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Space-time Symmetry
of Transverse Electromagnetic Plane Waves

by Aloysio Janner
Instituut voor Theoretische Fysica, Katholieke Universiteit, Nijmegen, Nederland

and Edgar Ascher
Battelle Institute, Advanced Studies Center, Carouge-Geneva, Switzerland

(23. XII. 69)

Synopsis. A way of determining the relativistic symmetry group of an electromagnetic field
tensor that admits a Fourier expansion is summarized in a set of rules where the concepts of
spectrum and of spectral group are introduced.

This approach is applied to the case of linearly, circularly and elliptically polarized transverse
electromagnetic (TEM) waves. The group of the symmetry translations (called primitive
translations), the point group and a set of associated non-primitive translations are explicitly given in
each of the above three cases. From these groups one easily derives the symmetry group in space
and time of a TEM wave, which is a non-symmorphic subgroup of the Poincaré group, i.e. a non-
split extension of the group of primitive translations by the point group. The limit of infinite wave
length is discussed and the results are shown to be consistent with previous ones relative to the
symmetry of uniform electromagnetic fields.

1. Introduction

In the frame of a general programme in which physical phenomena are
considered from the point of view of their symmetry in space and time, it is evident that
electromagnetism is worthy of special attention. It is not at all surprising that
electromagnetic fields in empty space have relativistic symmetries, as has already
been shown in the case of uniform fields [1].

This paper represents the next step: the investigation of the symmetry group of a

transverse electromagnetic plane wave (TEM). The relativistic symmetry group of a
uniform field is the semi-direct product of the group T of all space-time translations
by the point group of the field (the homogeneous symmetry group), the latter being
considered as subgroup of the group of automorphisms of the abelian group T'. This
is no longer so for a TEM wave, whose symmetry group is not symmorphic.
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Clearly, only a proper subgroup of T leaves the field invariant. The elements of
this subgroup are called primitive translations, a terminology derived from that of
crystallographic space groups. Note however that there are continuous primitive
translations also.

Other translations than the primitive ones occur in the symmetry group G, but
only together with non-trivial homogeneous transformations (here Lorentz
transformations) and are called, therefore, non-primitive translations. The non-symmorphic
character of G appears in the fact that these non-primitive translations cannot be

transformed away (as a whole) by any change in the coordinate system [2]. This
means that the symmetry group of a TEM wave is not simply the semi-direct product
of a group of space-time translations by a group of Lorentz transformations.

2. Symmetry Conditions and General Definitions

In the Minkowski space, an orthonormal basis ea (a 0, 1, 2, 3), is chosen, with
metric tensor gaft, where -g00 gxx g22 g33=l and gxß 0 for oc 4= ß.

The Poincaré group 10(3,1) is the semi-direct product of the group T of all
translations in space and time and the Lorentz group 0(3,1) (considered as subgroup
of the group of automorphisms of the abelian group F). The elements of 10(3,1) can
thus be written as (t, L) where the translational part t is an element of T, the
homogeneous part L is an element of 0(3,1) and the multiplication law is given by:

(t2,L2)(tx,Lx) (t2+L2tx,L2Lx). (2.1)

Under the action of an element g (t, L) of 10(3,1) an electromagnetic field tensor
Faß(x) transforms into another F*ß(x) according to [3]:

Laß(x) (gop F«ß) (x) gtF-V1 *)] (2-2)

where, as already discussed in a previous paper [1 ] :

g[F^(x)] LlLlF^(x) (2.3)

with:

f LI if L°0>0,
Ll \

n
(2-4)

\-Ll if Ll<0,
and

g[x] (t, L) x L x + t. (2.5)

The condition for g to be a symmetry, i.e. to leave the field invariant, is naturally:
Faß(x) F(xß(x) and can be expressed by the relation:

F"' (Lx + t) L^UßFaß(x) (2.6)

The relativistic symmetry group G of the electromagnetic field Faß(x) is the
largest subgroup of 10(3,1) which, according to (2.6), leaves the field tensor invariant.



