
Nucleon transfer reactions below the
Coulombbarrier

Autor(en): Trautmann, D. / Alder, K.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 43 (1970)

Heft 4

Persistenter Link: https://doi.org/10.5169/seals-114176

PDF erstellt am: 13.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-114176


363

Nucléon Transfer Reactions Below the Coulombbarrier

by D. Trautmann and K. Alder
Institute of Theoretical Physics, Basel, Switzerland

(23. II. 70)

A bstract. A DWBA treatment for nucléon transfer reactions is given which is applicable for
energies below and in the neighbourhood of the Coulomb barrier. At energies well below the
Coulomb barrier the theory is essentially exact and the radial integrals describing the reaction
may be evaluated analytically by means of generalized hypergeometric series. Methods for their
numerical calculation are given. Semiquantal and semiclassical approximations are considered.
From those it is possible to recognize a close similarity between transfer processes and Coulomb
excitation. The effects of nuclear interaction, which become important at energies close to the
Coulomb barrier, are treated in an approximate manner. Expressions are given for the differential
and total cross-section. The deuteron stripping reaction is treated as a special case and the
polarisation of the outgoing proton in (d, ^-reactions is calculated. The connection between this
treatment and the diffraction model developed by Dar and Frahn and Sharaf is discussed. An
improvement of the model is given. A method similar to the one used in scattering and Coulomb
excitation calculations is used to improve the slow convergence of the sum over the orbital angular
momenta. Comparisons with actual experiments are discussed.

1. Introduction

During the last few years there has been considerable interest in nucléon transfer
reactions below the Coulomb barrier. This is due to the fact that many of the
difficulties, which arise in the theoretical description of these processes at higher energies,
can be avoided and consequently spectroscopic factors can be extracted with greater
accuracy.

Almost all the theories used for transfer reactions are based on the distorted
wave Born approximation (DWBA). In the method of Breit et al. [1-3] one calculates
the probability amplitude for a neutron tunneling from the potential well of one
nucleus into that of the other while the two nuclei are at rest. The relative motion
of the two nuclei is described by the DWBA. This method is particularly successful at
energies below the Coulomb barrier. Dar et al. [4-6] developed a diffraction model for
transfer reactions. This model can be obtained from the DWBA if several simplifying
assumptions are made. It can be applied particularly to reactions at high energies,
where the agreement with experiment is in general quite good. A method which avoids
all the approximations connected with the former models is the direct numerical
calculation of the DWBA amplitude [7-8]. But, since the zero-range approximation
used successfully in deuteron stripping reactions cannot be justified for general
transfer reactions, this numerical calculation becomes very troublesome. The reliability
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of such calculations depends furthermore quite sensitively on optical potentials used.

Information on optical potentials describing the elastic scattering of heavy ions from
nuclei is however rather scant. A considerable simplification results from the theory of
Buttle and Goldfarb who, by extending work of Abelishvili [9], restrict themselves to
energies below the Coulomb barrier [10-12]. This leads to radial integrals which can be

easily evaluated.
It is the aim of this paper to show, that it is also possible to solve these radial

integrals analytically, which gives a further considerable numerical simplification.
It will be furthermore shown how the influence of the nuclear interaction can approximately

be taken into account. This extends the validity of the theory to energies in
the neighbourhood of the Coulomb barrier. In chapter 2 we summarize the well
known DWBA expressions which we want to calculate for energies below and in the

neighbourhood of the Coulomb barrier. This will be done in chapter 3. The radial
integrals describing the reaction are quite similar to those occuring in the theory of
Coulomb excitation and can be handled with the methods developed there. This will
be discussed in chapter 4. In the fifth chapter it will be shown how to take into account
the influence of nuclear interaction. This becomes important to energies close to the
Coulomb barrier. In chapter 6 we come back to the case of pure Coulomb distortion.
Using the WKB-approximation for the radial wavefunctions we obtain the so-called

semiquantal and the semiclassical approximations. This results not only in a

numerical simplification but also shows the great similarity between transfer reactions
and the Coulomb excitation process [13]. Furthermore, since the semiclassical
expressions depend only on a few general parameters, it is possible to tabulate some
functions which are applicable to a large variety of reactions. The accuracy of these

approximations will be estimated. Because it is interesting to test the energy
dependence of the reaction we will give formulas for the total cross-section in chapter 7.

In chapter 8 the special case of deuteron stripping is considered. The polarisation of
the outgoing protons in (d, />)-reactions is given in chapter 9. It will be shown that
polarisation measurements well below the Coulomb barrier lead to an unique
determination of the angular momentum transfer /. In chapter 10 we discuss the connection
between our treatment and the diffraction-models of Dar and of Frahn and Sharaf.

Chapter 11 contains numerical results and a comparison between the theory and some

experimental data. In performing these calculations we use a method similar to that
employed in electron scattering and Coulomb excitation calculations for improving
the slow convergence of the sum over the orbital angular momenta.

2. A Short Review of the DWBA-Formalism

In this chapter we summarize the basic formulas of the post-interaction form of
the DWBA for one-nucleon transfer reactions. Consider a reaction of the form

(C + n)+T->(T + n) + C, (2.1)

where a neutron being in a state (lx, mx, jf), goes from the cluster C to the target
nucleus T where it will be in a state (/2, m2, j2). The mass of projectile and target
nucleus are denoted by a and A, respectively.
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Neglecting effects of Coulomb excitation the DWBA T-matrix element can be
written as

Tfi=iW^(rf)Xf\Vnc(rx)\W^(rj)Xi (2.2)

where W^rf) describes the relative motion of C in the final state and WM(rj) gives
the motion of the projectile in the center of mass system. Ays the product of the two
wavefunctions describing the internal motions of the residual nucleus T + n) and
the cluster C while Xt is the corresponding product of the internal motions of projectile
and target nucleus. Thus

Xi ®j\h E <2 an, k ml I jlfh> <JlMl> lcFc I Ip/Xp>

Vcîc X %(£) VA*]) ft, n,Ml) if %U tfj\>

Xf= Qj,h_E <han,hm2\ jilH> <HPi.Jif*i I Jff*f>

x <Pc(£) <Pt(v) ®tt,mjAz) if Xj\ Xi'tPili

(2.3)

where the A^'s are spin functions and cpit Ij and pt{ are the internal wavefunctions,
the spin and magnetic quantum numbers of particle i, respectively. The quantities
6jiii and Bj^ are the spectroscopic factors for the bound neutron in the initial and
final state.

The coordinate system used in equation (2.2) is represented in Figure 1.

