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Models of Local Current Algebra and Symmetry Breaking

by Francesco Ghielmetti
Institut für theoretische Physik der Universität Bern (Switzerland)

(10. IX. 69)

Abstract. It is shown that a known model of local current algebra in the infinite momentum
limit can be generalized to a model which includes symmetry breaking solutions. The model can
further be extended to allow transitions between states of different total isospin value. The
methods of generalization apply to higher algebras as well as to the SU2-model treated here.

1. Introduction

The development of current algebra has stressed the importance of one particle
solutions of current algebras at infinite momentum. Such solutions have been given
by Leutwyler [1] and independently by Gell-Mann, Horn and Weyers [2] and by
Kleinert [3], Their models seem however not to satisfy in two aspects: first they
fulfil the one particle saturation assumption in a very formal manner, their space of
state vectors containing - in addition to a discrete set of physical one particle states -
a continuum of states with spacelike momentum, and second they are submitted to
stringend simplifications, exhibiting e.g. strong symmetry, which means that they
fail to realize the original idea of current algebra i.e. 'group structure without
symmetry'. The first point has been cleared by Leutwyler [4]. He has proved that the
occurence of ghost-states is by no means fatal to the solutions: in the sense of an
asymptotic expansion in a mass splitting parameter, the ghosts may be ignored.
Concerning the second point, we are now going to show, that some of the restrictions
imposed to the models are not necessary.

In section 2 we give a brief survey of Leutwyler's model, in section 3 we construct
a symmetry breaking solution and in section 4 we discuss a model which allows the
particles to make transitions between states of a different isospin value.

2. The Hydrogen-model

It has recently been shown [5] that Leutwyler's hydrogen model is equivalent to a
model based on an infinite component field equation. We will now shortly recall some
properties of the model in the field formulation. A detailed description of the field
model is given in Ref. [5].

The Lagrangian of the model is

L(x) — d" y>+(x) d„ f(x) - i pt f+(x) rv d„ f(x) + Ml f+(x) %p(x) (2.1)
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f(x) is a field with infinitely many components ip"(x). The four hermitian matrices

Fnm act on the index n of that field.
This Lagrangian gives rise to a field equation

{? + 2 *> rv dr + Ml) xp(x) 0 (2.2)

and to real conserved current:

f(x) y)+(x) {id" -2 pi rv) f(x) (2.3)

The yi-space is determined - by requiring proper transformation properties for tp, j"
and r* under Lorentztransformations - to be one of the two Majorana representations
of SL(2, C). We will only consider the half spin representation, where the yi-space
consists of an infinite spin-ladder

¦ 13 5
W Wj,m> 1 y 7' 2 ' '¦¦ m=-F •••> + ?• (2-4)

A convenient set of solutions of (2.2) is given by plane waves

Wj,m(x) e~ipx ®(P, j, m) (2.5)

with

0(p,j,m) U(A)0(ps,j,m) Aps p, ps (M, 0, 0, 0)

where U(A) stands for the Majorana representation of the homogeneous Lorentz-
group. The expressions (2.5) are found to solve the differential equation (2.2) if the
states 0(ps, j, m) are the states of the canonical basis [5, 6, 7],

0(p., j, m) | j, m) (2.6)

The physically acceptable solutions belong to the mass spectrum

M (*(i + j) + j/*2 (/ + ~J + ^o[/2 • (2-7)

Yet, these solutions alone are not complete. They form a complete set together with
ghost states belonging to negative p2.

This model is formally generalized by impressing to the fields an internal degree
of freedom (isospin), assuming however that one is always dealing with one set of
(2 1 + 1) identical fields (with fixed F), labeled by an isospin index F3. The current
operator (2.3) then takes the form

jl(x) f+(x) Fh {i d"-2pt F*} y>(x) (2.8)

where Fk(k 1,2, 3) are isospinmatrices acting on the index F3 of the fields. If the xp

are now formally quantized according to

[fn>Ti(x), nn,iT,(y)\Xa=ya) [<r,(*); n:%T,(y)]{x^yo) i 3» (* - y) ôTaT, ônn, (2.9)

with

nTa(x)=rp^(x){dn-ipir0} (2.10)
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the currents j°k(x) of (2.8) satisfy an isovector current algebra

&?(*). il(y)\x.,n) ieikt ft(x) & (* -y) ¦ (2.11)

One-particle matrix elements of these currents are calculated classically, using the
plane wave solutions (2.5), (2.6), (2.7). They are shown to saturate the algebra (2.11)
in the infinite momentum limit in the above mentioned sense of an asymptotic
expansion in pi.