298 Aloysio Janner and Edgar Ascher H. P. A.

The set of all homogeneous parts of the elements of G is a subgroup of 0(3,1),
called the point group K of the field in question:

K={L\ Y(t, L)eG). (2.7)

The subgroup U of G consisting of translations only (U F O G) is normal in G.

The proof uses the fact that F is normal in 10(3,1) [4]. For any ge G:

gUg-1 g(FnG)g-1 =gTg-ingGg-i=TnG=U. (2.8)

The elements of U are called primitive translations. The factor group GjU is

isomorphic to the point group K. Note that for non-symmorphic G, the group GjU is not
isomorphic to a subgroup of G. In fact the translational part t of an element of G is

not, in general, a primitive translation. If t $ U, then t can be written as:

t a + u(L) aeU (2.9)

The translation u(L) is called a non-primitive translation associated to L. The
fundamental property of non-primitive translations is [2] :

u(Lx L2) u(Lx) + Lx u(L2) (mod V) Lx and L2e K (2.10)

so that it is sufficient to derive the non-primitive translations associated to a set of
generators of K.

Let us from now on restrict our attention to fields that have a Fourier expansion:

F*ß(x)=£Faß(k)e<k/ (2-H)

and let us call spectrum of the field F'xß(x) the set 5 of all vectors k occurring in the

expansion (i.e. such that the corresponding Fourier coefficient Faß(k) does not
vanish). Two fields are equal, if and only if they have the same spectrum and the same
Fourier coefficients. It follows that:

K S S (2.12)

a short-hand notation for expressing that if k e S and L e K, then L ke $.
Furthermore:

tas0(mod2ji), V k e S V a e U (2.13)

This last property is also a characterization of all the translations that are primitive:

U {a e F | ka 0 (mod 2 ri) V k e S} (2.14)

Finally:

LI Lvß F*ß(k) F"-(L k) e'iLk)uW. (2.15)

Here L is any element of K and u(L) is a non-primitive translation associated to L.
Using matrix notation, the relation (2.15) can also be written in the very convenient
form:

L F(k) F(L k) L* eiiLk)u{I-\ (2.15a)

where L* is the adjoint matrix of L, i.e. its transposed inverse.
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It is useful to introduce the spectral group S defined as the largest subgroup of
0(3,1) leaving the spectrum S invariant:

S {Le 0(3,1) I LkeS.VkeS}. (2.16)

In particular, when S reduces to a single element k, the group S is also the little group
relative to 10(3,1), T and the representation A (k). (See e.g. Ref. [5], pp. 230 and 328.)

A way of finding the relativistic symmetry group G of a given electromagnetic
field can be formulated in the following set of rules:

(i) Determine the Fourier coefficients and the spectrum S of the field.
(ii) Using (2.14) find the group U of primitive translations,
(iii) Find the spectral group 5 by means of (2.16).
(iv) Find the point group K and a set of non- primitive translations u(K) by looking

for elements L of S that satisfy (2.15) for suitable chosen translations u(L).
Note that, according to (2.10), if two elements of S satisfy (2.15), then so does their
product. It is therefore convenient to find out first which generators of S belong to K
and which not. One only needs to consider further those products which begin and end
with generators of S not belonging to K.
(v) Finally, the group G is the set of all elements of 10(3,1) that are given by:

(a + u(L), L), V a e U, V L e K and u(L) e u(K) (2.17)

3. Spectral Group and Primitive Translations

The orthonormal basis considered above can be chosen in such a way that, in
Gaussian units, a TEM wave with null vector h is given by:

E3(x) A cos(hx) Ex(x) B sin (hx)

Hx(x) A cos (hx) H3(x) - B sin (hx) (3.1)

where the contravariant components of h are:

* ~y (1. 0, 1, 0) (3.2)

so that the wave propagates in the ^-direction.
The corresponding field tensor is:

Baß sin (hx) (3.3)A'ßcos(hx)Fa

where

0 0 0 1

0 0 0 0
A«l>

0 0

0 1 0 0

1 0 -1 0

0 1 0 0

0 0 0 0

B^=B\ A1
I (3.4)

If | A | 4= \B\, the wave is elliptically polarized, and circularly polarized if | A \ \B\;
right-hand polarized if A and B have the same sign, otherwise left-hand polarized.
If B (or A) is zero, then the wave is linearly polarized.
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The Fourier components of the field are:

Faß(h) (A*ß - i Baß) and Faß(-h)
-1

(A«ß + t B«ß)

so that the spectrum simply consists of two elements:

S={h, -h).

