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Spin Fluctuation Effects with Strongly Magnetic Impurities

by B. Giovannini1), A. J. Heeger2) and M. Peter
Institut de Physique de la Matière Condensée, University of Geneva,

Geneva, Switzerland

(7. X. 69)

Abstract. A phenomenological theory of the effect of spin fluctuations on the magnetic
susceptibility of strongly magnetic impurities in metals is developed. The finite zero temperature
susceptibility is calculated and qualitative aspects of the temperature dependence are pointed out.
The results are expressed in terms of the density of states due to the localized state virtual levels.

I. Introduction

In this paper we investigate some aspects of the influence of the metallic environment

on magnetic atoms from the transition or rare earth series when placed in solid
solution in a dilute alloy. In simplest terms the contact of the impurity atom with the
conduction electron sea has two effects:

(I) The mixing of the atomic wave functions with the degenerate conduction electron
states broadens the atomic impurity state into a virtual state and allows the
possibility that the 'pseudo-atom' will change its configuration by adding or
subtracting a fraction of an electron. This configuration change is inhibited by the
electron-nuclear Coulomb attraction and by the electron-electron Coulomb
repulsion, U, both of which favor the atomic configuration. If the level width, A,
is sufficiently large compared with U, UjA < 1, the atomic magnetism will
disappear [1].

(II) Since the conduction electrons are constantly exchanging with those of the
localized magnetic state, spin correlations are induced in the conduction sea in
the vicinity of the impurity. This is the Kondo effect [2] and has associated with
it the well-known anomalies in the electrical resistivity, thermoelectric power,
magnetoresistance, etc.

In this paper we concern ourselves with (I) above in the limit UjA > 1, and we
investigate by means of a simple model the effect on the magnetic susceptibility of the
contact of the virtual level density of states at the Fermi surface3). The results imply a
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finite zero temperature susceptibility in all cases with the expected Curie law
becoming dominant only at higher temperatures.

II. Definition of the Problem

We assume the impurity - conduction electron system ?/ can be described by the
one-orbital Anderson Hamiltonian

¦H «o r Hmix

where

#o =2,'£ft nk° A E (ndl + ndi) + U nd] nd> (la)

and

iUm,,= VZKa0ia+4aCka) (lb)

and all quantities are as defined by Anderson [1]. In the limit of interest here, V small,
Schrieffer and Wolff [3] have shown that the above Hamiltonian can be transformed
into the well-known s-d Hamiltonian of the form

U 7/o + %d (2)

where

#0 Zek ""a + E fat + "rfj) + U «it *i\ ' (3)

™srf r, Ar Zj Jkq \(Cd\ cd\ ~ cd\ Cd\) (Ck\ Cqi ~~ Ck\ Cq<)
ZJV k.q

+ 2 <y crfj cft| cqf 4- 2 cdt <y cfej cql} (4)

In equations (2), (3) and (4)

Va='-ciae' (5)

~c+ka=e-Utaes (6)

and the generating function S is given [3] by Schrieffer and Wolff

S=Z V_ n^a-c+ka-cda-H.c. (7)
ferra £fe ea

with
\ E a + _ f nd_a a +

«« =*¦_.„ »ï-=L - (8)

[£+& a=- i1 - nd-o «=-¦
The conditions for the validity of the Schrieffer-Wolff transformation are (we use the
convention ZiF 0)

1 E I £ + <7

y > 1 and —7— >1. (9)
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In the limit where equations (2), (3) and (4) provide an adequate description of the
problem, the impurity susceptibility is immediately seen to be a Curie law, with
higher order effects added on due to the Kondo effect as indicated in II above [4].
If one neglects Hsd, the examination of equation (3) shows the cka states to represent
a complete set of non-interacting Fermions (the anticommutation relations are
preserved in the transformation) with a dispersion relation identical to that of the
plane wave states of the pure host. These states thus form a free-particle Fermi sea
and contribute to the magnetic susceptibility (and specific heat) by an amount
numerically equal to the pure host material. Since the magnetization operator has the
same form in the transformed as well as the untransformed representation, the change
in the susceptibility upon addition of a single impurity is given by

Al Zalloy ™ Zhost —Z- [4nd^> - <^j>] (10)

where the double brackets denote a thermal average.
The transformed states thus represent the best starting point for a discussion of

the impurity susceptibility in the limit where the mixing interaction is small, for they
are well-defined states with an essentially infinite lifetime so long as the condition (9)
is well satisfied. Moreover, there is experimental evidence that the transformed
operators are the physically relevant description. Spin resonance experiments have
demonstrated clearly that because of the long tails of the admixed wave-function the
impurity can probe the spin-orbit interaction at distant impurities [5]. Thus in the
ESR experiments, the rf field couples with the transformed state. We emphasize this
point at length only because in the literature, the difference between the transformed
and untransformed operators is often not explicitly taken into account in the use of
the s-d model. Furthermore, the question of the physically relevant operators is not
a priori clear.

