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Four-Particle-Two-Hole Core-Excitation in Heavy Nuclei

by U. Götz, J. Hadermann and K. Alder
Seminar für theoretische Physik der Universität Basel, Basel, Switzerland

(23. II. 70)

Abstract. Four-particle-two-hole core-excitation in heavy nuclei with two nucléons outside
the closed shells is investigated by including the highest core orbits into the configuration space
of a shell-model calculation. The core-excitation is supposed to be effected by an interaction
between core nucléons and valence nucléons which is essentially the same as the well-known
residual interaction between the valence nucléons. The nucléons in the core are assumed to be
excited only in pairs coming from the same core orbit. Therefore, the angular momentum of the
core is always even.

For the description of core-excited configurations in second quantization formalism an
orthogonal system of four-fermion operators is constructed. Using a phenomenological interaction
potential with appropriate spin-spin and tensor parts and restricting to excitations with core-
spin 0 energy levels and transition probabilities of the nuclei Pb206, Po210 and Hg206 are calculated.

1. Introduction

Low-lying energy levels and transition probabilities of many nuclei with two
identical nucléons or holes outside or inside the closed shells can rather well be

reproduced by assuming a phenomenological residual interaction between the valence
nucléons, and by treating the completely filled closed shells as inert core. Thus the
calculation of the energy levels of Pb206 by using a simple residual interaction with
appropriate spin-spin and tensor parts yields the correct sequence of the lower nuclear
states [2].

In the last years it has become clear from experimental and theoretical investigations

that the core nucléons are not quite unaffected by the residual interactions and
that the excitation of these nucléons to outer orbits can play an important role.
Especially the effects of 4-particle-2-hole core-excitation can be so great that treatment

as perturbations does not seem to be convincible [21].
In Reference [1] we presented a short review of a simple model which allows to

account for 4-particle-2-hole core-excitation by direct extension of the configuration
space. We are giving here a more detailed representation of this model together with
the application to the nuclei Pb206, Po210 and Hg206. Although the core-excitation
effects in these heavy nuclei are less pronounced than in light and medium heavy
nuclei, Pb206, Po210 and Hg206 offer the advantage that proton shells and neutron
shells are well separated. Thus we need not deal with excitations of non-identical
nuclei. Also the violation of translation invariance, which is a common feature of
shell-model calculations, but can become even more important in a model where many
core nucléons are considered, is less serious in these heavy nuclei.
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In section two the physical model and its approximations are described. In
sections three and four the Hamiltonian is introduced and the secular matrix and
electromagnetic transition probabilities are calculated. The interaction potential and
numerical results for the nuclei mentioned above are discussed in section five.
Concluding remarks and a discussion of Ni58 can be found in section six.

In the appendix the most important relations of two- and four-fermion operators
and some details about the construction of the base functions of four-fermion systems
are stated. The notations and abbreviations which are used in the text are also quoted
there.

2. Model for 4-particle-2-hole Core-Excitation

We extend the configuration space of the shell-model calculation by including
the highest few orbits of the core, and permit to one pair of nucléons in any of these
orbits to jump out from the core to the valence orbits.

For this excitation process we make the following approximations:
- The configuration space of the nucleus consists of three kinds of orbits,

the outer orbits or valence orbits, which are considered in usual shell-model
calculations,
a number of core orbits whose nucléons may interact with the nucléons in the
valence orbits
and an inert core, not taking part in core-excitation.

- The core nucléons are excited only in pairs coming from the same core orbit, but
they may occupy different outer orbits after excitation. Thus the excitation of
single nucléons from the core is neglected.
The nucléons remaining in the core are always coupled in pairs of total angular
momentum 0, except for one pair which takes up the recoil angular momentum
of the excited nucléon pair, i.e. the spin of the core.
An important consequence of the second approximation is that the angular

momentum of the core must always be even, since Pauli's principle permits only even
values of the total angular momentum of two identical nucléons in the same state.
It is shown in [1] that at least for pure configurations the effects of excitations with
core spin 4 are small compared to those of excitations with lower core spins.

The validity of the approximations is discussed further in the following sections.
But we point out here that they are based mainly on physical arguments and are
introduced in order to reach some mathematical simplicity, and therefore cannot be

satisfactoring in all cases.
The total spin I of not core-excited configurations is the sum of the single-

particle spins of the two outer nucléons (the angular momentum of the completely
filled core is zero), whereas in core-excited configurations it is the sum of the core
spin R and the total spin of the four nucléons in valence orbits, A :

I=R+A.
As in [1] we denote the quantum numbers of outer orbits by lower indices,

those of core orbits by upper ones. A bar over the respective quantum numbers
indicates both kinds of orbits.
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3. The Base-States and the Hamiltonian

The base states of not core-excited configurations are given by

j j[ j'2 F m',o> Bf,m,(j'x ff) r^2 f] B+(f /<)»' | 0 > (1)

i-l
where cai denotes the number of nucleon-pairs that can be placed in an orbit of spin f,

2 j' + 1 f 2

and a indicates the number of core orbits considered. The operators Bf~m,(j'x jf) create
one pair of nucléons with single-particle spins j[, j'2 and total spin I' with magnetic
quantum number m' (see appendix).

