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Core Excitation in Semi-Closed Nuclei

by U. Goetz and J. Hadermann
Institute for Theoretical Physics, University of Basel, Basel, Switzerland

(14. VIII. 68)

Abstract. Four-particle-two-hole core excitation in nuclei with two nucléons outside the closed
shells is treated by direct extension of the configuration space. Some applications to a simple
two-level case are given.

1. Introduction

With the growing success which the shell-model had during the last years in the
calculation of the energy levels of nuclei with two nucléons outside the closed shells,
it has become more and more clear that the effects of core excitation are considerable
and should be taken into account when energy levels are calculated [3]. A few authors
have therefore considered the influence of 3-particle-l-hole {(3 p, 1 h)} and 4-particle-
2-hole {(4 p, 2 h)} core excitation as perturbation.

It turned out that the smallness of the (3 p, 1 h) corrections is consistent with the
experiments and no indications have been found that states excited in this way mix
strongly in low-lying states of two-particle systems.

However, the situation is quite different for (4 p, 2 h) corrections. The admixture
of such states, in which a pair of nucléons has jumped out from the core to the outer
orbits, can be so great [1] that a perturbation treatment seems to be most doubtful.
A direct extension of the model space which is to include at least those core-excited
states with two holes in the upper core orbits bears already some aspects of a many
particle problem, but in such restricted form that the difficulties which arise
especially when the normal residual interaction in the core is to be calculated, can be
overcomed relatively easy in a simple model. One of the greatest problems of a direct
diagonalization of the Hamiltonian is the size of the secular matrix, which grows
considerably, because of the great number of spin coupling possibilities, even if only
a few core orbits are considered. But since we are only interested in the lowest
eigenvalues, the diagonalization can be made by approximation methods (an excellent
new method can be found in [2]). Nevertheless, if we want to calculate an actual
nucleus, it seems that further approximations must be made in order to reduce the
size of the secular matrix, especially when not only a very small number of core orbits
and outer orbits is to be considered.

2. Model for (4p, 2 h) Excitations

2.1. Physical Assumptions

To avoid the difficulties that arise in a perturbation treatment of the (4 p, 2 h)
core excitation we diagonalize directly the full Hamilton matrix of a restricted model.
We assume that the configuration scheme of the nucleus consists of three kinds of
orbits (Fig. 1), namely the orbits of the light nucléons, treated in usual shell-model
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calculations, a number (a) of completely filled core orbits, from which a pair of
nucléons may jump to the outer orbits, and an inert core not taking part in core excitation.

j <
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«

• •-•-?- -•-•-

Figure 1

Configuration space for (4p, 2h) excitation model.

We shall denote the quantum numbers of the outer orbits by lower indices, those
of the core orbits by upper ones. If we do not want to distinguish between these two
kinds of orbits, we shall put a bar over the respective quantum numbers. Single
particle states are characterized by their angular momentum quantum numbers only.
We shall neglect the excitation of a single nucléon from the core, because in most
cases the effect is small and can be treated satisfactorly as perturbation. In addition,
we assume that the nucléons are excited only in pairs coming from the same core
orbit, but may occupy different outer orbits after excitation ; for the excitation from
different core orbits would implicate the breaking of two nucléon pairs. Moreover,
the main effects are caused by core-spin-0 excitations, as will be discussed in chapter 3.

We assume further that the nucléons which remain in the core are always coupled
in pairs of total angular momentum 0, except for one pair which takes up the recoil
angular momentum from the two nucléons that have jumped out of the core to the
outer orbits.

