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A Modification of Piron's Axioms
by Roger J. Plymen1)

Mathematical Institute, University of Oxford, Oxford, England

(17. IX. 67)

Abstract. We show that the lattice L0 of yes-no observables in classical statistical mechanics
fails to satisfy Piron's lattice-theoretical axioms for quantum mechanics. We weaken one of
Piron's axioms, replacing completeness by ff-completeness ; L0 satisfies the modified set of axioms.
Using C* -algebra techniques, we exhibit a large class of atomic lattices which satisfy the modified
set of axioms, and which do not satisfy Piron's original axioms.

1. Introduction
Piron [5] has introduced a set of axioms for the propositional structure of a

physical theory and has shown that quantum mechanics (with superselection rules)
and classical Newtonian mechanics are models satisfying these axioms. It can be

argued that a satisfactory axiom system would have classical statistical mechanics
as a model. We show that Piron's axioms exclude such a model, but that a technical
modification of one axiom allows its inclusion. We also discuss the relation between the
modified axiom system and the C*-algebra approach to quantum mechanics.

The papers by Davies [1] and Plymen [6] have drawn attention to an important
class of operator algebras: the sequentially weakly closed C*-algebras of operators.
Such algebras may be characterized abstractly and are called S*-algebras. The theory
of 27*-a]gebras may be regarded as providing a basis for a non-commutative version of
probability theory. The author establishes in [6] that the theory of 27*-algebras makes
it possible to relate the C*-algebra approach to quantum mechanics with the axiomatic
formulation of quantum mechanics due to Mackey [4]. Given an abstract C*-algebra
4, Davies [1] constructs a canonical 27*-algebra A~ containing 4, called the
a-envelope of 4 ; and the relevance of the c-envelope in quantum mechanics is discussed

in [6].
Piron's second axiom requires that the partially ordered set L of questions (yes-no

observables) should be a complete lattice (each subset of L has a least upper bound
and a greatest lower bound in L). We weaken this axiom by requiring that L should be

a a-complete lattice (each countable subset of L has a least upper bound and a greatest
lower bound in L). The resulting set of five axioms we call the essential axioms of
Piron. The main result of this paper is

Theorem 7. Let 4 be a type I separable C*-algebra, and let 4 ~ be the cr-envelope
of 4. Then the partially ordered set L(A

~ of all projections in A ~ satisfies the essential
axioms of Piron.

Theorem 1 provides us with many atomic lattices excluded by Piron's original
axioms. For example, let 4 be the C*-algebra of complex-valued continuous functions
on the unit interval [0,1], Then L(A ~) may be identified with the lattice L0 of Borei
subsets of [0, 1]. L0 satisfies the essential axioms of Piron, but fails to satisfy the

x) Present address: Department of Mathematics, The University, Manchester 13, England.
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original axioms of Piron. Theorem 1 may be regarded as relating the C*-algebra
approach to quantum mechanics with Piron's axioms.

In Section 2 we discuss classical statistical mechanics and show that it is excluded

by Piron's original axioms. We argue for its inclusion as a model of a modified set of
axioms. In Section 3 we discuss 27*-algebras and the cr-envelope. We remark upon the
relevance of .T*-algebras in classical statistical mechanics (Remark 3.6). In Section 4

we state the essential axioms of Piron and prove Theorem 1. We show that the

partially ordered set L(A) of projections in an arbitrary 27*-algebra 4 is a cr-complete
orthocomplemented lattice.

We wish to thank J. T. Lewis and E. B. Davies for several very helpful discussions.
We should particularly like to thank E. B. Davies for showing us the unpublished
manuscript of [1].

2. Classical Statistical Mechanics

Consider the classical mechanics of a system of a very large number n of particles,
for example a macroscopic physical system composed of n very small 'atoms' moving
according to classical mechanical laws. The phase space of such a system may be

identified with 6 w-dimensional Euclidean space R6". The physical states of such a

statistical mechanical system are represented by the probability measures on R6n;
the observables are represented by the real-valued Borei functions on R6n. To each pair
consisting of an observable u and a state / we have associated the probability Borei
measure on the real line given by M ->/(w_1(M)). The number p(u,f, M) =f(u^1(M)).
is the probability that a measurement of u will be in M when the system is in the state