Figure 1

The system of coordinate vectors.C T

The vectors are mutually related as follows

r2=r+rx,

rf=r r„ —f A + 1
2 A

(2.4)
a - A + 1 - A + 1 A + 1

Assuming that the masses of C and T are large compared to the neutron mass we get :

A
r A

(2.5)

Under these assumptions we may write for the differential cross-section:

da mf mi f J t j-T- 12

1fi I

(2tzH2)2 k{ J

,-,- (/2 «hi
oc, B I lx I IA E(

mf mf kf ff
(2n%2)2 ~k/J[

j n h

WhhKi

h,l. (2.6)

where we have used the notation x ]/2 x + 1.
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The reduced masses in the entrance and exit channel are given by:
a A la-l)(A + l)mf M mf A M -r ; M 2.7

a+A ' a + A

where M is the nucléon mass.
The transfer amplitude Ff1'™* is defined by

FffC fdrx dr «P<->* (-^ fj 0* ^) Vnc(rx) f^mfrx) T^(r) (2.8)

3. The Cross Section at Low Energies

a) With nuclear distortion

The calculation of (2.8) may be simplified by a reasonable choice of the captured
neutron wavefunction 0* m(r~). While this wavefunction is given outside of the
nucleus by a Hankel-function, we have to choose a suitable wavefunction in the
nuclear interior. A form which has been shown to be quite good for low energies is the
function introduced by Morinigo and El-Nadi [15-17]. So we have

KmM*)
N, G »-*¦ r1' -

"

- Y* (rf for r2 < R

\Nhi-^h^(ixr2)\lmfr2) for r2 > R (3.1)

where the Hankel-function is defined by

hWu xr £-1 £ (*» + *)' X

(3 2)l'y 2!
xr2 k4i k\(l2-k)\ (2xr2y

y ' '

and x is related to the binding energy of the neutron through x (ljK) \/2 m* j Ehin \,
where m* is the reduced mass of the neutron in the exit channel. The quantity Cla is

determined by the matching condition at R, namely

hf)(i xR)e*R
lF<

Inserting (3.1) into (2.8) we get with r -» — r:
da mf mf kf f? »-, - |Y, a Ù

Q. *R ' „J • (3-3)

i /
2 *2

uu
_ „H m, Kf J J AT\2V~2l2

dQ - (2n%2)2 kt /| ^^^ a4 \lx

x yt-r+'-r'1 r1 l% n\ (c, a)Ff";OT2 + mf?»,™*) (3.4a)

with
00 R

a)F7fC= i' drxVnc(rx)fh>mi(rx) f dr xl> ^- Y* mfx) ¥"*(r) ¥"+>(r) (3.4b)
x %

™W y *i *^(rj /»„«.W y * Ag>(< « *) Y£ma(x) !P(-)*(r) y<+)(r) (3.4c)
0 ft

and

* rx — r. (3.4d)
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For the further calculation we have to use addition theorems for the wavefunctions
(3.1). We have [10, 16, 17]:

*'¦ Çr Y't..<*> -4*«£(->*+14 (t)' (zn)'^-

(-K+rt^,)"<i'"J*'"(,'',,>)y^,+*l(r')

*sv»*) n.j«) - i"f»z•*"-'i v (ooV) (L ''l
KM m2pt

(3.5a)

(3.5b)x *£>(» « y) /*(,¦ k y) YiiM(y) YA>„ (f<)
where y and r> denotes the smaller or greater value of r or rx, respectively.

Substituting (3.5) in (3.4), summing over the magnetic quantum numbers,
integrating over the angles and using

looo/1 v2ai/ u U-|o;
we get

da mf mf kf ff
dQ

4n
(2Tin2)2 k, /i {eMBMNv ¦

xE
K, ft

Ct,{N)RtX+(\

where we have used the following abbreviations:
R

(hit* \(c)Rn,ß

(3.6)

(3.7a)

R

{N)Rti =Jdr *"* (y ~y r) ^(+) W Y*„ W ''! ft» ¦ (3-7b)

{C)Rff drW--i* I ~ -r4 + 1

ï/(+)(r) y*yr) {*W(ixr)^„(«) - Xjf>, r)}
with

(r) 2>*(L) ^* {*£'(* « ') 4£>) - *U*. ')>

«*W (")*+M i |?2-^-7iI |/g— A LAI /2^.

*1 2 ^21 1*1 *2 "I \^ V2 k)

LnHo 0 0)/ \000 / '

<*(*) =/* ft(r) H(i x r) <p\(r) rk+i Vnc(r) f,{r)

(3.7c)

(3.7d)

(3.7e)

(3.7f)
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K'Ltk(x,r) jWHixr) \\dr <p\(r)hf(ixr)-hl\ixr) dr^{r)h^(ixr)\. (3.7g)

The summations contained in (3.7) are restricted by the following selection rules:

112 - k - X1 ^I^l2-k + X, \lx-h\ <* <lx + i2,
j lx - k | < L < lj + k | jx - j21 < X < jx + j2, \l2-k\^Lifl2 + k,
lx + k + L even l2 + F + X — k even (3.8)

While the integral (N)Rj'f contains the whole nuclear interaction, (c)i?f? is determined
O I-it t% ' I'll »2 /

by the Coulomb interactions only. The quantity KlLik(x, r) is due to penetration effects
and is negligible at low energies, while the formfactor AlL:h(x) is determined by the
finite-range interaction between the neutron and the cluster C.

The integrals (3.7b) and (3.7c) can be calculated explicitely in this form only for
the special case 1 0 [10, 18]. For the general case it is necessary to introduce the
partial wave decomposition for (F<-'*(r) and W{+)(r). Thus

Wi+){r] AFVE ih^ Xh(k{, r) Y* (kj) Y (r),

'"-" (rfh ') - v,-T'' ''"""" *: ("'¦ TTT ') K-W F-, M ¦ P'"
J /. t

where

al(rl) argr(l+l + ir]) (3.10)

is the usual Coulomb phaseshift and rj{ and rjf are defined by

Zc ZT e2 mf Zc ZT e2 mf
1,1 —F^— ' * —lïk-— ¦ (3-H)

Next we choose the so-called 'incident-beam-coordinate system', in which the .z-axis

is defined by the direction of k{ and the y-axis by kt X kf.
After integrating over the angles one obtains

da
~dQ

a (a - 1) A (A + 1) t M \2 ff K ^ -

(3.12a)

with
R

Qli:\) (h, h, l «) Q, ^ | ^(A'» fc.M™ fc, [r^rrr r r1'

o

\i-\o) kFkJdriC)
R

Xh W<C) Xtf (-r^y ' {*?'(* * ') 4,oM - ^,o («. ')} (3-12b)



Vol. 43, 1970 Nucléon Transfer Reactions below the Coulombbarrier

and

A
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"V ¦ - k¦f (3.12c)