As a consequence of these assumptions, to every state of angular momentum I of
the original non-excited nucleus ("excited" refers here and in the following always to
core excitation) a number of states of much higher energy is added, whereby the
total angular momentum A of the four outer nucléons is coupled with the recoil
angular momentum R of the core, so that the same total angular momentum I as
in the original state results: A -t- R — I

2.2. Hamiltonian

According to our model, the base functions of the not excited states may be
chosen to be

j[ j'2 /' M', a> r-1'2 B±M.(j'x j2)ïlBUr r )(2'"+1)/21 o> (1)

where ByM'(j'ij'ì) is a creation operator for one pair of nucléons with single particle
spins j/j and/g (j'x j^j2) and the total spin (/' M') [6], and the third term is the core
function. The normalization, r, of these states can be calculated by recursion.
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As base functions of the excited states, we chose

I h H is ii(A a: Rq) Im, ay Q-1'2£ <A X R M \ I my V^Mi h H h)
IM

x BijM(f f) B+(f ft>q-W U B+(f j'f^'2 j 0> (2)

Here, T>AÀa(hhhh) ls an orthogonalized, antisymmetrized operator which creates
four nucléons in single particle states jx, j2, j3, jt, coupled so that a total angular
momentum (A X) results [4]. The index a denotes the different orthogonal coupling
possibilities.

The four-particle creation operators are defined as

T)aìMi Ì2 is ii) UdÌSa(Ìi h is it) Da Aii ii S, Is ii S') (3)
ss'

v '
where

DA>.( ii /2 S, ja ù S') =£<SvS'v'\AXy B+V(jx j2) B+V.(j3 u)
vv'

(ii > h > is > ii) (4)

and the d^(jxj2j3jt) are orthogonalization coefficients [4].
In (2), one core orbit, which is labeled by q, is not completely filled and a nucléon

pair of this orbit carries the angular momentum R of the core. The normalization of
the excited states, Q, may again be calculated by recursion.

The Hamiltonian is devided into two parts :

H Hq + H' (5)

The single particle or diagonal term, H0, which originates in the mean shell-model
potential, can be written as

Ho=2^ejaA-aT-, (6)
jm

where the ej axe the single particle energies and aA- is a creation operator for one
nucléon in the state (j m). From this we have for not excited states

<j[j'2J'M',a\H0\j>;j»J"M",ay

drj. <w Vi 3vi (% + % +é (2 r + D £t) -

while for excited states we get

</; /2 /i j'M' «'R' <?') i' *»'. ° I Ho il Ï2 il iM" *"R" i") r' m"> *>

\i{ \rt \il Ôi\il ÒI'I" <W' dA'A' <W <W Ô*' R"

+ er + y + y + (2 f - 1) y +£ (2 f + 1) y) (8)

According to our model, we decompose the second term in (5) again into two parts :

H' Hres + HCE (9)
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Hres is the residual interaction of usual shell-model calculations, taken separately for
excited and not excited states. It can be put into the form [5] [6]

Hres Z G^'r Ü î's fi) B+„Ü f2) BRß(j'3 ft 2 |/(2 - off) (2 - ój.j,) (10)

h>ij
h > it

where GK is the antisymmetrized coupling function. The second part, HCE, which
effects the interaction between the core and the light nucléons, must contain an

operator, which annihilates a pair of nucléons in the core orbit labeled by q and
recreate it in the outer orbits. Therefore we write

Hce Z Gk(Ïs Û f f) BkM's id BKß(f f) 2 Ì2~òf
~

+ hx. (11)
kT t

3i
13 > »4

il
similar to (10).

2.3. General Results

In the following the ordering of the single particle states in the orthogonalization
coefficients dJAJa is always to be preserved, even if the other quantum numbers are
interchanged.

The matrix elements can be simplified considerably by introducing the "recoupled"
orthogonalization coefficients

it ik s

i]Ä(u h it im) Z4;t ft2 s +1H2~57+^) dsZ(jx j2 j3 n) \ u jm s' (12)

where the phase factor is defined as

1

ih
I \h+ù+S'

H fi+H+S+i,+h+S'

it im S'

J J' A

{i Ìi ÌlAk=Ì2,Ìl Ì3,Ìm=Ìi
if Ìi Ìì,Ìk=Ìl,h Ìs,Ìm Ìi
11 Ìi Ìl,Ìk=Ì2,Jl Ìi,Ìm Ì3

if Ìi Ìz,Ìk=Ìl,Ìl Ìi,Ìm Ìs-

(13)