/[4, pp. 47, 61]. Let us call an observable a a question, if in every state/the measure
M -> p(a,f, M) is concentrated in the points 0 and 1, that is, if p(a,f, {0, 1}) 1 for
all /. It is easy to verify that the questions are precisely the characteristic functions of
Borei subsets of Rtn. There is a natural partial ordering on the set L of questions as

follows: a < b if and only if p(a,f, {1}) <^>(ò,/, {1}) for all states/. The partially
ordered set L of questions may thus be identified with the set of Borei subsets of R6n,

partially ordered by inclusion. Now the Borei structure underlying the metric
topology of Rin is standard, by definition. This standard Borei space is isomorphic,
as a Borei space, with the Borei structure underlying the metric topology of the unit
interval [0, 1], This means that there exist 1—1 Borei mappings /: Rin -> [0, 1] and

g: [0, 1] -> Jv3" such that fg= 1 and gf= 1 [2, p. 357]. The Borei isomorphism
preserves the partial order structure. Hence the partially ordered set L of questions of
the classical statistical mechanical system may be identified with the set L0 of Borei
subsets of [0, 1], partially ordered by inclusion.

Now L0 is a cr-complete lattice (each countable subset of L0 has a least upper bound
and a greatest lower bound in L0). Of course L0 is not a complete lattice (each subset of

L0 has a least upper bound and a greatest lower bound in L0) because L0 contains each

point of [0,1]. There exists an orthocomplementation in L0, a -> a', which sends each

element of L0 to its complement in [0, 1]. The atoms of the lattice L0 are precisely the
points of the unit interval. Moreover L0 is actually a Boolean algebra.

One of the cardinal achievements of Mackey's axiomatization of quantum
mechanics [4, pp. 61-85] is this: The formal mathematical structure of quantum
mechanics differs from the formal mathematical structure of classical statistical
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mechanics in one and only one respect, namely the structure of the partially ordered
set L of questions. On the one hand, L is isomorphic with the partially ordered set of
all closed subspaces of a separable infinite-dimensional Hilbert space; on the other
hand, L is isomorphic with the partially ordered set of all Borei subsets of phase space.
It may be argued that any axiomatic formulation of quantum mechanics should, in a
definite sense, include the case of classical statistical mechanics. In his lattice-
theoretical approach to quantum mechanics, Piron [5] requires that the partially
ordered set L of questions should be a complete lattice. Thus Piron excludes the lattice
L0, hence excludes the case of classical statistical mechanics. In order to include this
important case, we propose to weaken Axiom II of Piron, replacing completeness by
er-completeness. We leave the other four axioms unchanged. The resulting set of five
axioms we call the essential axioms of Piron.

Doubts concerning Piron's second axiom were raised by Guenin [3, p. 282], who
suggested replacing completeness by cr-completeness. Note that the concept of er-state
is invariant under cr-isomorphism of 27*-algebras [cf. 3, p. 275].

3. On 2*-Algebras
For the general theory and notation concerning C*-algebras we shall make

systematic use of Dixmier's book [2]. Since it is no restriction to assume that the
C*-algebra 4 has an identity, we shall always assume our C*-algebras have identities
denoted by 1. A state/of a C*-algebra 4 is a linear functional on 4 such that/(l) 1

and/(#) > 0 when x > 0. We denote by "8(H) the C*-algebra of all bounded operators
on the Hilbert space H. We shall be concerned with the weak operator topology on
B(H), the weakest topology on 13(H) such that the mappings x -> (x i, |) are
continuous for each i in H. If xn -> x in the weak operator topology, we say xn -> x
weakly. Now let A be a C*-algebra and denote by F the set of all ordered pairs
{xn, x} consisting of a sequence xn e A and a point xe A. If G C F we denote by G"
the set of all states/on 4 such that for all {xn, x}eG we have/(#„) ->/(%).

Definition 3.1. A 27*-algebra 4 is a C*-algebra together with a subset G C F,
called the set of o-convergent sequences in 4 and denoted xn -> x, such that the following
properties hold :

(i) if xn -> x then there is a constant K such that for all n we have || xn || < K < oo ;

(ii) if xn -> x and y e 4 then xn y -> x y;
(iii) if xne A is a sequence such that f(xn) converges for allfeG" then there is

some xe A such that xn -> x;
(iv) if 0 4= xe A then there is some /e G" such that f(x) 4= 0.
G" is called the set of o-states of the 2,n*-algebra 4.
Example 3.2. A set 4 of bounded operators on the Hilbert space H shall be called

a-closed if given any sequence xn e A which converges weakly to x e "8(H), we then
have that xe A. Given any set 4 there is a smallest cr-closed set containing it, which
we call its a-closure and denote by cr(4). If 4 is a sub-C*-algebra of B(H) then cr(4) is a