# is the scattering angle in the center-of-mass-system, and I"N)%1, IC,X; are the radial
wavefunctions inside and outside the nucleus.

b) Pure coulomb distortion

For energies, which are well below the Coulomb barrier, the expression (3.12)

simplifies considerably. Since the classical turning point of the projectile is in this case
at a large distance from the target nucleus, the integral containing the wavefunctions
^N)%i(r) can be neglected. Furthermore it is quite legitimate to change the lower
integration limit in the other integral to zero. The radial wavefunctions (c,^( are now
given by regular Coulomb wavefunctions

(C) Xl(r) Fl(kr) e-^^l + 1 + ^)\
/eu i i\ i 2(2/4-1)!

x (2 k r)l+x e-'kr XFX (I + 1 - i rf 2 I + 2; 2 ik r)

Hence we get from (3.12):

da
~dQ ^(ï-Vo)' GA(&>Vi,rifx)

where we have used the following definitions:

16:
a (a — 1) A (A + 1) kf ff M

(a + A)2 k, f
GÀ$, Vt, Vf k) =E\F',À®< Vf Vf *) I2

-

(0^^A)2hï-4>)h2

with

PU»- Vt. Vf *) Z E*-*' n h e'^WW Y (ô, 0)
,7 h fi
% 7

i /,¦ lfÀ\ ill Ifm(Opt-pt) Vt
and

(3.13)

(3.14a)

(3.14b)

(3.14c)

(3.14d)

1.1
ki kj-

F,(k}r)hW(ixr)F,(kfr)dr (3.14e)

The quantity %2 determines the strength of the reaction, while its angular dependence
is given by Gx(ê, r\t, rjf, x).
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4. Calculation of the Coulomb Integrals
In this chapter we want to give explicit analytic expressions for the radial

integrals given in (3.14). We define:
oo

Till tV f Fi/ki ') h^ " ') Fh(kfr) dr
k{ kf

y <*±^i Mr,-1" (*mM4o x(X-n)\n\ (2x)" '*.'' V '

with
CO

Mkp,x TJf\Fh^ ^ Çk F'f M dr ¦ (4-lb)

o

This integral is quite similar to the radial integrals occuring in the theory of Coulomb
excitation [13, 19, 20] and can therefore be handled with the methods developed
there. Throughout this section we make use of the formulas given in the appendix
of [20].

Using an integral representation for the ji^-function in (3.13) and changing the
order of integration we obtain a function, which is identical with the integral
representation of one of the so-called Appell-functions [20, HE. 93]. This function F2 is a

generalized hypergeometric function in two variables [21-22], and is defined in the
neighbourhood of x y 0 by a series expansion.

For (4.1b) we get [23,24]:

V/ ~L »! (X-n)\(2xfx
{h + lf+1-n/ (2/..+ 1)!

x lLrlf+1 + trif)\ e-*i*lV{+nf) {k _-k +i Ky-2 {x)k (_ yf, fh+if-n+n
(2^+1)! /

x F2(l{ + lf—n + 2 f+l + ii]i,lf+1- irtf;2li +2,2 lf+2; x,y) (4.2a)

with

y - ^-fr-. (4.2b)
k{ — kf + i x ki — kf+ i x

The function F2 converges only, if

|*| + |y|<l. (4.3)

Since this is not the case, analytic continuations of the F2-functions must be used.
Such continuations lead to Appell-functions of the argument ljx and 1/y. Two
especially simple analytic continuations can be found immediately. If n 0 and
I. lf=l, we get [20, HE. 96] :

\r(l+l + ir,f)\ \r(l+l + irh)\ ^/k.-kj-ixVOfMff " ^v ' ' "AULA yyyyj "m ;

},*•' (2/4-1)!
K °' \k,+ k

k,-kf+ix\ir>i e-K*/2>a
x ¦ 3

f

k{ + kf — i x (k{ — kf)2 + x2

x fFx (I + 1 - i rji, I + 1 - i rjf; 2 I + 2; x0) (4.4a)



Vol. 43, 1970 Nucléon Transfer Reactions below the Coulombbarrier

with

f 1?/-
T" ß- /2/-

'« ' »
(kt - \)2 + X2

'
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(4.4b)

For the so-called 'maximal matrixelements' (the name comes from the theory of
Coulomb excitation), with lt lf± n, we get [20, HE. 98, 99]

Mr"-/'" ^M2)a r(i+i + i nf)

F(l + n+l + ir]i
\r(n + iÇ)

m (2K

(2n-l) F2(-2n+l,l+l-irjf,l+l + irjf,

k; — kf— i x k, — kf+ ix\n+l-iï,-n+l + iS;^-^ — fi—
- kf-ix\n+is r(l+n+l-irjAr(-n-
"2ki

2 Re \r± Vf)r(i + i-
xF2l — n+l + i£,l+n+l — irjj.l+l + irjf)

k, — kf — i x ki — kf+ ix\n+l + ^£,-n+l+^£¦,^-fi;--,^-fi—) (4.5)

If n 0, equation (4.5) reduces to (4.4). The first F2-function in (4.5) is a

polynomial, since the first parameter is a negative integer. Especially for n 1

we get:

F21 - 1,1 + 1 - i tjf, I + 1 + i rjf; - i f, + i I;

kj — kf—ix ki — kf+ix\ r\fkf — rjj k{ — (I + 1) x
2 F 2ks k,S

(4.6)

Also in this case, the second F2-function in (4.5) can be transformed into a Fx-

function [20, HE. 97], which converges more rapidly than the original function F2,
i.e.:

F2 ii |, / + 2 - irj{, I + 1 + it]/, 2 + i £, i £

_
(kj + kf+ix)1^".

k{ — kf— i x kf — kf + i x
2 F 2 h

2k{
kf + kf— i x(2 kffl+1

x ((k{ + kf)2 + x2)l~^i Fx(-l + ir]f,-(l+l + i Vi), 2,2 +i |;

-)¦xj
(kt - kf)2 + X2 k, - kf

(4.7)
(kt + kf)2 + x2 kt + kf+i.