Since the states Bf,m,(j[ jf) |0> form an orthonormal set and are orthogonal to
the core functions, the normalization of the base states (1) is determined by the scalar
product of the core functions, (A14) :

" "^-1 / k \
^=/7K')/7 i--y • (3)

i-l ft-1 \ mi I

The base states of core-excited configurations are chosen in direct relation to the
core-excitation Hamiltonian described below. We construct them by applying the
operator BRM(j" j") on the states (1) for all possible values of q and all possible
core-spins R.

The correct orthogonal and normalized base functions can then be chosen as
follows :

h ii is Ji(AaRq) Im,a} ß"1'2£ <A X R M \ I my
IM

r>;k (k u h n) BfM (f j") B+(f /«r* -2 fi B+(f fp i o >. (4)

The orthonormalized four-fermion operators Dia(/i /a /s it) are defined by

E>jua(/i h h ii) EdASâ(ii u is ii) dm (h iis, u iis') > (5)
SS'

where

DUh h S, h U S')=2J<SvS' v'jA X> BtGi h) B+Ah U) (6)
v v'

and the ds/'a(jx j2 j3 jf) are orthogonalization coefficients (for further details see

appendix).
Since we are not directly interested in the nuclear states which consist mainly of

core-excited configurations, we could attempt to describe the four-fermion states by
boson-pair operators (Boson approximation [22]) and thus reach greater mathematical
simplicity in the following formulas. But an important advantage of the consequent
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use of Pauli's principle is that it reduces the size of the secular matrix, since many
4-particle states which can be constructed in the boson approximation are not
antisymmetric and are thus forbidden. We therefore prefer to construct a complete
orthonormal system of antisymmetric base functions.

In (4) the spin R of the core is carried by a nucléon pair in the orbit q from which
an other pair is excited to the valence orbits. It is combined with the total angular
momentum A of the outer nucléons to form the spin J of the nucleus with magnetic
quantum number m. The number a is the same as in (1). The normalization, Q, of
these states results from (A16) and (A17):

yy / i v

(««-i)i/7 \l > « Ä-0" mi~1 / b \m=n ko /7(i —i*q k-l \ f°i I

1^1

cy-1 / l
(7)

«£-1 / l v

2)! 77 1 if R * 0.

The Hamiltonian is devided into five parts

H=Hn + H' Hn + H[ff + Hfe°;e) + HCE + H". (8)

H0 represents the mean shell-model potential with single-particle energies e-,, which
is diagonal in the above system of base states,

Ho=Zfe1A + (H). (9)
t

The general residual interaction H' may be expressed as

H'=Z GK(iahU>n)B+ßJfBKAla,ib,)2A(uibia,~n), (10)
Kß

ia> ib, ia> it!

where G^is the antisymmetrized matrix element between the coupled states \jajhKpt~)
and \ja.jb,Kpi> [2].

We retain only three parts of H', namely the residual interaction of the valence
nucléons between themselves

H%? 2 X GK(jajbja,jb,)B+fl(jajb)BKfl(ja,jb,)A(jajbja,jb,), (11)
K ß

ia>1~b,ia'>h'

the interaction of nucléon pairs in the core

HrT] 2TGK (?V f jF f") B+ (,V f) BKll(f f") (12)
Kß

ji'F"
and the core-excitation interaction

HcE 2 Z GK (la' iv f f) Bfß(ia> h) Bgrf* f) )/2^ö~, + h.c.. (13)
K ß

la' > ib', jl
The term H" summarizes the various other processes that are neglected in our model.
These restrictions are in accordance to the choice of the base states. In the following
(11) and (12) shall be designated as residual interaction, not including core-excitation

(13).
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We consider first the term HCE. Since the orthogonalization procedure of the
base states cannot be inverted, the matrix elements of HCE must be calculated by
decomposing the base states of core-excited configurations into their non-orthogonal
constituents

l/i u Ü U (A' X' S S') R' M' q',o> ß-i'2 D%Ai[ f2 S, fa f4 S')

Btrwtf i"') W f'Y«-* fi Boo(f ÏT* 10 > (14)

(cf. equation (4)) and by calculating the following expressions from (A13) and (A24):

BKli(ff)\JlflI"m",o> (15)

and

BKßa: fb) i/; /; /; /; (aa a s so r~ w q',a>. m
The further evaluation can be made with help of equations (A11)-(A17). Then
reintroducing the orthogonalization and the coupling of the spins of the valence
nucléons and the core, we get

<fi fi ,3 /i (A' a' R' q') F m', a\HCE\ j{ /» I" m", <r> (-)Vo àpp ôm,m„

x 2 jf \UM <w Ai^FL y^ö^rjRA"; (u fi f u) gr, (f f, f f)
1 lA **)'iii"iifi

+ {/;-/a + {/s-/;}+{|n|)
-àrjtàrirj2-ôrJ^GR.(fiiii9'i9')

