can write the radial functions as follows
00

m-0

with _ „ _ k d (P + 2 m-l)ym-kR<xm_x
am KK ~(p + 2m)(p + 2m-l)-L(L + l) * ** ^
a h.R (P + 2m-l)Ym-X-kRa.m_x _ 0a- ftK

(£ + 2m)(/> + 2m-l)-L(L-rl) * ** < U (A19)

and

with

„<*> WÏXXjV/ h A Zj m

m-0

-L(L + l)ym + kR(p + 2m + l) am_1
_ x Xj > 0

(p + 2m)(p + 2m + l)-L(L + l)

-L(L + l)ym + kR(p + 2m+l)a.m
—. ; x X{ < 0 (A20)

(|)+2«)(/i + 2«i+l)-L(L + l) 'i v /

and finally
£li(r)=YxP ZLx*

m-0
With i _ ßm /a21\'m (f+2«) (£4-2 m+l)-I (L+l) ' v '

Apftendix 3

In the following, all expressions are based on the well-known relation [19]

y i_yi+k+i,+f1+^+f,(Ìx ^2 h\lh js h\(h h js

/^1 .7 2 ^3 \ ].7l72 73

/l; /I (A22)
mx m2 m3J (lx l2 la)

and on the tables of selected 3/- and 6/-symbols (see e.g. Edmonds).
With the special value l3 1/2 the useful relation

:*»+»«»H^){r"/J-(U.-) <A23)

can be easily derived.
Furthermore, the recursion relation

[73 (/. + 1) - A (/i + i) - ;, (h +l)-2mx m2] I1'1*1*
\mx m2 ms

- /(h + -h) (.i - «i + 1) (?2 - m2) (12 + mx + l) ^l lmJ^ £)

+ /öi - «J Öi + ™i + 1) (?2 + «4) (/. - m2 + 1) f ^ lnJl1 M (A24)
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leads to the special relations (k even)

LLk
0 0 0

*(* + D }ß Lk\ (A25)2L(L+l)-k(k + l) J \1-1 0

_h_, h (* + l) k(k + l)-3L(L+l)UL Lk\
[ t 2L(t + l)-*(S + l) (L-l)(L + 2) J \1 — 1 0/

K '

L L'k\_ k (k + l) + 2-L(L+l)-L> (L'+l) (L L'k\
\2-2 0/ )/(L-l) (L + 2) (L'-l) (L' + 2) \1-1 0

In order to extract the dependence on the tensor coupling constant k explicitely
we can now express the geometrical factor

tj j' k\ \j j'k\
g(n.L,L') (-r-,2^0^.li-i o)

In the case of jt xj2 we obtain

tfl. L,L) ^- + ^(Lk+%+_l)h(k
+ x) TZ-SI) <A28>

and

si1/ L L')-l V+i'+Al (U-; + V2)(2I'-?'+'|i) (A29)g(l2,L,L)-( [/ (2 y+1) (2 L+l) (2/'4-1) (2 L' + l) ' (A^>

In a similar way we obtain for ji 3/2 and pure multipoles i.e. L U

ot*l T T\~JüL i *(* + *) (L 1 3l2\(L ï 3/2
ëW2' ' ' 2j+l ^ 2L(L + l)-k(k + l) \Ç,-lj%lj^\Q-ll2lj2

k (k + 1) k(k + l)-3L(L+l) (L j' 3li\(L j 3/2

2L(L + 1)-Â(Â + 1) (L-l)(L + 2) \2-^2-3l2J\2-^j2-3j2
(A30)

and for the mixed multipoles, i.e. L + L' odd,

g(3l2, L, L') C<»(/, ;') + k (k + 1) 0»<j f) (A31)

" ] ' VU -1 Vj V7_ -1 V./ \-1 - V. 3/2/ I-1 - V. 3/2

L(L + l) + L'(L'+l)-2 /7 L3j2\(j' L'3/
V(L-l) (L + 2) (L'-l) (L' + 2) VU-23l2J\1l2-2 3/2

and

; L 3/2\ //' 7' 3I2

(A32)

C<2)(?
|/(L-1) (L + 2) (L'-l) (L'+2) V1/. - 2 3/2; VVi - 2 8/t
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