Because of the Kondo effect, we still do not have a complete solution of the
problem defined by the s-d Hamiltonian given in equation (2). However, in a qualitative

sense the problem is understood. For example, as argued above, when the conditions

expressed by equation (9) hold, the Schrieffer-Wolff transformation is valid and

any deviation from Curie law behavior is to be attributed to the Kondo effect. This
observation has in the past led experimentalists to claim a given system is an example
of the Kondo effect whenever departures from a Curie law (e.g. Curie-Weiss behavior)
are observed. However, the condition for the validity of the s-d model, i.e. equation
(9), raises an additional and separate question. In any real physical system the ratios
j E \jA and (E + U)jA are finite. The effect of finite values (perhaps large) for these
ratios on measurable parameters, e.g. the susceptibility, is not clearly understood.

The question of the effect of a breakdown in the conditions given in equation (9)
is related to the spin fluctuation approach to the impurity problem. When \E\jA
and/or (E + U)jA are finite, the estates must have a finite lifetime; i.e. the Schrieffer-
Wolff transformation is no longer rigorously valid. Note that the lifetime in question
is not the one-electron lifetime, A, but the lifetime of the <i-state arising from the
finite values of the quantities in equation (9). At present, no satisfactory microscopic
theory exists which expresses this lifetime in terms of the fundamental parameters of
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the model V, E and U. Therefore we treat the d-state lifetime as a phenomenological
parameter. This finite lifetime can have important consequences for it allows the
impurity spin to 'leak' off. The physical point is that for a finite mixing interaction
there is a finite probability at any given time of simultaneous occupancy of both the
up-spin and down-spin orbitals (or alternatively a finite probability of neither being
occupied) with a zero net magnetic moment. This kind of spin fluctuation effect leads
to a finite zero temperature susceptibility. In the magnetic limit, E <^j 0 and
E + U > 0 (thus making the zero occupancy probability negligible) the probability
of such a spin fluctuation is

o

P0 (E+U)~ fe-dtE+u(w) dco (11)

— oc

where Qd E+u is the density of states arising from the broadened virtual d-state
centered at (E + U). The competitive thermal process, i.e. the probability of a thermal
fluctuation, has a magnitude of approximately the Fermi function evaluated at

E+U the energy of the peak in Q2,e+u(°A

PTh ~ e-W+a>. (12)

It is only when

PTh >P0(E+ U) (13)

that the temperature plays an explicit role so that a Curie-like temperature dependence
can be operative. The qualitative argument leading to the relation (13) will be verified
by explicit calculation below.

III. Phenomenological Theory of the Susceptibility

Since we are interested in the limit of small level width we begin by considering
the case V 0. The equation of motion for the localized state Green's function is

written

-^ Ga(t) -i ô(t) + ê(t) ^{[Ü0, cda(t)l -c+da(0)}> (14)

where

G^t) - -^<{cda(t),ct(0)}>m (15)

and the double brackets denote a thermal average. Equation (14) can be solved

exactly [6-8] leading to the result

fdt /« GJt) GM ?—*<=*- + ^r>_ (16)
./ ffU aK ' m- E + iô co- E-U+iô y '

The spectral weight function A Ja>) is given by

AM -
1

Im G» (1 - <üd-„» ô(œ-E)
Tl

+ <&d_a^ô(co-E-U) (17)
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and consists of a double-peaked structure for each sign of spin; one peak at co E
with amplitude 1 — <^nd_a§> and the other at (E + U) with amplitude <^nd^ap,
as shown schematically in Figure 1. The result is physically reasonable; the two peaks
correspond to the two possible configurations of one or two electrons in the localized
state. This structure is well-known and was pointed out by Kjöllerström, Scalapino
and Schrieffer [6] as well as Hewson [7] and Dworin [8].

E*U

N,(E)N.(E)

Figure 1

Schematic diagram of the localized state spectral

weight function. For the case drawn here
E < 0, E + V > 0 the peaks each have an
amplitude of 1/2.