- (-f+* àm ô,,r, f2FFJffYi %% Gri {fi ü jV ?V)j (17)

The 'recoupled' orthogonalization coefficients /5'£'(i'x i'% /3 j'f) are defined in (A32).
The residual interaction matrix elements of not core-excited configurations are

well known. We have

</I f2 F m', a \H%? + Ä&"' | f[ j"2 I" m", ay

<W <W (2 A (fx f2 H ff) GAfi fi f{ il) + om bm Ê (18)

where the contribution of the completely filled core,

E=2£]TL2GL(j<j<j<ji), (19)
i-l L

even

is only a renormalization of the total energy and may be omitted together with a

similar term in the matrix elements between core-excited configurations.
In order to calculate the contribution of the outer nucléons to the residual

interaction matrix elements of core-excited configurations we must first determine by
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(A26) the scalar products between non-orthogonal states of the type (16). Then, by
introducing the orthogonalization coefficients (A28) and (A32) and the coupling of
the spins of the valence nucléons and the core, we get

<fi fî fi H (A" a" R" q") I" m", a \ H™ I /i f Ü Ù (A' F R' ?') I' »', a >

2 <W <W *a>a- <W <W (Tx +F2+ T3) (20)

where

Ti E (««s ha Wz fi Ü il) GM il /i il) d%a. dfa.

\L+S+ A' |?1 <~>'1
+ i-)L+S+A'\l^3 dLA-dfa.

h<->h.

jLS jLS \
aA'0L' uA'ol") •

h-^n
jSL jLS

ill "/l'a' "'/l'a*

Fn

h <->73

fi^fi
fi^il
fî^il

A A A A 0rF!°r3r, ^UiUli h)Zj^Fh h 1ih)
aï&ai-Aaililailil h

x EfKA- (f u il id fKA» (fi il il il) [ i + 0'i <-» /;> +1?3 ^> /;}

+fcâ)(^«««>+«^>+gn;|})."\f~fij)\L+ih~hi+ih"]
J {-^^ôjXoj,i.A(fxf%Jlfl

ftAfiililil) GL(ililfxfA + {fi

(n. ./fi \ i ?i

S + /1' <7LSa/l'a'

X

(_)^+s+

/,'} + {/3 <—>

7Î<-»7

/J<->J
L<->S in d

il)
'fi^fi, fi^il\

a' <-> a"

(21)

(22)

-. (23)

In Tx and T3 the ordering of the single-particle spins in the arguments of the
orthogonalization coefficients dJJ'a must always be preserved, even if the arguments of the
other functions are interchanged, because the ordering of the states is determined
from the beginning by the base functions. We point out that the recoupled exchange
terms T2 and T3, which involve 9-/-symbols or products of these through the definition
of the recoupled orthogonalization coefficients fJJ'a, are in general not much smaller
than the 'direct' term Fx. In many cases they may even cancel it.

The contribution of the core orbits to the residual interaction matrix elements
of core-excited configurations,

< fi il H H (A" a" R" q") I" m",a\ff&"> | j[ f2 f3 j\ (A' a' R' q') F m', ay, (24)
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is most easily calculated by introducing the state of the completely filled core, |0>,
as new reference state. If we define this state by

ö>~/7 Ui/7
\ s-1

1
s

w,

-1/2

BUf fP o: (25)

we have from (A14) and (A15) and according to Pauli's principle the equations

<0|0> 1, (26)

BrmÜ1!2) |Ö> 0, if f or ,i in |0>, (27)

and

^«(71JÎ)|Ô>= g™
5/I/2fi |0>, if Z1 and j2 in |0>.

otherwise.
(28)

Moreover, the states BR M(jx j2) | 0 > form an orthonormal set, as may easily be verified.
With help of (25) and (A13) the matrix elements (24) can be written in the form

àa-a- <W ônr; Ôm ôju! ô,,,, 2 £ <A' X' R' M' \Fm'y
X' M' M"

x <A' X' R" M" | I" m"y£ GL (j' f j"' j°) (-)M'+M"
L ft

x <0 I B+„_M„ (j"" f) Bfß(j« /-) BLltf f BR._M. (j"' j"') \o: (29)

Using (27), (28), (A10) and (All) the core contribution can now easily be calculated.
We get the result

<fi H H il (A" oc" R' q") I" m", a\ ff&"> | j'x f_ f3 j't (A' a' R' q') F m', a >

2 àri. ôm,m„ bA,A„ ôa,a. àR.R. ôrif, ôiy; ôjifr ôjx

gr. (f f" j"' f) - <v ?" -E1 gl (f f i"' f) + K,'Ë
°>q' L

where E is defined by (19) and may again be omitted.
The nuclear states are defined as

imky= Eyk(iiii) | 7iit Im, ay
ii>ii

+ E E c'ao. rq(ii it i-i n) I ii i? is n(AxRq) im,a>.
i\>h>is>ii RqAa

(30)

(31)

The coefficients cIk(jx j2) and cAa Rq(jx j2 ]3 jf) are the amplitudes of not core-excited
and core-excited configurations respectively. The index k numbers the states of spin I.