For the calculation of the other maximal matrixelements we use the symmetry relation

MfjF1'" (Vi, Vf) Mfjf1-« (r,f, nt) (4.8)
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If It + lf+n, we do not get simple analytic continuations of the F2-function. It is

possible to obtain an explicit expression by using equation (HE. 103) of [20], but the
result is lengthy and the numerical calculation of it is rather tedious. Other possibilities
for an analytic continuation are the relations derived by Olsson and Hahne [25-27].
We prefer, however, to calculate the general matrixelement by means of recursion
relations. The existence of such recursion formulas is a consequence of the simple
recursion properties of contiguous hypergeometric functions and of the Coulomb
wavefunction. The use of the two well known recursion relations for the Coulomb
wavefunction

dF (k r) t (I 4- l)2 \
[l^X)- td/r \ kr ArijFfkrj-U+l + irjlFt+fkr)

dF(kr) /I2 \' A =\l + iv\F,-1(kr)-l— + ri)Fl(kr) (4.9)
k dr

leads immediately to the following result:

xi c\,i Mhf+T+*- cko Mk-i-}r - ** % Mhi:}r - * cu Mr:cr

^ [if\i -*)q+x>Tt-xu/+-i-x* {jf + *)q) MhT'x

-_— (xx (If-n) + x2lt- Xn (It + 1) - x, (lf+n+1)) Mfjf2-« (4.10a)

where we have used the definitions:

kiVi kfVf Vx(lFp)
and where the xt are arbitrary constants, satisfying the condition

xx + x2 + Xn + xi 0 (4.11)

Giving these factors appropriate values we obtain the wanted recursion relations.
Starting with the maximal matrixelements Mff* and Mffft we obtain

MfXt 1 {*i Vi (C{, r q MffCt+i - Q, x Mff ") + MfXà ¦ (4.12)
Rf rjf — K{ rjj

l+l X

All matrixelements necessary for the calculation of (4.1) (with /,-, lf and X arbitrary)
can now be obtained by repeated application of the recursion relations (see section 11.a)

Mt+P+i,t Q^+i? (p + n)
Ml+pJ+1 +

C{p (21+f+l-n) _Ux _
(2_l +2P+1)

C\,P+X (P + n) 1+*-x-1 C{p+x(p + n)

x {j+mÄpn+D + « - ttt)) »z&" (4-13a)
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Ti/r— n — 2,x _ "i Vi if' n M-""1'* 4- C* M~n~liX1y i 1 ml+p,t+i r ^t,p+r ml+p+i,l21+1 + p-n
M

and with the symmetry relation (4.8).
A further simplification of the numerical procedure can be obtained by using

recursion relations for the maximal matrixelements.
Using the fact that three contiguous ^-functions are always linearly dependent,

we get with (4.4)

*i M/Xw + z2 Mff + z3 Mff{f_x 0 (4.14a)

with

zx l\l+l + irji\ \l+ l + ir)f\

z2 - (2 I + 1) \l (I + 1) (l - J-j 4- Vt Vf]
>

z3=(l+l) \l + ir,t\ \l + ir,f\, (4.14b)

and where x0 is given by (4.4b).
An analogous relation exists between four i^-functions, i.e.

Fx (a 4- nx, ß + n2, ß' + ns, y 4- «4; x, y)

i(A(x, y) + B(x, y)-^ + C(x, y) ~\ Fx(ol, ß, ß', y; x, y) (4.15)

where the nr are arbitrary negative or positive integers and A, B and C are rational
functions in x and y [18]. For example

Fx(oi+l,ß+ l,ß'+ l,y + 2;x,y)

y (y + 1) \1 x - 1 d 1 y - 1 d

lR p, A
Ffc,, ß, ß', y; x, y) (4.16)

a (y — a) [ß x — y dx ß y — x dy)

Following [22] one obtains

Ax Cq2 ~ A2 CnX
A_1>x Bx C02 — B2 Cox x_Xx

R (l -ï) M< +*-U-l +
RU) M'+V

B0Cg2^ k_x<x B0 C,

"R(l+l)l+"+1-l+1+ R(l + 2)

where the following abbreviations were used:

«,,+.,. >Fi±J!fffF<Fj>+AL{_x^,lFf\ (4.17b)
(y + 2 n + 1) \ k{ J

a X + I + i rjt, ß l + ir)f, ß' l-irjf, y 2l + 2X, (4.17c)

^ r MfffXt+i + ^JTF-oF M/^Ù+2 ° - (4-17a)
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2 kt 2 FXV (4.17d)
k; — kf+ i x kt + kf+ i x

sx P
sx

a/î
x — y

1
x (1 — x)

'

sx_ i / ß' y y - * (a + ß + i) \
x \ x — y 1 — x J

' J3
ßy i-y
x (x — y) (1 --x) ' (4.17e)

S\(x,y;ß,ß') S*(y,x;ß',ß), (4.17f)

(y + 2n)(y + 2n+l) x-1
(y — a — n) (a + n) (ß + n) x — y

Nn(x, y; ß, ß') Mn(y, x; ß', ß) (4.17g)

B, Mn, Cfx, y; ß, ß') Bfy, x; ß', ß) (4.17h)

Ax Mx Mn S\ + Nx N0 SI, (4.17i)

dMn öMn
Bx AV-r±+Mx

dy dx

A2 -M2
dAi ,r~1^ + N2
dx

dAx

dy

B2 -- Mn
dBx--1 + N2
dx

dBx

dy

Cij G- -Cj.

(Nx M0 + Mx N0) SI + M3 M0 SI + Nx N0 SI, (4.17J)

- M2 Bx S*x + N2 Cx SI, (4.17k)

(N2 B, + M2 Cx) SI + M2 Bx SI + N2 Cx SI, (4.171)

(4.17m)

For the further calculation one has to use:

dMn ß + n N„ dMv M„
dx ß' + n x — y dy x — y

5. The Treatment of the Nuclear Interaction

(4.18)

At energies which are in the neighbourhood or above the Coulomb barrier we
have to take into account the influence of the nuclear distortion. In the entrace and
exit channel we choose the wavefunctions

(N)Xi(r) Alul(r) for r < R

iC)Xi(r) ßiil (cosôi F,(k r) + sind, G,(k r)) for r > R (5.1)

where Gfr) denotes the irregular Coulomb function and the ufr) are eigenfunctions
of an optical potential. Both, a square well as well as a Wood-Saxon potential were
considered. These potentials determine the phase shifts r5,. In the case of a complex
square well Az and ôt are given by:

cosô, F,(k r) + sind, G,(kr)
At Ah l- -AVy-yy'—-— 5.2a

R jfk R)
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and

«3 - arctan
{- jli~k R) - —

il~l{% R)) F'{k gLtAJ jl(k R) F'l{k R)
(5 2b)

(ljl(kR)-kRjl-x(kR))Gl(kR) + kRjl(kR)G'l(kR)'
where the jfk r) are Bessel functions with

|/ 2 m*
k2+ -^(V + iW). (5.3)

In the case of a Wood-Saxon potential one can calculate the first few partial waves
by numerical integration while the higher partial waves can be obtained with the
formulas for pure Coulomb distortion.