One cannot use (16) in a diagrammatic expansion in terms of V because the poles
of G do not correspond to one-particle energies. Moreover, since the d operators are
complicated functions of the mixing interaction involving a complex superposition of

states, a calculation of the d spectral weight function appropriate to an impurity in a
real metal is a difficult problem indeed. As a result, we adopt a phenomenological
point of view and generalize equation (17) as

A<rW (1 - <nd_a^>) Q-iiE(w) + «fa_> Qd,E+u(m) (18)

where QdiË(co) and Q2,E+u(m) are the normalized density of states functions centered
at E and (E + U) respectively. Equation (18) can perhaps be viewed somewhat more
generally. In the limit of interest here, UjA > 1, one does not expect the basic atomic
level structure of the impurity to be altered. Thus the form of equation (18) should be

generally valid since as mentioned above, the double peaked structure has its origin
in the different possible atomic configurations. One can then view odE(a>) and

Q2,E+u(m) either as the experimentally determined d virtual state densities in the
alloy or as the fundamental quantities to be calculated in a microscopic theory. Since
information on virtual states is becoming available through optical absorption and
photoemission studies [9], the experimental point of view may be of real practical
value (of course the relation of such measurements to the d state density must be

carefully considered). We emphasize, however, that when UjA < 1, the atomic
physics of the impurity is strongly perturbed by the metallic environment so that a

spectral weight function of the form of equation (18) loses its validity.
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We explicitly neglect in equation (18) the effects arising from Hsd which are the
source of the Kondo divergence. This is done not because they are unimportant, but
because we are interested in the explicit spin fluctuation effects which arise indirectly
from the finite level width. In fact, since the characteristic Kondo temperature varies

exponentially with / and hence with V2, the Kondo phenomena are restricted to very
low temperature in the limit of small V as is appropriate for example for most rare
earth impurities in simple metals.

The average number of localized electrons is obtained with the help of equation (18)

<nda> (1 - <^_» F(E) + <nd_ap F (E + U) (19)

where
1-00 -f-co

F(E) =jf(co) QdiE(co) doo F(E+ U) =jf(co) (rdtE+u(co) dco (20)

— CO — CO

and / (ai) is the fermi function

/(cu) - .- —. (21)M ' eßm + 1

The effect of a small external field is to change the energies by an amount a coJZ

a g piß HjZ where a 4-1 for spin-up and — 1 for spin down and ptB is the Bohr
magneton. The resulting changes in population are of the form

à <nda> =(F(E+ U) - F(E)) Ô <nd_a>

+ a ^ (F'(E) + <nd_a> (F (E + U) - F'(E))) (22)

From equation (17), the magnetic susceptibility is seen to be

g2fi2 (1- n) (F'(E) +nF'(E + U)
1 2 1- F(E) + F (E+U)

where n= 1/2 (4Jnd^ + <g.nd^>). In the case of the (5-function peaks in AM)
(equation 12), the evaluation of the susceptibility is straightforward.

For E <0, E + U > 0 and | E \, E + U > k F, one obtains

g2 fi2 (1 - n) e-f^A + n e-ß(E+u)

2kf e~ßF\ j- 6-ß(B+u) l

gV2
4k F

(25)

The result is always a Curie law as expected on physical grounds. Note however that
the Curie law originates from a cancellation (in numerator and denominator of

equation (19)) of the small probability factors, e~^E^, e~ß{E+u), which in turn arise

from the value of the Fermi function at the peaks in A^m). Since usually k F<^\E\
and k F <^j E + U, these probability factors are very small, and the cancellation is

crucial.
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In the case of a more realistic g2tE(a>), i.e. perhaps experimentally determined,
the integral (20) is more difficult to evaluate. However the zero temperature result
may be derived quite generally. One finds immediately

o

F(E) =Jdco Qîjœ) P0(E) (26)
— OO

as defined in equation (11) and

F'(E) -2d,E(0) (27)

so that

Ay (F 0) ^- ^-^eiEm+nQJ^jM
2 1-P0(E) + P0(E+U)

From equation (28), one sees that whenever the virtual state densities at the Fermi
energy are non-zero, the F 0 susceptibility is finite. Only when E <0, E + U > 0

and the respective state densities do not cross the Fermi surface is the zero temperature
result divergent as for a Curie law. The limit is consistent with that required for the
validity of the Schrieffer-Wolff transformation (see equation 9) ; however the restriction

is quite severe. Generally, one does expect overlap (perhaps small) of the localized
state density, and as a result, a finite zero temperature susceptibility.