3. Symmetry Breaking

We will now generalize the model, as to allow symmetry breaking. For the sake
of simplicity we still consider an SU2-algebra of the type (2.11). Our method would
however also apply to an SU3-algebra or, in a model containing axial currents,
even to an SU3 x SU3-algebra [2, 8].

a) Definition of the Model

We will still deal with particles of just one fixed isospin value F. Yet, abandoning
T-conservation - only T3 will further be conserved - we will avoid mass degeneracy
with respect to T3. We will keep to the simplest case, treating a system with F 1/2.
Its lowest spin values (/ 1/2) can be imagined to represent a P- and an Af-state.
In analogy to (2.1) we write the Lagrangian as

L(x) Lp(x) +. LN(x)

- d"rp+(x) dvy>P(x) - ifiPyAp(x) Fv dvy>P(x) + M20Pvj+(x) ipP(x)

+
2

dv y>%(x) d, fN(x) - i fiN y>%(x) rv dv tpN(x) + M20N f%(x) fN(x) (3.1)

Corresponding to this Lagrangian we have now two field equations of the type (2.2),
one for \pP and one for ipN, P and N standing for F„ + 1/2. The Lagrangian and the
field equations can be written in a simple way with the help of two diagonal 2x2
matrices

It =\ and Mz
\0 fix) \0 M%N

(wp(x) \and with a spinor field w(x) \ They then read

L(x) - d* f+(x) 1 dv xp(x) - i y>+(x) ft rv dv xp(x) + tp+(x) M% w(x) (3.2)

and

{Q1 +2irvdrli + Ml}y(x)=0. (3.3)

If we choose ptP 4= ptN and M\P ± M\ N we are now really handling two different fields y>T>.

One can again look for a solution of the field equations in terms of plane waves:

fT (x; p, j, m) e-ip* &T(P, j, m) (3.4)
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and one finds that the two components fTa belong to different mass spectra:

MP fiP (j + -J ± Up (j + -j + My

n U(^L\\m2T.MN fiN U + A + /4- I i +
2 j + M*N\ ¦ (3.5)

b) Currents and Current Algebra

The model admits of a conserved isospin current

/;(*) f+(x) (± [F,, i <f* 1 - 2 jk r>], \ xp(x) (3.6)

(3.7)

We assign to it two more components, putting

H(x) f+(x) {—[Tk,idr'\ -2 j* F"]A y>(x)

If we now carry on a formal quantization of the fields, according to (2.9) - (2.10) being

spezified as FIT(x) tp%\x) {d0ôT.T — i ftTiT ro} - we can easily verify that the
currents j%(x) satisfy the current algebra (2.11). We emphasize that only the third
component of the currents (3.7) is conserved and classically attached to the model.
The other two components have been defined in such a way that the currents j°
(k 1, 2, 3) form a current algebra and that all the currents of (3.7) turn to the
conserved currents (2.8) in the symmetry limit, i.e. for /uP fiN and M|P M^N.

One should now examine, if the one particle matrix elements of these currents
saturate the currant algebra at infinite momentum. The situation is that of
Leutwyler's model: there is occurence of ghost states, there are transitions between
physical states and ghost states, but for small / and for small ptTs the one particle
model is a good approximation of current algebra at infinite momentum. This
justifies to interpret the currents of the model as the physical currents of weak and
electromagnetic interaction. The matrix elements of these currents may thus be of
some interest.

c) Matrix Elements and Form Factors

We can compute matrix elements, e.g. between a P- and an iV-state and compare
them with the expression

MP My V2
<P(P')\JI(0) \N(p)>=(2n)-*(-- 5 FPN

\ OJPCOK J

x ûp(p') {Fpx(q2) f + F™(q2) a"« y + FPzN(q2) ?} uN(p) (3.8)

(q p- p')

in order to determine the form factors FPN.
The one-particle matrix elements are again calculated without the formalism of

second quantization, using plane waves. With (3.7), (3.4), (2.5) and (2.6) we get

<p', j', m', F'n j jl(x) j p, j, m,F.iy= T?Tt N'"1"' N'T° é(p'~p)x

x (/', m' \ IF (L(f)) {f + f - (fiT, + fiT) T"} U(F(p)) | /, m) (3.9)
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NlT> and N''T* are normalization constants. If we normalize the state vectors in such

a way that the inner product is given by

<P', j', m', F',| p, j, m,F3y Ô» (p - p') èjr ômm, ànT,

we find for these constants the following expressions:

N^ (2 *)-3/2(2 Por" M% U (j + ~J + MÎT.}'1"

(cf. Ref. [15], equation (11.8)).
The evaluation of the SL(2, C)-matrix elements

(/', m' j U+(L(p')) {f+ f - (fiT, + fiT) r-} U(L(p)) \ j, m)

can be performed using methods given by Leutwyler and Gorgé [9]. Since the form-
factors FfN depend only on the momentum transfer q2 (p — p')2, the coordinate
system can conveniently be chosen, to give the operators U+(L(p')), U(L(p)) a

simple form.
We just quote the results one gets by comparing (3.8) with (3.9):