6. Coulomb Stripping
One of the most important one-nucleon transfer reaction is the deuteron stripping

reaction. The basic formulas for this process can be derived as a special case of
equation (3.12). We assume that the deuteron is in a pure s-state and that the proton-
neutron interaction can be described by a Hulthén interaction of the form

^^„=-7^, (6.1a)

with
%2 i/u I. I

Vn=^n(n + 2F) and a V !M 0.2317 F'1 (6.1b)

pr1 is the range of the nuclear force. Goldfarb [28] has shown that the <i-state of the
deuteron can be simulated if one chooses pt 5,39 a.

The wavefunction corresponding to (6.1) is given by:

/, ^ l/^+ZÜ+Z£^ (1 + e-n (6.2)"
pt2 r

Substituting (6.1) and (6.2) in (3.12), using /, 0 and writing (ln, mf) for (l2, m2),

we get

— - y2 rl Eih'1' h >i w^+'hW y, (ê o) tli lfln) tli lf ln

n

E<n*~s

^Kln(x, ft, a)) + fdr ^%h(r) «fy (-A _
R

x (hf\i xr)- [C)Kt (x, pt, a)) \ (6.3a)

xr -•«
dr^Xt{r)mXt v ¦ j'ttk,k x r s-0i "f



376 D. Trautmann and K. Alder H. P. A.

with

s éi> s'k \ (ol + pt)2 - x2 J (/„-*)!' " n\(m-n)\(2xf V ' '

The correction terms ^Kln(x, pt, a) and ^Kln(x, pt, a) which are due to penetration
effects are relatively small compared to the leading term. This can be seen if one
looks at the explicit expression:

e-[a+ /i)r l„
(N)Kln(x, pt, a) 2Jbln r~s (6.4a)

K r s-0
with

bl"= Y(-F — y y c*
s HK ] k\(ln-k)\n4?o£0 n'm (k + n + s)!

/ a. + pi \ *-*-»// x \*-»~» / x \*-m-n\
(6.4b)

and

<c%n(x, pt, F)
6

ZJOfx, pt, a) cf r~s (6.4c)

with

s(x,pt,F) IJi J^±ü (1 - (-)»+'») + (1 + (-)'+«-)J (6.4d)

The parameter %2 in (6.3a) is given by

n- a (a — 1) A (A + 1) kf n
t2=16n -A 1 y—L± fl JA m B(x) N, )2, (6.5)Z

(a + A)2 kt ff V '»''" w V ' v y

where the formfactor B(h) due to the finite-range neutron-proton interaction is

nt \ to /2a(c( + /i)(2oi4/()B(x) (2 a + p) — —— — (6.6)
(a + pt)1 — xL

If the energy of the incident deuteron is well below the Coulomb barrier we can write:

-ffQ y Gtß> Vf Vf *)
2 E \Fin,™Sê> Vf Vf «) I2 - (6-7)

mn

where we have used the definitions (3.14c) and (3.14d).

7. The Semiquantal- and Semiclassical Approximations
If we restrict ourselves to energies well below the Coulomb barrier we are allowed

to replace the radial wavefunctions describing the scattering process by their WKB-
approximation. If we do this, we get for (4.1), using the results of [20],

-f-oo

F\'ft ~ —yj- / ei<r"Sal,"+*w) h[1) (ig (1 + e coshco))

—oo

(coshw+e + i\/e2-lsinhw)" 1
X

(T^oshz^ l^ -- dm IW hjE' *' l 9) ' ]
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with
CO

IX/i (e, i, ô£, Q) h{l\i g (1 + s coshco)) q (1 + s coshco)

|/e2 — 1 sinhw \
— dm

s + coshw /
Hereby we have introduced the dimensionless parameter q which is defined by

V
q x ac x —-,

¦ill

x cos f e sinhco + f co + pt arctan (7.2)

(7.3)

M^Mt?)
=0

[=0,8

bx V
/ c/

1=1,6

b _• -.
c^-

' .'/

180

Scm

Figure 2

The radial integrals 1^ ^(ê, |, <5f, o) with A - 2

as a function of #. The {-values used for the
integrals are indicated in the figure. The curves
labelled by a, b and c were calculated with /j,

-2,0, +2 respectively. The g-value used for the
curves is q 3. r5f 0.

where ac is half the distance of closest approach in a head-on-collision.
Furthermore we have

f f + <5f (*f - Ä7) a.

with

«
a — n k

where n is the mass of the transferred particle.

"/ "i and g -frf + 1(1 + 1)
V

(7.4a)

(7.4b)

(7.5)

Finally rj, k and / are suitable averages of (r/t, rjf), (kt, kf) and (/,•, If), respectively. For
the calculations presented in this paper arithmetic averages were used throughout.
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In the case of (d, />)-reactions where {'~-| equation (7.1) is almost equal to the
approximation given by Lemmer [29]. While this approximation agrees quite well
with the exact calculation for backward scattering angles, the approximation (7.1)
is the better one at small scattering angles.

Substituting (7.1) in (3.14) we get the so called semiquantal approximation.
A further simplification can be obtained by the so called semiclassical treatment,

a method well known from the theory of Coulomb excitation [13].
In the semiclassical approximation equation (3.14d) goes over into

pu*, m. Vf «) - H" !ndbs/2exp {* (2 ' (log sâj2 - ')

+ y)}zv.(t. °)*-»-.(t' t• ^K-0. *.#.«?>. <7-6>

as will be shown in the appendix.
The integral I^Jfi, f, ÔÇ, a) in (7.6) is given by (7.2) but now the quantity e is

defined by
&

s sin-1 — (7.7)

With this definition it is clear that I^M, |, <5£, g) depends now on the scattering angle.
Using the unitarity-relations for the Z)-functions we get for the differential cross-

section :

da I da \
dû \ dQ J R

where

da \ 1 &
-— - a2 sin-* — 7.9a
dQJR 4 2

K

is the Rutherford cross-section and

pm tE (i_fo)2 ß^' f•^e) (7-9b)

gives the probability that a transfer reaction will occur, and where we made furthermore

use of the definitions:

_ Mo-iM(,4 + l) ^4 /_^ M yZ
(a + ,4)2 k{ /| \ ft2 Zl"W Äx ?'(l '!'! 'V

with

/(e) e"* K0(q) (7.10b)

and

4 jr.
B#, I, «, e)

(f(e)Y
-E\YK-»{n2> o)/,„„(#,f,<5f,e)I2- (7.11)
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We have normalized the function Bx(&, £, ôÇ, g) such that

B0(tt, 0, 0, e) 1

379

(7.12)

Thus the quantity yf is a measure for the strength of the reaction while its angular
dependence is determined by the function Bx(§, f, <5f, e)-

In Figure 2 we have represented the integral />,,,($, f, ôÇ, g) for X 2 and pt

— 2, 0, 4- 2 as a function of &, f and e with ÔÇ 0.