4. Electromagnetic Transition Probabilities

Using the definition (A6) of the particle-hole operators and the Wigner-Eckart
theorem [4], multipole operators can be expressed by the formula

TLß ^rE<-i\\TL\\f>Atft(if). (32)
L jf
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The reduced matrix elements </ |] TL jj /' > for electromagnetic M1- and E 2-transitions
may be found in [3]. The reduced transition probabilities are calculated by the same
methods as the secular matrix. We therefore state only the final results.

It is convenient to define the function

TsLs'(ia ib ia> ib) K, jf s f j <n \\ fl \\ jb, > - (-)'.+>»+* {ja ^h}. (33)
(la' lb lb')

The reduced matrix elements between nuclear states (I mk\ and 11' m' k' > can be

expressed as

<I m k I TL I F m' k' y UneV + UeV + UeC (34)

where UneV is the contribution of not core-excited configurations

uneV (~)L+I i V E XA H,v+,v <?\i« ib) crk'(i«' ib)
ia>ib Ziiaibni'ai'b
W>1b'

x (Fi1 (ja U ja. iv) - (-y«'"*1' {ja, ^ jb.}) (35)

and UeC is the contribution of the core orbits in core-excited configurations

UeC 2(-)L+IlV X {-)Ac%Ra(iiHHii)
h>h>it>it
Atxq RR'

x c™
R.t (h ii u h) RR'<i"\\ TL || jo y Pj^A ¦ (36)

The contribution of the valence orbits in core-excited configurations may be written
as follows:

ueV (-)r+L î î ' E °Ak, rq (f ii is ii) C,' Rq (iî il il il)
ii>ii>iz>ii
ii>ii>H>ii
Aa Rq A' rt'

"^" {a;aLs} jrjrhffïf,. <°-+ °i ¦ <37»

\ J /1/2 /3/4 /1/2 /3/4

where

th =Q^^EdQÀ(-y'w'+s' Us-
Q Q' {LSiQa%f\ às (u n il il)

(ii
<-> /s) \

h<-*n> \~(-Yw,i+Q'{fi<->il}

(fi^il) fi"ï*]\
A (-f+s'+*\ j>2 <-> ?; \+ (_)fi+A+«+fi+^' j> <H>j'\\ (38)
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and

Vt -E^ Q' I (-y"'+ii+s'E v [s>aa] [ôs- (/. ii il fi) tïu (ii is f il)

x fl.% (h it is ii) + {ii «-» u} + {is <-> ii} + \lx *~* H
(/3 <""> Ii) _

_ /yi+ii+Q'

{f
<-+ /3 1 f/i «-+ /i 11

fi^fi \+(~Y{+1'i+r'+1"t+A'{il^il \\. (39)

For the same reason as in (21) and (23) the ordering of the single-particle states in the
orthogonalization coefficients d1^ must always be preserved. The reduced transition
probabilities are obtained by substituting the expression (34) into

B(a X, F k' ->Ik) — flrnk || Tx\\ F m' k'y\2. (40)

5. Numerical Calculations

5.1. Fhe interaction potential

Since we assume that core-excitation is produced by an interaction between the
core nucléons and the valence nucléons which is essentially the same as the residual
interaction of the valence nucléons between themselves, we employ the same form of
potential for both interactions, namely [2]

1 + aaxo2 + b\ ox o2 (41)V(rx,r2) V0(rx,r2)

with the scalar part

V0(rx,r2)=V0 --e-^ô(QX2). (42)
rirt

This interaction, especially its angular dependence is not realistic at all, but it yields
a good accordance between calculated and experimental energy levels for the nuclei
Pb206, Pb210 and Po210, when core-excitation is neglected; and it is rather easy to handle.

For this potential the antisymmetric two-particle matrix element Gfja jb ja, jf) has
been given in [2].

Although the same general shape for both interactions is assumed, the values of
the parameters which fit best to the experimental level schemes are not necessarily
the same, for the approximations in the treatment of the interactions are different.
Thus the neglection of some low-lying core orbits may cause a change in the core-
excitation coupling constant V0CE.

The relative strength of the spin-spin and the tensor part have been fixed in all
calculations as the values given in [2], i.e. a 0.1, b 0.776. These values yield
results which agree best to experimental level schemes when core-excitation is

neglected, and they are very close to those determined by the deuteron properties.
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In the potential of the residual interaction the range parameter a. was as well
fixed as the value of [2], namely a 2.0 for Pb206, Po210 and Hg206, and a 3.6 for
Ni58. This corresponds to about one quarter of the nuclear radius. On the other hand
the range of the core-excitation interaction has been varied in order to test if a longer
range could be more appropriate. However, we got the best results with equal ranges
for both interactions.