1 "" (MN + MPf \ (MN + MP)2) LV A ™M p Fpn

\MN + Mp uN + fip 3 y q2 Y1]
X j" 2 - + —2— - 4 (^ + ^ * - lM^TMp)2 J J

mf) „ j^^r / £_ yw [(Ma7 _ ^ (Mp _ fÂp)]-i,2 W/ (MlV + Mp)4 V (MN + Mp)2) lX A ^v/V P WJ

X
1 2 4 ("» + ^ \X - {MÏÏMÏÏ) j

F3 {q >

Im^TmpF (Mv- Mf) I1 - (m;+-mp)2)

x [(Mw - /%) (MP - pip)]-1'2 - (fiy + ftp)

For the symmetry case (MN MP, ptx ptP), FPS and FPN coincide with the
expressions given earlier [4], while FPN vanishes. FPN and FPN give a qualitative
description of the experimental situation. It is agreeable that the mass difference
enters linearly into the expression for FPN. The contribution of F^-terms to scattering
is however too small compared to electric FPN- and magnetic F^'-contributions to
allow experimental statements on the shape of FPN.

4. A Model without Isospin Factorization

Up to here our models have only allowed transitions between one-particle states
of the same isospin value F. The isospin dependence of the matrix elements could
therefore simply be factored out :

<P', N', F',I /, \p,N,Fn}= FTkTt<p', N'\j\p,N>
(cf. (3.9)).
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However, we know that processes like the electroproduction of N* (P + e ->
N3I2'3I2+ + e) exist. And they are easily explained: the electromagnetic current is
supposed to be the sum of an isoscalar and the third component of an isovector,
admitting thus both A F 0- and \AF\ 1-transitions. If the isovector currents of
our current algebra model claim to be realistic, they must have non vanishing
\AF\ 1-matrix elements. To introduce them, e.g. for the special case F 1/2 <->

F 3/2, we start with a field fx of six isovector components. They may be labelled
according to the scheme

a T Ta

1 1/2 1/2
2 1/2 -1/2
3 3/2 3/2
4 3/2 1/2
5 3/2 -1/2
6 3/2 -3/2 (4.1)

Each isospin component xpa is itself an infinite-dimensional Majorana field. This
means that our model is characterized by a Lagrangian of the type (3.2) and by field

equations of the type (3.3). pt and M2 now being 6 x 6-matrices. The three isospin
currents of the model read

jl(x) xp+(x) (i [Fk, i Ï" 1 - 2 £ rv]+) V(x) (4.2)
2

where Fk are 6 x 6-matrices obeying

[Ti, Tk\ iZiki Ti ¦

(4.1) immediately gives the form of F3:

7-3 ^1
3

i
° I <4-3)

0 - 1

Only the third isospin component of the current (4.2) is generally conserved. We know
that our model can formally be quantized and that it satisfies the current algebra (2.11).

We will now add to our currents (4.2) a term which allows \AF\ 1-transitions.
This term must be such that the current algebra is still valid and that the conserved
currents are still conserved. The last point is automatically granted with an ansatz

Jl il + K, K(A àtAw+(x) sv f(x)}, (4.4)

S"F (i 1, 2, 3) acting in isospin space as well as in SL(2, C) space. According to the
skew-symmetric character of SVA, k\ is conserved:

d„ kj 0
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Evaluating commutators one then finds that the current J\ of (4.4) satisfies a current
algebra

[7?(*. t). Jl(y, t)l *'«»*, /?(*. *) & (x - y)

if the tensors S'F obey

[Tt,SAl]=ieiknS°J. (4.5)

S{t" must thus behave under rotations in isospace like a vector. Such quantities can be

constructed. They are Clebsch-Gordan coefficients.
To look for an explicit form of SV one may write it as

sr=[t+ o)M"v <4-6)

the first matrix on the right hand side acting in isospace, the second in SL(2, C)-

space. A possible choice for Mß" are the generators of the Lorentzgroup in the
Majorana representation. tt can be determined in such a way that they satisfy (4.5).
The current (4.4) then allows transitions between F 1/2 and F 3/2 states!

For the special case of the electroproduction of A* the current of interest is ]\.
Equation (4.5) then simply reads

[T3,Sf}=0.

Comparing this with (4.3) one immediately realizes that the isospin part of S%A in
(4.6) has non vanishing (1,4)-, (4,1)-, (2,5)- and (5,2)-elements which perform the
desired T 3/2 <-> F 1/2-transitions.

We still want to notice that the \AT\ 1-transitions described here occur also
in the case that the model exhibits T-conservation.

I am indebted to Prof. A. Mercier, who offered me the opportunity of doing this
work at the Institute for Theoretical Physics, where I profited by the generous help
of Dr. Viktor Gorgé, Dr. Hans Bebié, and Mrs. Maja Svilar. My special thanks are due
to Prof. Heinrich Leutwyler, who inspired this work and supervised my efforts.
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