(3.5)

(3.6)

The group of primitive translations Uh does not depend on the wave polarization and
follows immediately from (2.14) and (3.2):

Uh {a (q, fi, q + z X, v) | V Q.pt.ve R and V z e Z), (3.7)

so that

IT" ~ R3 © Z

The little group, 8(2), of the vector h (future null) of 10(3,1) and F (see e.g. Ref. [5],
p. 329) is a subgroup of the spectral group 5 of (3.6), and is generated by mx, the
mirror perpendicular to the x-axis (along ex), by Ry(d), any rotation of angle 6 around
the y-axis (along e2) and by the Lorentz transformations L(o) and L(q) (for any real a
and q) given by:

Lia)

1

1+ 2o2

a

2

0

1

a 1

0 0

-a2 0
2

L(e)

r ii + - e- o

0 1 0

i
o2 0 1

ve 0 1

(3.8)

Thus £(2), as well known, is isomorphic to the two-dimensional Euclidean group.
(Note however that in Ref. [5] only the proper orthochronous inhomogeneous Lorentz
group is considered, so that, there, the mirror mx does not appear: but then of course
the little group of a null vector is isomorphic not to the Euclidean group, but only to
its connected component of the unity.) As £(2) is of index two in S, for generating
the group S it is sufficient to add to the above set of generators of £(2) the total
(space-time) inversion 1', which transforms h into —h.

One then has:

S {!', mx, Ry(d), L(a), L(q) \Vo,o,0eR}. (3.9)

4. Linearly Polarized Plane Wave

One obtains a linearly polarized plane wave by assuming in (3.3) that Baß 0.

Applying rule (iv) of Section 2, one verifies that the generators mx, L(a) and L(q) of S

satisfy (2.15) for any real value of a and o, with vanishing associated non-primitive
translations. These elements belong therefore to the generators of the point group Kf
of a linearly polarized plane wave with wave-vector h. The total inversion Ï' is also an
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element of Kf but has an associated non-primitive translation that with the present
choice of the origin has to satisfy the condition:

hu(V) ti (mod 2 ti) (4.1)

A possible solution is u(l') (0, 0, 1/2 X, 0), all other solutions differ from this one by
primitive translations only, and represent equivalent choices.

Equation (4.1) thus takes into account that non-primitive translations are defined
only modulo the primitive ones. According to the general theory [2] another source of
arbitrariness is due to the possible changes of origin. Equations (2.11) and (2.15) show
that a change of origin x -> x + f induces a change u(L) -> ü(L) u(L) + f — Lf;
the two systems, u(K) and u(K), are however equivalent.

It is now sufficient to investigate the behaviour of the rotations around the
y-axis. One obtains from (2.15) the condition sin0 0, which for 0 0 gives the
identity and for 0 n another generator of Kf, namely 2y, associated with a same
non-primitive translation as the total inversion:

(o, o, \ x, o).u(2y) (0, 0, - X, 01 (4.2)

It is convenient to consider instead of 2 the generator m'y — l'2y (a mirror perpendicular

to the y-axis, along e2, followed by time inversion) because according to (2.10)
and (4.2) the non-primitive translation associated to it is zero.