5.2. Determination of nuclear states

Since the secular matrix of core-excited configurations with core-spin 0 is already
very large, we have restricted ourselves to core-spin 0 excitations in all numerical
calculations. It is shown in [1] that at least for one pure configuration the influence
of core-spin-2 excitations on level positions is much smaller. In actual nuclei, however,
where various types of configurations occur, the contributions of core-spin-2 excitations

may become more important, because selection rules let a great number of
matrix elements vanish between the not core-excited configurations and those
excited with core-spin 0. On the other hand, as a consequence of these selection rules
only a few core-excited configurations contribute essentially to the wave functions of
nuclear states of low energy. Therefore, it will be possible to neglect the other core-
excited configurations from the beginning. This enables to include higher core-spins.
An investigation of this problem will be the subject of further work.

The single-particle energies Sj in (9) have been extracted from experimental level
schemes of neighbouring nuclei. The levels that are considered for Pb208, Po210 and
Hg206 are shown in Figure 1.

The energy difference AE between the lowest outer level and the first core orbit
has been determined from reaction data [10]. A small change in this energy gap
causes essentially only a renormalization of the core-excitation coupling constant V0CE.

All calculations were performed on the UNIVAC 1108 computer at the SANDOZ
Computing Center at Basel. For the computation of the energy eigenvalues the variation

method described in [20] has been used, which is excellently adapted to the
determination of the lowest few eigenvalues of large matrices. Thus the entire level

1.57
1.41

protons

!* I« 1%,mm
°I82

0.90
0.78 IK ^Pb209 v 209

«9/2

N=126 3,28MeV Z=82 424M«

2s1/2

0.35
0.570

nnPbZn T|207
0.897 *3/2

1.34

1.633 %/2 1.67

"7/2

Figure 1

Single-particle states of neighbouring
nuclei which are considered in the calculations

of Pb206, Po210 and Hg206.
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scheme of Pb206 up to 5 MeV could be calculated in a few minutes. The main amount
of computer time is however necessary for the construction of the secular matrix, for
it implies a computation of an enormous number of 9-/-symbols to great accuracy.

5.3. Fhe lead isotope Pb2™

The level scheme of Pb206 is very well known [11, 12] and it therefore offers an
excellent opportunity to test the changes in the positions of energy levels which are
caused by core-excitation.

In our calculations only four states of Pb207 were considered, namely the pxj2,

the/B/2, the psj2 and the iX3j2 levels [7]. As a consequence of this restriction some of the
experimental nuclear states are missing entirely in the calculated scheme, e.g. the
4+-state at 2,9 MeV whose main configuration is (/\/2/7/2). The influence of the/7,2
level on the lower states can nearly be absorbed in the potential strength.

The energy gap A E between the lowest valence orbit and the first core orbit was
determined from reaction data [10] to be 3,28 MeV. The level scheme is not sensitive
to small deviations from A E, but only the exact value yields the best fit with equal

coupling constants V0res and V0CE of residual interaction and core-excitation
interaction respectively.

Calculations have been performed with two and with four core orbits. It turned
out that the effect of the /16/2 and the d&l2 core orbit is very small since the excitation
of nucléon pairs from these orbits requires an energy of at least 6 MeV.

If the coupling constants of both interactions are equal (AE 3.28 MeV) the
value V0res V0CE —6.4 MeV fits best to the experimental scheme; it is about
ten percent less than the value determined without core-excitation. (Note that the
definition of coupling strength is not the same as in [2].)

The interaction energy of a nucléon pair in the ground state is —1.2 MeV. This

energy may be compared to the Ç-value of the reaction Ph208(d, t)~Ph207, which is

-1.13 ± 0.01 MeV [13].
In Figure 2 the theoretical level scheme, calculated with two core orbits, is

compared to the experimental one and to the scheme of [2]. It is obvious that the
positions of the second 0+-state and of the first 3+- and l+-states agree better with the
experiment. We conclude that core-excitation with core-spin 0 is important for these
lower states of Pb206. Nevertheless, the second 0+-state is always too low.

A second problem is the energy gap between 2.2 and 2.5 MeV, which is even
slightly enlarged by core-excitation. The region where higher single-particle states
become important begins somewhat above this gap, so that it cannot be explained
satisfactorily by the neglection of those states.

The states consisting mainly of core-excited configurations are not shown in
Figure 2. The first one appears at about 8 MeV. It has spin 0 and positive parity and
consists mainly of the configurations (/B/2)2 (pxl2)2 (g9/2)~2 [60%], (/5/2)2 (p3l2)2 (g9/2)"2

[10%] and (hl2)2p3l2pxl2 (g9/2)-2 [7%].
The 3~-state at 2.53 MeV is known to be an octupole vibration of the core and

therefore cannot be reproduced in our simple model.
In the calculations of transition probabilities the gyromagnetic ratios of orbital

angular momentum have been supposed to equal one for neutrons and protons, and
the effective charge of the nucléons has been assumed to be one electron charge.
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Level schemes of Pb206. a: experiment, b: theoretical

level scheme with core-spin-O excitation, Vores

VoCE —6.4 MeV, c: theoretical level scheme
without core-excitation [2].