Brfftij*i,s) *y
Q9 //s=3

-- I 0,8 ///..-I 1 /
0,6

1 ' ' S=3

// '
//// ?=3.-

///'/A/ '
0,3 / / ' ¦'

//// / ^-f/i.
/ '// /'

J^£y
60 120 180

3CK

B, (Q.IMX)

5 2

^/j=3

180120

CM

Figure 3

The function B^(ê, £, <5f, q) with A 0 as a function of ê. The different curves correspond to the
g-values 2, 3 and to the f-values 0, 0.4 and 0.8. <5f 0.

Figure 4
Same as in Figure 3, but with A 1.

The integrals are strongly backward peaked and their absolute value decreases

rapidly as £ increases. Figures 3-5 show the function BA(&, £, d£, g) for ^ 0, 1, 2

and for different values of e and f as a function of ¦& with ôf 0. These functions have
the same qualitative behaviour as the integrals in Figure 2. Since the values of g and |
are quite similar for different reactions, the functions BA(&, £, ô£, g) given in Figures
3-5, can be extrapolated for a large variety of reactions.

At this point it is interesting to consider the accuracy of the semiclassical

approximation. Comparing the parameters defined by equations (3.14b) and (3.14c)

with those defined by (7.10a) and (7.11) we find:

_ \Ankx
1

f(e) x (7.13a)
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and

GA&,Vi'Vf*) da\ /f(g)\2 m.S.tt.Q)
dQ 1 p \ k x 4n

(7.13b)

20 H*>\t\>$

r-y
15 — - 1 | 0,4 /— ¦ J *

0,8 /
/ ?*2,.

/ ^ J^^/ /A=*
10

1 t / *""'/'''"/ * / '/ / / // / / /
5 //// >°l-

//// x-^SfS/ ' /' "/ ' A ' y/' /'¦''/' /'S s/t'sP '^ç£*&'
60 120 180

Figure 5

Same as in Figure 3, but with A 2.

'CM.

We may now define a relative error between the exact calculation and the semi-
classical approximation by

Ex(&, rt, I, OS, g)
Gx(&,r,i,Vf,x)-Gi<(û,S,ÔÇ,Q)

G#> Vi, Vf x)
(7.14)

where Gf(§, f, ôÇ, g) stands for the r.h.s. of equation (7.13b).
In Figure 6 we have represented this function LA(#, t], |, ô£, g) for different values

of e and #asa function of ljrp2. It is evident that the relative error goes with Ijrf
to zero if rt goes to infinity. Hereby we have chosen X= 1 and f f 0.5. A further
calculation shows that X as well as £ and <5f have only a small influence on the error
function.

In general we may write

Ex(&, rj, f, ÔÇ, g) =£cn(#, |, OS, g) r,-" (7.15)

where the coefficients cn(&, f, d£, g) can be extrapolated from Figure 6. Therefore we
have approximately:

(*L) *(-*) (i c,(fl, f, ag,.e)

?72
)¦ (7.16)
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qao

Q25

Q20

0115

0,10

1 Ii /
/ i /yo,5 / // / ,' s

' / //' / ?=3 ,'//1' / '->'

,'/// ',' ^~*~-" _ -_r-^ '-¦ " ' 1 100

ELteS^***"' — ™
,80

e^*^-
0,01 0P2 0,03 0,04 0P5

Figure 6
The relative error Ex(ft, rj, J, <5{, g) between the exact calculation and the semiclassical approximation

is shown as a function of l\rf. The curves were computed with A 1 and different values
of û and q as indicated in the figure. The dashed curves for Ijrf < 0.004 are extrapolations of the
computed curves. The f- and f'-value used is f f 0.5.

8. Total Cross Sections

In order to investigate the energy dependence of the theory it is interesting to
calculate the total cross-section. With the definition

f do
°M ~ J 1Q

we get with (3.12)

dû (8.1)

16 n
a (a - 1) A (A + 1) kf ff I M

(a + A)2
f HI
i Jl \

0, t O,- ; Nt/1*2 /2(2 *S

yi'i-'i t$ li ei^if>i)+''ift))SijFfAi'E
> \2 2 U/ it,lt
It If AW It If X\
ooojyopt-fijU1*1'^'1*'*'* (8.2)

In the case of pure Coulomb distortion we have to use the radial integrals given by
(3.14e) and in the semiquantal approximation by (7.1).

In the semiclassical approximation we get with (7.6)-(7.11):

<*?(fto),|W-*«'
with

HM. OS, g) kJ^^ B&. S, ÖS, g) dir

(8.3)

(8.4)



382 D. Trautmann and K. Alder H. P. A.

WW
^ 0

5=3,5

04 0,6

HiQÄJJ

0.8 1.00,2 04

Figure 7

The function /yf, <5f, g) is shown for A 0 as a function of f. The different g-values used are
indicated in the figure and <5£ 0.

Figure 8

Same as in Figure 7, but with A 1.

Some of these functions HfS, oS, g) are given in Figure 7-9 for different values of
X, S and g with OS 0.

In the case of X 0 we can calculate the /^-function explicitly. Following [23,29]
we write:

/0)0(#, S, OS, g) exp /- g - S arctan
^ \ Kis (e ]/g2 + S'"1

Using the integral formula of Lommel [30]

z

JCß(k z)dz=Ç \cl(k z) (l - -iA) + C>*(k *)}

where C is any kind of a cylinder function, we get

2 ~ g-21 arctan (I7s)
Hn(S,ÔS,g) -

(8.5)

(8.6)

Kt(g)

H1 + -JTw) K^2 + r2) + K»(^2 + f2)} • (8-7)x 1 +
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(W

Figure 9

Same as in Figure 7, but with A 2.

9. Polarisation Effects in Deuteron Stripping Reactions

The theory presented in chapter 6 is of course also capable to predict the polarisation

of the outgoing proton in a (d, />)-stripping reaction. All measurable quantities
in a nuclear reaction can be expressed in terms of the density matrix

Qt m, l'
70, 0 pO, 0 *po, 0* (9.1)

where in our case F°'° is given by equation (2.8), or in terms of the statistical tensor

Qk,q(W) =E(-)l'~m' <lm-1' - m' \kq>Qlm,vm' ¦ (9-2)
m, m'

The differential cross-section is proportional to eo,o> while the vector polarisation is

proportional to g10. Assuming the incident deuterons and the target nuclei to be

randomly oriented and assuming that the orientation of the residual nuclei is not
measured one finds [31, 32] :

4 u - I ¦
E^ln + m)(ln-m+ 1) Im (Ff^^F^J

PiM rr ,""¦ ,t — rv^ ^r-r, (9-3)
3 (2/.+ 1) T\Fi Ff

where we have used the definition (3.14d).
Equation (9.3) is only valid for the case of pure Coulomb distortion. At higher

energies nuclear spin-orbit interactions must be taken into account.
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10. Transfer Reactions in the Diffraction Model

In this chapter we want to discuss the relationship between the results obtained
in chapter 3 and 4 and the diffraction model developed by Dar and extended by
Frahn and Sharaf and by Suzuki [5-9]. In this model one starts from the general
DWBA expression whereby the distorted waves are determined by their asymptotic
behaviour. The absorbing effect of the nuclear interaction is taken into account by
means of parameters at which are given by

+ ir-^jg(l) (10.1a)

with

g,= (l + expAAj (10.1b)

where I are the orbital momenta of the in and outgoing particle and A and t are
arbitrary constants fitted by the experiment.