C*-algebra. Let 4 be a sub-C*-algebra of 1}(H) such that 4 cr(4). 4 becomes a
Z"*-algebra if we define the cr-convergent sequences to be the weakly convergent
sequences. We call such algebras E*-algebras of operators; clearly "8(H) is itself a

27*-algebra of operators. By a cr-representation n of the 27*-algebra 4 on the Hilbert
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space H we shall mean a representation such that if xn -> x then n(xn) ->n(x). By a
faithful cr-representation we shall mean a faithful representation such that n(A) is

cr-closed and x„ -> at if and only if 7r(#„) -> ti(*).
Lemma 3.3. Every 27*-algebra A has a faithful cr-representation as a 27*-algebra of

operators on a Hilbert space.
The proof of this Lemma is in [1].
Example 3.4. Let X be a set with a given cr-ring of subsets. The algebra B{X) of all

bounded measurable functions on A" is a commutative C*-algebra in an obvious sense.
We say that a sequence un e B{X} is cr-convergent to u e B{X} if and only if j| un [[ < K
for some K and all n, and un also converges pointwise to u. Then B{X} is a 27*-algebra ;

and the family of cr-states is exactly the set of probability measures on X. There is a

discussion of this example in [1]. Note that B{X} is in general not the dual of a

Banach space, hence not a II/*-algebra [7].
Let Q denote the set of all positive linear functionals on 4, and let <f> ©/gç Ti/,

where nf is the canonical cyclic representation defined by / Then <f> is called the
universal representation of 4 [2, p. 43].

Definition 3.5. The cr-envelope 4~ of the C*-algebra 4 is the cr-closure of <f>(A),

where <j> is the universal representation of 4.
Now 4 ~ is a C*-algebra, hence a 27*-algebra. We regard 4 ~

as a canonical
27*-algebra containing 4. There is a close analysis of the structure of the algebra
4 ~ in [1]. When 4 is a separable commutative C*-algebra, 4 ~

may be identified with
the 27*-algebra B{A} of all complex-valued bounded Borei functions on the spectrum
4 of 4 [1].

Remark 3.6. Vet R6n be phase space of a classical statistical mechanical system.
Consider the Z*-algebra B{R*"} of all complex-valued bounded Borei functions on
R6". Each real function in B{R6n} represents a bounded observable, and each cr-state of
B{R6n] represents a physical state. The partially ordered set of projections in the
C*-algebra B{R6n} may be identified with the partially ordered set of Borei subsets
of R6n, hence with the lattice L0.

4. Piron's Axioms

In this section we consider the lattice-theoretical approach to quantum mechanics,
as formulated by Piron [5]. Among all possible observables of a physical system, we
shall consider those for which the result of measurement can be expressed by yes or no
and we shall call them questions. For a given system, a question is said to be true if the
answer is yes with certainty. If this definition is to be meaningful, if a is true, it should
be possible to measure a without perturbing the system. We shall admit this. If a and b

are two questions, it may happen that one implies the other, i.e., that every time a is

true then b is also true. We shall write this a < b, and a b means a < b and b < a.
On the set L of questions, we shall impose the following axioms.
Axiom I (i) a < a for all a in L,

(ii) a <^b and b <; c => a < c.

Remark 4.1. Thus L is a partially ordered set. Let 4 be a C*-algebra, and let L(A)
be the set of all projections in 4. Then L (A has a natural partial ordering by positivity,
a < b if and only if b—a > 0.
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Axiom II (weakened) (i) There exists an element, denoted 0, in L such that 0 < a

for all am L.
(ii) Each sequence an in L has a greatest lower bound, denoted A an.

Lemma 4.2. If 4 is a27*-algebra then L(A) satisfies Axiom II.
Proof. Pass to a faithful cr-representation of 4 as a 27*-algebra of operators on the

Hilbert space H. Let an be a sequence in L(A). The least upper bound of ax, an
is the range projection a'n of ax + • •• + «„, and a'n lies in 4 [1]. The increasing sequence
an of projections converges weakly to a projection a in B(H), a'n -> a. Since 4 is

sequentially weakly closed, a lies in 4. Now a is the least upper bound of the a'„;
hence a is the least upper bound V an of the an. Then 1 — V (1 — «„) is the greatest
lower bound A an of the a„.
Axiom III. There exists an orthocomplementation in L, i. e. there is a mapping a -> a'
of L into Z. such that

(i) («')' a,

(ii) a' A a 0,

(iii) a' < ò' => ò < a.