Table 1

Some reduced transition probabilities in Pb206, calculated with two and with four core-orbits, are
compared. Units are (barns)2 and (nuclear magnetons)2 for E2- and Ml-transitions respectively.

Transition aX
2 core orbits

B(aX)
4 core orbits

0+->l+
0£->2J
4->°f
lf->2+
2i^°t
2+->0J
2+^2+

2t^n
2f->2+

3f->2J
3+-V 3+

?if->2J
4J->2+
s?->6;r

Ml
E2
Ml
Ml
E2
E2
E2
Ml
E2
Ml
E2
Ml
Ml
Ml
E2
E2
E2
Ml

280 10+1

330 io-2
671
360 10+1

890 10"2
170 10-1
400 io-2
771 io-6
170 io-1
460 IO"2
189 IO"3
102
925 io-1
124 10+1

654 io-2
125 io-1
845 10"2
808

293 10+1

327 IO-2
688
349 10+1

943 io-2
167 io-1
405 IO"2
104 IO"3
170 IO"1
310 IO"2
217 io-3
104
115
123 10+1

611 io-2
118 io-1
874 io-2
716

a) The experimental value is (.270+ g;$jj) • 10"1 [19].

As was already mentioned only a few core excited configurations contribute
appreciably to the wave functions of low-lying states. Therefore, the changes of the
transition probabilities which are caused by core-spin-0 excitations take place mainly
because of the changes in the amplitudes of not core-excited configurations. The
contribution UeV (equation (37)) of core-excited configurations is much smaller and
UeC (equation (36)) vanishes.
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In Table 1 some reduced transition probabilities, calculated with two and four
core orbits, are compared. It can be seen that the influence of the /15/2 and the dm core
orbit is rather small, except for the M 1-transition from the second 2+- to the first
2+-state. This transition also depends strongly on the choice of the spin-spin and
tensor part of the residual interaction [2].

The calculated probability for the E 2-transition from the first 2+-state to the
ground state is rather independent of the parameters of the interaction [2], but still to
small compared to the experimental value. It must be expected that for transition
probabilities higher core-spins, at least core-spin 2, must be taken into account, even
if the core-spin-0 excitations are more important for level positions.

5.4. Fhe polonium isotope Po210

Although energy levels and transition probabilities of Pb210 have been mesured

recently [14] only little information on spins and parities is available.
In [2] it is pointed out that the level scheme at low energies is rather insensitive

to the choice of the parameters of the residual interaction. The same is true for the
influence of excitations with core-spin 0.

In all our calculations the s1(2, the d3i2 and the hxxj2 core orbits were taken into
account. The energy difference between the ground states of Bi209 and TI207 is 4.24 MeV
[10]. As for Pb206 the level scheme is not sensitive to small deviations from this value.

For a coupling constant V0res V0CE —4.0 MeV, which matches the energy
difference between the ground state and the first excited state, the ground state is
lowered by 1,63 MeV with respect to the pure single-particle picture. Core-spin-0
excitation makes up 0.17 MeV of this value.

In Figure 3 the calculated scheme is compared to the experimental one and to the
scheme which is obtained without core-excitation. It can be seen that the changes
induced are very small especially for the lower states. Therefore core-spin 0 excitation
alone cannot account for the large gap between the first 2+- and the first 4+-state.

MeV

2-

-<6")
"(51

-(41
- 5"

=«5t)
-(4*5*6*)
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<
r r

4*6*

fF6"
*."•

>$*

4*6*
2* =«sr

2*

er

Figure 3

The theoretical level scheme (b) of Po210, calculated

with core-spin-O excitation, is compared
to the experimental one (a) and to the scheme
obtained without core-excitation (c) [2].
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In Table 2 some reduced transition probabilities are given and compared to
experimental values, as far as they are known, and to the values of [2]. The calculated
transition probabilities agree rather well with the mesured values, but it is obvious
that they are practically not changed at all by excitations with core-spin 0.

Table 2
Some reduced E 2-transition probabilities in Po210 are compared to the values of Ref. 2 and to
experiment. Units are (barns)2

Transition B (E2)
This work Ref. 2 Experiment

2„+^00+ .107 • 10-1 .107 • 10-1 _

*Î^K .132 • 10-1 .134 • 10-1 (.192 ± 0.025) • IO"1 [10J

+Î + +Î .188 • IO"3 .186 • IO-3 -
4ö->5ö .795 • IO"2 .826 • 10~2 -
5Ï^6J .123 • IO"4 .121 ¦ IO"4 -
6J + 4J .923 • IO-2 .933 • IO-2 (.128 ± 0.016) • 10"1 [10]

5.5. Fhe mercury isotope Hg206

No experimental information is available about the excited states of Hg206. This
nucleus is however of theoretical interest since its configuration space is the same as

the one of Po210, but with the roles of outer orbits and core orbits interchanged (Fig. 1).