One can obtain a qualitative determination of A%(F) by writing, for E <^ 0

+ CO

F(E)=Jf(œ)9dJco)dœ (29)
— OO

+ oo

P0(E) + f{f(co) - /(cu) |r ,„} a,» dm (30)
— CO

Since Q2jE((o) is assumed to be a sharply peaked function, the major contributions to
F(E) can be seen to be

F(E) ~ P0(E) - g-"l£i (31)

A similar expression is valid for E > 0.

The susceptibility is then given approximately by

AX(r) g-f-

A-n) e2,M +y Q21e+v(0)_ + (ljk F) {(1 -5)^1*1 + n e~m+u}
1 - P0(E) + P0 (E +U) + e-0l£l 4- e-^E+^ ' [ '

A Curie-like dependence is expected only when the condition expressed in (13) above
is fulfilled.

Of course this crude evaluation of F(E) is only approximately correct. Inclusion
of the finite width and proper functional dependence of Q2,E(m) ar,d QI.e+lA0^ intxo-
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duces temperature dependent multiplicative factors. We have investigated in some
detail the cases of Q2,E(m) and Qd,E+u(0J) being Gaussian, square, and exponential
functions. Although there are differences in detailed low temperature behavior, the
general features are the following. For the case E + UjA > 1, | E \jA ^> 1, (see Fig. 2)

the susceptibility obeys a Curie law at high temperature, and saturates to a finite
value at low temperature. The cross-over from Curie law behavior is found at k F r^F2jE
for a Gaussian and k F ~r for an exponential density of states where F is the level

4.0

3.0

2.0

12 3 4

(kT/r)
Figure 2

Temperature dependence of the inverse susceptibility for the symmetric case assuming a Gaussian

density of states Qd E — V \^n exP[— Y2 (°> ~ ^)2] with \E\ E + U and E —5 T. The curve
is a spin —1/2 Curie law for temperatures larger than r2jE.

50

5.0

4.0

^̂
¦3.0

2 0 - /

(kT/r)
Figure 3

Temperature dependence of the inverse susceptibility for the case when E + V 0. The solid
curve assumes a Gaussian density of states, the dashed curve an exponential function Qd E

y/2exp(- y \w — E\). Note that the details of the low temperature behavior are sensitive to
the form of qd.
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width of the i-state. For a Lorentzian function, because of the very long tails, the
Curie law is not obtained until very high temperatures (k F ~ E + U). For the
case E + UjA ~ 0, the zero temperature susceptibility as well as the effective
moment (as measured by the slope in y1) decrease relative to the symmetric case.
The detailed behavior again is sensitive to the structure in Qd.E+ufa), but can
resemble a Curie-Weiss law over a wide range in temperatures (see Fig. 3).

IV. Conclusion

We conclude that these spin fluctuation phenomena can play an important role

even in the strongly magnetic limit since a Curie law is obtained at low temperature
only when the localized state density does not cross the Fermi surface. These results
are in qualitative agreement with the susceptibility measurements of Allah and
Donzé [10] on the system of dilute Yb in the alloy AuïAg1_ï. The experimental data
demonstrate that as the 4 / virtual level approaches the Fermi surface [11] (i.e. as

x -> 0) the zero temperature susceptibility increases as expected from equation (28)

[12]. Detailed comparison with theory of the magnitude and temperature dependence
of A y must await knowledge of the energy dependence of the virtual state density.
It is interesting to note further that the optical and photoemission data of Myers and
co-workers [9, 13] suggest that for CwMn and AgMn (where the Curie law persists to
extremely low temperatures) the localized state density at co 0 is very small.

Other effects are immediately suggested. For example the detailed balance

relationship inherent in the Hasegawa equations [14, 15] lead to the implication that
one should expect deviations from the Korringa relaxation of the impurity spin
resonance at low temperatures when y becomes independent of F.

The effect of the spin fluctuations on the Kondo divergence is being studied.
We expect that if the spin fluctuation probability is sufficiently large, the spin
'memory' in the intermediate state will be lost, and the indirect electron-electron
interaction [16] responsible for the Kondo effect will disappear.

Finally, comparison with other approaches to the spin fluctuation problem is in
order. Zuckermann, Rivier and Sunjic [17], Lederer and Mills [18], Levine and Suhl
[19] and Hamann [20] have all approached the spin fluctuation problem starting from
the opposite, i.e. non-magnetic limit; and have attempted to selfconsistently form the

impurity moment. The latter authors do find a Curie-like temperature dependence
[19, 20]. However, the Curie constant is much too small, and the impurity spectral
weight function does not show the double-peaked structure characteristic of the
magnetic limit (and experimentally observed [9]). In the present case, the particle-
particle splitting is built in from the beginning and as a result a Curie constant of the
correct magnitude is obtained.
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