The core exciting part of the Hamilton matrix can now be calculated from (1), (2)
and (11). The result is

'R°ôirô./' umM'</i it is Ìì(AxRq)Im,a\HCE\ j[ j'% J' M', ay

X2\(dVndVt aW^ ^^A*Äaf*«^hisiJ GR(jxhff)

+ Hi <-> /2} + {h «-> ii} „ t w,[js ^~* ji)

,J'+ Cl \h\,J2-\i^GAisnff))^, (14)
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where
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Aj (1 + ô1 )W and J=(2J+ I)1'2
'l'a 'i'j
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The residual interaction matrix elements can be found to be for the not excited states

ij'iJlJ"M",a\Hres\j'xj'2J'M',ay

6rr Vr (2 /(^^(2^) Gr(j'i j» j'x j2) + Ó,,,. «5,,,, È), (15)

where the core contribution,

£ 2 i; 2" (2 £ +1) G£(r r r r), m
i-l L

even

is equivalent to a scattering with angular momentum 0 and causes only a renormalization

of the total energy. For the residual interaction matrix elements of excited
states we find after a rather lengthy calculation

<1i Ü il Ìl(A" a" R" q") I" m", a | Hres | j'x j'2 j'3 ft(A' a' R' q') I' m', ay

2ôrr,ôm,m„ÔA,A„àR,R„[ôq,q„(Tx + T2 + Tz) + <5a,a,ôr^fy.y,ôty„ôft,-, TC0RE}, (17)

where

ri Z\ \iï \k A (/s Û H H) Gl(H H il il) dsA, dsAra„

cri * * a

\L+S + A' \h ^"^ h
1?2 <-> /4

x dLJa. dsAra„ + \L+S + A' \1'l <~^ h I jSZ. jLS

r,= 'l'S '%'\ 'l'3 72y4

h <^?3
/2 <"> ?4

/2 <"> il

\ dLS dLSUA' a. UA' a" (18)

'l'3 '2'4 'l'a '2'4 s e A ,-, ; -Il VA

^r2AViA,vlA,vl ^l^^hhh)
Z(2LA 1) GL(Jl jl j> j'i)Z(2 K+l) fA^,(j'x j2 /i /;) /".(# /2 H H)

xii+i;i^Ä}+{Ä«Ä}+ ;c?s
/3 *"? /4

x 1+ {/r^/,'} + {/; ^/;} ¦

/\j" j" /lj" j"71?3 Vj e S /I / ¦/ '/ "" VA
/I •» •» A ¦„ ¦„ 1„K 1. il » 1 2 12 Si)
Afxi\ at%i\ 31 '«'>

X 2-f s h^+^'^ /«„(/» /» # /;o gl(7-2' /; /; #

+ {il

4. /\-T-+S+ /l'

/2/ ' V3 u) + \ji~n\
7i<->?3
/2 <-> /4

L <r-> S in d

Il <r^ h> h <_> h

a' <-> a"

(19)

(20)
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In (18), (19) and (20) we have used the notation

à{]\ h is ii) |/(2~Z àjijt) (2 - ôTÂ,

According to the assumption that the excitation of nucléons from the core occurs
only in pairs, inside the core only scattering of nucléon pairs (jp, jp) is taken into
consideration. The contribution of the core orbits is then given by

ÎCORE GR'(f f f f") - <W 2-y4-r Z V Gl(?' f' f' f)
even

+ \-<"ZZ iz GL(f i1 r r) ¦ (21)

even

3. Two-level Case

To get an idea of the effect which is caused by the core-exciting part (11) of the
Hamiltonian, we consider the most simple case that the configuration scheme
consists of only two orbits, i.e. one orbit of spin ; and energy 1.5 MeV, occupied by the
outer two nucléons, and one completely filled core orbit of spin/ and energy 0.5 MeV.
The two single particle states are assumed to have the same parity.

Since for every total spin only one not core-excited state exists in this two-level
case, the secular matrix has a simple form and its dimension is so small that it can
be diagonalized with help of the computer by standard methods.