In our calculation we considered the s1/2, the dZj2, the hxxl2 and the d5i2 states of
TI207 and the A9/2, the/7/2 and the «13/2 states of Bi209. For the approximate determination

of the coupling constants of core excitation and residual interaction the energy
gap between the ground state and the first 2+-state was assumed to be about the

MeV M*/

20-

15-1

Figure 4
The dependency of theoretical energy levels in Hg206 to coupling constants. Left: With core-
excitation, near Vores V0 ce - 4.8 MeV. Right : Without core-excitation, near Vores - 5.6 MeV.
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same as in Po210, i.e. about 1.1 MeV. The coupling constants of core-excitation and
residual interaction were assumed to be equal.

A gap of 1.1 MeV corresponds to the coupling constants V0res V0CE — 4.8 MeV.

If core-excitation is neglected, the coupling constant of residual interaction alone is
Vores —5.6 MeV. The interaction energy of a nucléon pair in the ground state
equals —1.81 MeV with, and —1.49 MeV without core-excitation.

The dependency of the calculated energy levels to coupling constants near the
values mentioned above is illustrated in Figure 4. One sees that the level scheme is
sensitive to core-excitation with core-spin 0 in contrast to that of Po210. We recall
that a similar phenomenon is observed in the pair of nuclei Pb206 and Pb210, where

only in Pb206 the lower part of the level scheme is sensitive to the parameters of the
residual interaction [2].

6. Conclusion

The calculated level schemes show that core-excitation may substantially affect
the low-lying states of nuclei in the lead region. But excitations with core-spin 0 are

important for those nuclei only whose general properties are determined by single-
hole states of small spins. On the contrary for Po210, which has two protons with large
single-particle spins more than the magic numbers, the admixture of configurations
excited with core-spin 0 is small in the lower states, and the transition probabilities
are practically unaffected. We expect that the same will be true for Pb210, since the
single-particle spins of this nucleus are also very large and [2] shows that the properties
of the low-lying states are also rather independent of the parameters of the residual
interaction.

This difference in behaviour is a consequence of the different magnitude of the
single-particle spins of the valence nucléons. In Po210 all the low states OJ, 2J, 4+ and

6J have the same main configuration (A9/2)2 and are influenced in about the same way
by residual interaction and core-excitation. On the other hand the single-particle
spins in Hg206 and Pb206 are small and therefore various different main configurations
are necessary to build up the sequence of low-lying states.

We have already mentioned that electric dipole transitions are strongly forbidden
in our model, since the reduced matrix elements between all considered single-particle
states vanish. Based on the assumption that core nucléons are excited only in pairs
from the same core orbit, the term UeC (equation (36)) contains only diagonal matrix
elements, which are zero for electric dipole transitions because of parity selection rules.

Consequently the contribution of the core orbits in excited configurations vanishes
too. On the other hand, electric dipole transitions have been found [15] in the decay
of the first 4~-state in Po210. Because these transitions are weak, they can be explained
by the admixture of further single-particle states not included in our calculations.
Core-excited configurations may also bring about finite electric dipole transition
probabilities, but only if the scattering of single nucléons from one core orbit to the
other is permitted.

Since the term UeC (equation (36)) contains directly the influence of transitions
between different core-spins, we expect that this term contributes appreciably to E2-
transitions [23], But if only excitations with core-spin 0 are considered, UeC vanishes
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identically for E2-transitions. Therefore, from this point of view the restriction to
core-spin 0 is certainly very crude and it is desirable to consider at least also excitations

with core-spin 2.

We have made the attempt to calculate the level scheme of Ni58 [16]. As was to be

expected, the level positions are changed considerably by the admixture of core-
excited configurations. However, no reasonable correspondence between the calculated
and the mesured levels could be achieved. The large gap between the first 2+- and the
first 4+-state cannot be explained by excitations with core-spin 0 nor at all by four-
particle-two-hole excitation alone.

Since the level scheme of Ni57 [17] contains states of low energy which consist
mainly of two-particle-one-hole configurations, we conclude that the approximations
made in our model cannot yield satisfactoring results for Ni58. Furthermore, beyond
the excitation of single protons excitation of neutrons and neutron pairs from the Ni56

core should also be considered.
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7. Appendix

We give here the definitions and the most important relations of the two- and
four-fermion operators and some details about the orthogonalization of four-fermion
operators. Some of these relations may also be found in [18].

In this paper the following abbreviations are used:

i 2 / + 1 (Al)

àj(k H H U) - àhh ôuu - (-)*+'•+' àhit èUh (A2)

4^(! + ^)l/2. (A3)

à (k it is h) s [(2 - ôhj) (2 - ôhj)fl2. (A4)

Exchange terms of the form A(jx j2) + c A(j2 jf), where A is any expression in jx and j2
and c is independent of jx and j., are generally denoted by

IMii it) + °{ii <-*/2}] •

In all definitions of angular momentum algebra the notation of [4] has been adopted.
Single-particle states are characterized by their angular momentum quantum

numbers / only. Thus, djajb requires the equality of the states a and b. From the single-
particle creation operators afm, which obey the anticommutation relation

{ajm, aj'm'S ";')' "mm' >

34
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the pair-creation operator

BjM(ii it) y— E </i mi H™2\J My «+„_ «+„_ ß > /2) (A5)

and the particle-hole operator

^m(/i k) 27H*""" </i «i /. - »4 I / M> «+mi «/ilBi (A6)
m1wa

are constructed. The convention

/i > /2 (A7)

and the factor 1/^1, have been introduced in (A5) in order to get an orthogonal and
normalized system of base functions for two-fermion states.