Conclusion: we have found that the point group Kf is generated by:

Kf {V, mx, m'y, L(o), L(q) | V a, q e R} (4.3)

and that the set:

u(mx) u(m'y) u(L(a)) u(L(q)) 0, u(V) (o, 0, X, 0] (4.4)

defines a system of non-primitive translations for the symmetry group Gf of a

linearly polarized TEM wave with null vector h. One verifies that this system u(Kf)
is not equivalent to the trivial one. Therefore Gf is a non-symmorphic subgroup of the
Poincaré gioup. This means that the point group Kf is not isomorphic to a subgroup
of Gf, or, in other words, that Gf is a non split extension of Uh by Kf [2, 4].

There are elements of Gf which depend only on the direction of the null vector h,
but not on the wave length X. This is in particular the case for the elements of Kf,
whose associated non-primitive translations are equivalent to zero and thus also are
(homogeneous) elements of Gf.

In the limit of X -> oo, i.e. of h -> 0, Faß(x) becomes the uniform field tensor Aaß,
whose symmetry group GL (a2 1) has already been determined [1]. We recall that
G± (a2 1) is the semi-direct product of the group F of all translations with the point
group K± (a2 1).

Comparison shows (see in particular (5.24) of Ref. [1]) that indeed all A-inde-
pendent symmetry elements of Gf also belong to GL (a2 1). In particular the only
elements of Kf not belonging to K± (a2 1) are those whose associated non-primitive
translations are not equivalent to zero. These latter become meaningless in the limit
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of an infinite wave length, and in fact the corresponding homogeneous parts are no
more elements of Kf""0. One has:

Uh-°CUhC F, Kf=0=Kx(a2 l)CKf, Gf~° C G± (a2 1) (4.5)

5. Circularly Polarized Plane Wave

It is now supposed that in (3.1) A B. The TEM wave is then right-hand
circularly polarized and the Fourier coefficients (3.5) become:

*¦"(*>--=- ; :• ni ¦ f"(-*)-4- ::¦ ;; ¦ («)

0 -i 0 1

0

0 1

0-10

0 i 0 1

A -iO tO
0 ; 0 1

10-10
Again rule (iv) of Section 2 is applied. One finds that L(a) and L(q) satisfy (2.15) for
any real value of a and q and zero non-primitive translations.

Furthermore Ry(0) also belongs, for any value of 0, to the point group Kh0 of a

circularly polarized plane wave with wave vector h. If the rotation angle is defined by:

1 0 0 0

0 COS0 0 sin0
1 0

sin 0 0 cos 0

the associated non-primitive translation is

u(Ry(6)) (o,0,~,o\, (5.3a)

whereas in the case of a left-hand circularly polarized wave (A — B) one has :

u(Ry(B)) =(o,0,-~,o\. (5.3b)

The remaining generators of S, namely Ï', and mx, do not satisfy (2.15). One has therefore

to investigate the other elements of the group generated by I' and mx, in fact only
their product 2'x (which is a rotation of angle ti around the x-axis, followed by time
inversion). This last element belongs to Kh0 and is associated to:

u(2'J (o, 0, - X, o\ (5.4)

The result is that the point group Kh0 is generated by:

KhQ {2'x, Ry(0), L(a), L(q) \Vd,a,geR}. (5.5)

A corresponding system of non-primitive translations is:

u(L(o)) u(L(q)) --- 0

«(23 (o, 0, \X,0\, u(Ry(6)) (o, 0, ± —, o) (5.6)
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2 0 -i B 0 A
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(the plus sign applies if the wave is right-hand polarized, the minus sign if it is left-
hand polarized). In this case too the symmetry group Gh0 is non-symmorphic, i.e. a

non-trivial extension of Uh by KhQ

In the limit of an infinite wave length, one again gets a uniform field, and
considerations like those made at the end of the previous Section lead to similar conclusions.

6. Elliptically Polarized Plane Wave

In this case, \A\ 4= \B\. The Fourier components of the field are:

\ -A 0 -AO J
Calculation of the generators of the point group Kh0 and of the corresponding system
of non-primitive translations is straightforward, so that we simply give the result:

Kh0 {2'x, 2y, L(o), L(q) \Ya,QeR}, (6.2)

u(L(a)) u(L(q)) 0

u(2'x) u(2y) (o, 0, l2 X, o) (6.3)
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