For the normal residual interaction a surface-(5-force is assumed. Its antisymmetric

coupling function can be found to be in this simple case [7]

where

G7Ü i 1 i) \ (1 +(-)J) V0res (2 1 + l)2 lk JA', (22)

F°"s 32^ g™ R COnSt- (23)

In (22), gres is the coupling constant of the residual interaction; the radial matrix
element R has been considered constant.

Although it may be expected that in an actual nucleus core excitation is partially
effected by the long-range part of the residual interaction and then, a quadrupole
coupling function would be well adapted in this simple two level-case, we have restricted

ourselves in most calculations to a surface-<5-force also for core excitation because
of the spin selection rules of the quadrupole interaction, which let the coupling function

vanish if the single particle spins; and;' differ by more than 2. Moreover, it will
be easier to compare the coupling constants of core excitation and residual interaction,
if the same coupling potential is used for both. The spin selection rules of the quadrupole

interaction may be useful, however, to explain the variable effects of core
excitation in actual nuclei. For a surface-ó-interaction, the core excitation coupling
function is

G7dirf)-ka + (-V)v0CE(2j + d(2r + d( iki'\t lj2[A, w
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where V0CE is the analogue of V0res in (23). For a quadrupole interaction we get [5]

GQj(i i f j') | (1 + H') VQ (2 j + 1) (2 /' + 1) (-)'+>" \]/. 2j (l I _
{,) (25)

with
[j'iJlVltO-Vt)

VQ= 4w- g0 H const. (26)

In Figure 2 the core excitation corrections for both surface-ó-force and quadrupole
force are compared in the case of j 5/2, j' 3/2. It can be seen that the change of
level positions is significant only for the 2+-state.

* MeV

4.0

-0004

CORE-EXCITED STATES

MeV

- 0*

i—i—i—i—i—i—i—i
0.004

Figure 2

j 5/2, j' 3/2. a, b, c: quadrupole
force and surface-<5-force (dashed lines)
corrections for VoCE — 0.040. Core-spin

0 and 2.

Figure 3

j 7/2, j' 1/2. The dashed lines show
the corrections for VaCE — 0.040.

Figure 3 shows the level scheme of both excited and not excited states for j 7/2,

j' 1/2, in which case only core-spin-0 excitation is possible. It can be seen that a

dependence of the energy levels on the residual interaction coupling constant is

obtained, which is familiar from the "degenerate case" of usual shell-model calculations.

The dashed lines show the corrections for core-spin-0 excitation calculated
with a coupling constant V0CE — 0.040, and it can be seen that for a residual
interaction coupling constant V0res — 0.040 (which fits good to the experimental
values of the energy levels of the Pb-region), the corrections are rather small, but
have the right direction even in our simple two level case.

In Figures 4 and 5 the corrections for core-spin 0 and core-spin 2 are shown

separately, both for j 7/2, j' 11/2. It is remarkable that the core-spin-2 corrections

are small compared with those for core-spin 0, at least for states of total spin 0,

2 and 4. Therefore, in the calculation of actual nuclei, it will be a good approximation
to neglect the contributions from core spins higher than 2.
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Secondly, the approximation made in chapter 2, namely to consider only the
excitation of nucléon pairs coming from the same core orbit, seems not to be very
crude, for the spins of two particles, which jump out of different core orbits, cannot
be coupled to give a total spin of 0.

i MeV
9.0

80

\ ^S
V \S

\ V«

6 0-- \ \ \\ \ v

5.0

\ \0*
0. -0.008 0040 res

Figure 4

MeV

7.0 •

50

i >

j 7/2, j' 11/2. Core-spin-0 corrections

for V0ce —0.040. Energy renor¬
malization (eq. 16) subtracted.

"0. -0008 -0D40

Figure 5

j 7/2, j' 11/2. Core-spin-2 corrections
for V0ce —0.040. Energy renormaliza¬

tion (eq. 16) subtracted.
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