In the entrance and exit channel l0 is given by

#' -~j Kf R„f y I Hf\ with Hf x - h \f (10-2a)
I Xi.f 1 Ri,f Ki,f

and

Rt rn (A1'3 + a1'3) Rf r0 ((A + w)1'« + (a - »)«3) (10.2b)

where r0 is a further arbitrary constant.
Hereby we have modified the original ansatz given by Dar [5] in such a way to

include also reactions where xtf < 0.

In the case of a one-nucleon transfer reaction we start with equation (3.14) and
get, using (10.1):

da

with

y2
dQ l EttillY^W'Vi.Vf*) (10.3a)

^ \ 2 2 /

Gf" (&, rjt, rtf, x) X2£ £il~lt t2 Î, e^^+W
f kft

(10.3b)

In the case of a multinucleon transfer reaction we have to multiply every function
Gff,(&, rjt, rjf, x) with a structure factor |A which depends on the special reaction
considered. The formulas for these factors for various reactions can be found in [33].
Instead of using approximations of (10.3), based on the localization of Gf/f(&, rjt,rjf, x)
in orbital momentum space, we may directly calculate this expression using the
results of chapter 4.
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'2Ca(t,p)"Ca

E, =12,1 MeV
L 0

100

mb

der

dn Figure 10

The differential cross-section of the reaction
42Ca(r, p)uCa. for a bombarding energy of Et

12.1 MeV is shown as a function of #. The
curve was calculated with the diffraction model

(equation(10.3)) and the experimental
values are taken from [34].

40 80 120 160

CM.

In Figure 10 we have represented as a typical example the reaction i2Ca(t, /)44Ca
[34] at a bombarding energy of 12,1 MeV. While the fit given by r0 1.05 fm, A 0.25

and t 0.8 is quite similar to the one given by Frahn and Sharaf, the spectroscopic
factors extracted from the two models differ by a factor 1.5.

Calculations of other reactions are in preparation.

11. Numerical Results and Discussion

a) Calculation of the Coulomb integrals

Here we give a brief survey of the numerical procedure leading to the radial
integrals (4.1) necessary for calculating (3.12).

Point of departure are the maximal matrixelements with X 0 and X 1.

Starting with equations (4.6) and (4.7) we first calculate Mff;", Mf\x and Mf2'",
M2,i"> Mz,i" and subsequently by using equations (4.18), (4.21) and (4.11) the other
maximal matrixelements with X 0,1. From equation (4.15) we obtain Mff'j and

: obtain all the matrix-elements
If. Next we deter-

Mffv\. Putting in (4.16b) n 0 and p 1, 2, 3,

M -i,'i+p+i,i satisfying the triangular condition | /,- — L | FjX ^lt
mine all integrals Mff'x by using equation (4.16a) with p n 0, and all matrix-
elements Mffpx+h, by putting in equation (4.16b) n 1 and p 1,2,3, Together
with equation (4.11) we obtain by repeated application of equation (4.16) all those
matrixelements which are necessary for the integral T\;*,.

h) Calculation of the reaction amplitude
A difficulty arises in the determination of the reaction amplitude (3.14d) because

for large values of tq a large number of angular momenta contribute to the sum and the



386 D. Trautmann and K. Alder H. P. A.

convergence is very bad. The convergence can be improved by means of a method
which is frequently used in electron scattering [35] and Coulomb excitation calculations

[36]. The reaction amplitude (3.14d) is of the form

F„,ß(»,Vi,VfX)=Eci,MYiJ#-°)- (1L1)
t

It is now useful to define a new coefficient dff so that we can write for the reaction
amplitude:

FzJê, rjt, rtf, x) - -L-^JTc« Y,J», 0) (11.2)

where the new coefficients cf are connected with the y by a simple recursion
formula.

By repeated application of this formula (e.g. k times, with k ~ 3-5) the number
of angular momenta necessary for the computation of F!ß(§, rjj,rjf,x) can be
reduced considerably (in our case by a factor of about 1/3) and the convergence
becomes very good. The recursion relation for the coefficients is given by

,(*) y-i) / V + AV-/*) V» c»-x)cl,ß '•" \ (21+1) (21-1) J l-1'"

ni+i + Ll)(i+i-tf) Ai2

\ (2 l+3) (21+1) j f+A- (11.3)

c) Comparison with experiments

a) Heavy ion transfer reactions
As a typical example of a one-nucleon transfer reaction we have chosen the well

studied 14N (13N, 13N) 1BN-reaction [37] with (lx, jf) (1, 1/2) and (l2, j2) (1, 1/2).
In Figure 11 we have compared the exact calculation with pure Coulomb distortion
with the two corresponding approximations discussed in chapter 7. The three curves
were calculated with equations (3.14), (7.1) and (7.8), respectively. The exact curve
is quite similar to the one derived in a somewhat different way by Buttle and Goldfarb

[10]. We have taken into account the identity of the two 14N in the entrance
channel by the method outlined in [10]. From the exact calculation and the
experimental data the spectroscopic factor (6-, 0/2;J2 0.217 was obtained. The semi-

quantal and semiclassical calculation were performed using the same spectroscopic
factor. It is evident from Figure 11 that the semiquantal and to a somewhat lesser

degree the semiclassical calculations approximate the exact theory rather well.
Figure 12 demonstrates the influence of the nuclear distortion. Combining equations
(3.12) and (3.7e) one finds immediately

L\i0(x) (l+—)-- AltX(x)\ + - Klfx) -K\}0(x). (11.4)
[ \ x r / r ' j r

e-"r { F 1 \ 1 .1 1
SAr)

xr
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Figure 11

Angular distribution of the reaction 14N(14N, 13N)15N at ECM 6.62 MeV. The exact curve,
calculated with equation (3.12) by neglecting the nuclear distortion is compared with the
semiquantal and the semiclassical approximation. The experimental values are those of [37].

Figure 12

Angular distribution of the reaction 14N(14N, 13N)15N at ECM 7 MeV and ECM 8 MeV. The
influence of the nuclear distortion is shown. The full line gives the calculation for pure Coulomb
distortion, while the dashed curves include the effect due to nuclear distortion. The experimental
values are taken from [37].