Remark 4.3. The mapping a -> 1 — a is an orthocomplementation in L(A) where A
is a 27*-algebra. It follows from Axioms II and III that there exists an element,
denoted 1, in L such that a < 1 for all am L. It also follows from Axioms II and III
that each sequence an in L has a least upper bound, denoted V an, namely (A a'n)'.
Thus L is a cr-complete orthocomplemented lattice.

An atom is, by definition, an element p 4= 0 in L such that 0<#<^>=>%=0or
* />.

Axiom IV (i) Ii ae L and « 4= 0 then there exists an atom p such that p <La.

(ii) If ^> is an atom, then a ^,x<iaVp^x a or x=aV p.
The representation n of the C*-algebra 4 is type I if the von Neumann algebra

generated by n(A) is type I. The C*-algebra 4 is, by definition, type I if all its
representations are type I [2, p. 111]. A separable C*-algebra is type I if and only if
it is a G.C.R. algebra [2, p. 168].

Lemma 4.4. If 4 is a type I separable C*-algebra then L(A~) satisfies Axiom IV.
Proof. Following [2], let 4 denote the spectrum of 4, and let An denote the set of

unitary equivalence classes of w-dimensional irreducible representations of 4. The

Borei structure underlying the topology of 4 is a standard Borei space [2, p. 95].
Therefore each point of 4 is a Borei subset of 4. Now 4„ is a Borei subspace of 4,
hence each point of 4 „ is a Borei subset of 4„. Let Hn denote an w-dimensional Hilbert

space, separable for n oo. We say a function u: An -> B(Hn) is a Borei function if
for each i,r\eHn the function (u(n) i,rj) is a Borei function on An. The space

B{An, B(Hn)} of all norm bounded Borei functions u: An -> B(H„) is a C*-algebra
in an obvious way. If K is the Hilbert space of all functions u: An -> Hn of countable
support such that

27il^)!!2<oo
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then B{An, B(Hn) is naturally identified with a 27*-algebra of operators on K.
If u, um e B{An, B(Hn)} then um is cr-convergent to u if and only if for some k, all m
and all n e An we have

\\um(n)\\ <k <oo
and for all n e An the sequence um(n) converges to u(n) in the weak operator topology.
By Theorem 4.5 of [1], each n oo, 1, 2, defines a central projection en in the
cr-envelope A~ and so a cr-ideal 4 ~

enA~ en such that

^ n 00 „_
A © 4„

M 1

Each 27*-algebra 4 ~ has a faithful cr-representation as B{An, B(Hn)}, the27*-algebra
of all bounded Borei functions from An to B(Hn), where Hn is an «-dimensional Hilbert
space, separable for n — oo.

The projections in B{An, B(Hn)} are precisely the projection-valued Borei

functions from An to B(Hn). We first describe the minimal projections in 4~, which
are precisely the atoms in L(4~). Let k be a natural number or oo. Let nk be a point
in Ak, aka. 1-dimensional projection in B(Hk). Define uk: Ak -> B(Hk) as follows:
uk(jik) ak, uk(n) 0 (n 4= nk). Choose f, r\eHk, then the function n -> (wa(ti) f, »?)

has two values, 0 and (ak i, r/). Since each point of A k is a Borei subset of 4 ^, «A is a

Borei function, hence

«teß{it,B(^}.
The sequence v„ given by vk uk, vn 0 (n 4= /è) is a minimal projection in4~, and

every minimal projection in A~ arises in this way. Clearly each nonzero projection
in 4 ~ contains a minimal projection, which proves (i). If « is a projection in

B{Ak, B(Hk)} then «<%<<zF %=># « or x a V uk. Thus if a, a0 e L(A~),
a0 minimal, then a <^x ^aVa0=>x=a or x=aVa0, which proves (ii).

Axiom V. If a < b then the sublattice of L generated by a and ô is a Boolean
algebra.

Remark 4.5. Let 4 be a 27*-algebra, and pass to a faithful cr-representation of 4
as a 2r*-algebra of operators on H. Now L(A) C L(B(H)) and L(B(H)) satisfies
Axiom V. Hence L(A) satisfies Axiom V.

Theorem 1 is a consequence of the lemmas and remarks 4.1 to 4.5.
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