It is easy to see that for the present case the correction terms K\x(x) and K\0(x) can
be neglected. With the help of a recursion relation for the spherical Bessel functions
and using the fact that A\0(x) is in a good approximation proportional to x [10] one
obtains

&M
x r A\M (-+-) (11.5)

By means of equation (11.5) the lowest 3-5 (depending on energy) partial waves of
(3.12) were calculated. The higher partial waves were obtained using the formulas for
pure Coulomb distortion. For simplicity the distorting optical potential was chosen to
be a complex square well with V - 50 MeV, If - 30 MeV and R 7.2 fm for
both the entrance and the exit channel. Furthermore we have calculated the nuclear
distortion with the help of the diffraction model (equation 10.3) with r0 1.95,
A 1.6 and t 0. Figure 13 shows the total cross-section calculated by means of
equation (8.2).
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ß) Deuteron stripping reactions

Figures 14-16 show some examples of deuteron stripping calculations. Figure 14

illustrates the validity of the semiquantal and semiclassical approximation in the case
of the 209Bi(d, p)210Bi reaction [38].

It can be seen that these approximations are not quite satisfactory. This is due
to the fact that the value of öS is much greater than for heavy ion transfer reactions.

In Figure 15 we have repeated the calculations for the reaction la8Ba(d, ^>)139Ba

[39], for different bombarding energies and Ç-values. One sees that at low energies all
three curves which were calculated with the same spectroscopic factor represent the
angular dependence quite well, while their absolute values differ considerable. At
higher energies nuclear distortion effects become important. This can be seen from
Figure 16 in which the dashed curve represents a calculation for one of the ln 1

transitions in 138Ba in which a square well with Vd ¦ 80 MeV, Wd - 56 MeV,
Vp - 48 MeV, Wp - 52 MeV and R 7.4 fm as well as the diffraction model with
r0 1.8, A 1.1 and t 0 was used to simulate nuclear distortion. Thus nuclear
distortion has the effect of reducing the differential cross-section at backward angles.

wN(ttH"N),5N /y-i
--f

without
witn nuclear interaction

mb/
sr

¦ol-o

— exact
— semiquantal

• — semiclassical

6 8 10

CM.-ENERGY (MeV)

209

MeV

203

120 150 180

9C.M

Figure 13

The total cross-section is calculated for the reaction 14N(14N, 13N)15N for pure Coulomb distortion
(full line) and including nuclear distortion (dashed curve) as a function of the center of mass

energy. The experimental values are taken from [37].

Figure 14

Angular distribution of the reaction 209Bi(rf, p)2WBi at ECM 8.0 MeV and for /„-values l„ 0, 2,4.
The exact curve due to equation (3.12) is compared with its semiquantal and semiclassical
approximation. The nuclear distortion is neglected. The experimental values are taken from [38].
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m

10-
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Q 2.492 MeV
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7MeV

r-i
6MeV

5MeV

gl-g

-without nuclear distortion
-with optical model
with diffraction model

E 6.5 MeV

A-fi'FYTT--t,i-_2±-i

E=55MeV

,38Ba(d,p),39Ba

Q= Uli MeV
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120 150 18090 120 150 180 0 30 60 90

9cm. 9cm.

Figure 15

The same as in Figure 14, but for the 138Ba(^, p)139Ha reaction at ECM 5, 6 and 7 MeV and with
ln 3. The experimental values are those of [39].

Figure 16

The influence of the nuclear distortion is shown for the 138Ba(rf, ^>)139Ba reaction at Ecij ¦¦ 5.5 and
Eçm 6.5 MeV and with /„ 1. The full line corresponds to pure Coulomb distortion, while the
dashed lines were computed with nuclear distortion.

It is clear from Figure 16 that inclusion of nuclear distortion improves the agreement
with experiment considerably for energies close to the Coulomb barrier.

y) Polarisation calculations
To our knowledge there exist no polarisation experiments for deuteron stripping

reactions below the Coulomb barrier. In Figure 17 we show the predictions of our
theory for the 209Bi(<i, p)210Bi reaction.

The influence of the transferred orbital angular momentum on the polarisation is

shown. The similar behaviour of the polarisation curve for different values of /„ at
backward angles is remarkable. The ascent of the curves is linear at § ~ n and
proportional to the value of ln. It thus appears that in this region the polarisation is

proportional to the derivative of dajdQ. The dependence of the polarisation on the
transferred angular momentum jn (i.e. jn l„ + 1/2) is given by the well known
expression

I
-In+i' K (11.6)

4+1
Hence if the polarisation below the Coulomb barrier can be measured the value of jn

can be determined in an unambigious and model independent manner.
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Figure 17

The influence of the orbital angular momentum of the transferred neutron on the polarization is
shown. All three curves were calculated by means of equation (9.4) without any nuclear distortion
for the 209Bi(a!, ^>)210Bi reaction. The center of mass energy was assumed to be 8 MeV and the
yvalues taken were l„ 1, 2, 3.
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Appendix

Here we give the derivation of the semiclassical formula (7.6). Starting point is

equation (3.14d)

FKlJ@, Vi, Vf x) Â-E h % ei{a^%)+ai^l)] i''~'t

X'o)(o^X(*'°,T«' (A.l)

in which we insert the following expressions for the 3-/-symbols, the Coulomb phase
shift and the spherical harmonics, applicable if l;, lf ^> X, 1 :

lt If X

m{ mfpt

(~)h+ml ru
-, K,^ (o.ß.o)

m,

l/ (A.2)
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and

afrj) Im log/1 (I + 1 + irj) ~\l -\ I arctan —

\ 2 j I + 1

+ | log ((I + l)2 + rf) ~ V A 0 (- (A.4)

We have used the definition of Edmonds [40] for the D-functions. We substitute in
(A.l) the radial integral by its WKB-approximation (7.1). Using average values for
the physical quantities appearing in (A.l) we obtain:

x <-„ (| <*X* (f) exp \i(2l+l- m) arctan -^L-

+ rj log ((I + I)2 + rj2) - 2 rj) J ^i— /a, m(e, S, OS, g) - (A.5)

This expression can be evaluated by the method of steepest descent [41], whereby
the sum

f 2jA(l)eiBW. (A.6)
t

is approximated by

/^(/:0)j/X^<«. (A.7)

The quantity ß in this last expression is given by

1 d2B(l)

t-h
ß

2 dl2

and /0 is determined by

dB

(A.8)

dl
0 (A.9)

l-L

In our case equation (A.9) leads to

l0+ 1 ^cotan —. (A. 10)

Using (A.7) and (A. 10) we get from equation (A.5) after some trivial calculations the
desired result (7.6).
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