The operators satisfy the symmetry-relations

BfM(j\ it) - (-)''+''+' BtM(j2 if) (A8)

AjM(h it) - (-)'•+'•+* Aj_M(j2 jx) (A9)

and the commutation relation

[AjjM(iiit), B+M,(fxf2)]

P+J (àni'AjJ'E^)L<JMrM'\LAy\JJ''

BlA(iifi)-(-)il+ii+J'{ii^il})- (A10)

If the convention (A7) cannot be applied, the commutator between pair-creation and

pair-annihilation operators is

\B (i i B+ ff" f'll - ô]ràMM'àj(Jriti'rff)
lDJM\ll ltl> DJ'M'\I1 hli A A

nM*ni'A
t—,J'+M' I I j ji j.lôhnfj'E(-)L-A<JMJ'-M'\L-Ay\J J AfA(j:zjx)

\ LA [it 11 It)Aj, Af¥II12 1112

- (-)U+U+J{h ^/,}-(-p«+^{/^/2} + (-)/l+/,+/+/;+,'+/'|y|UJ-||). (AH)

From (All) we get immediately

<0 I B]M(jx j2) Bj,M,(j'x ff) 10> a7/, <W */iß a/ifi (A12)

if jx y /2 and j[ > /2 hold. (All) and (A12) are both necessary since in many
intermediate calculations the single-particle spins are arbitrary.

From (A10), (All) and the operator relation

w—1 m—1

[An, Bn] 27 27 Bv A^A, B] A"1-"'1 B"-"'1
x 0 ß 0
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the following equations can be derived (in most cases by recursion), which are used
to calculate the normalizations of the core-parts of base functions:

[BRM(iiit), B+(jm \o:

X I«*«, «JjfO» £+(//)»-!¦

/1/2 III

n-1 I 2 k \
<0 I BJj j)" B+(j j)" 10> n\ F/ 1 - -=-

k-i \ r I

2j+l
n — 1

nA-l

(-)Mn (n- 1) Bt_M(jj) B+(jj)"-2\\0y, (A13)

< 0 | BJj jf BRM(j j) B+M,(j j) B+0(j j)" 10 > ÔRR, ÔMM, yn

where

2/e

Yn
F(n+l)\lj[l*=i \

"+1/ b \
"'¦R(l—f)-'fR*

HR 0

0.

(A14)

(A15)

(A16)

(A17)

Four-fermion operators are built up by coupling two pair operators to a total angular
momentum A with projection X:

DUii it J, is ii J') 27 </ " /' "' IA A> B+V(jx j2) B+ v,(is u (A18)

If base function of four-particle systems are to be described by (A18) a convention
similar to (A7) must be made, namely

ii > it > is > ii ¦ (A19)

The four-particle creation operators defined in this way are however not orthogonal.
They have to be orthogonalized later (see below).

They satisfy the symmetry-relations

DUii n h is u J') (-)J+J'+A DUu n J', h h J).

t>Uii h J, is ii J') - (-)"+>^ DUit h J, is ii J')

(A20)

(A21)

and

DUii ii J, is it J') (-)i*+w J /' AAhhAJ°J

x27(
LU

Jlji JlJ3

ii ii J
L'LV{ j2 j, J1 \ DUii It L, /3 j. V) (A22)

LL'A]
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Without the convention (A19) the commutators between two-particle and four-
particle operators are

[Aißsii),DUhitJ,fiilJ')^

(4^ »u. (-f+h+K+J'Â K f£L (-)L\KftAX\ L'X + fty{f
\AU1, lu (h

{/' i' a) D+L'^{h h L'j[ r*r) - Hh+h+J {h <-> /.} + (-)

KJL
3 7?

J+J' + A

)1i
<-Mi | \h <-> it

h <-> Ü } A (-)fc+'.+fi+Ä+" j /, <-? £ \ J (A23)

and

[BKtl(hû),D+x(iiizJ,fiilJ')l
ÔJK

Ai, Aj,/1/2 /3/4

àK (ii it is ii) <JftJ'X-n\AXy B+,_ß(j'x j'A

+ fFa~ Ôk{j[ j'2 isii)<J*-t*J'/*\AXy B+,_ß (i, i2)

- AKV\- \An è* 03 n u il) E L <L x ~ /* K <" IA x y

hh H1\ /1/2 \ L

(ii u J
x {fiiir) B&ißi fx) - (-)'»+'.+'{/i <-??2}- (-)fi+f,+J"0'i «-»/a

+ (_)>,+/.+/+«+«+/' |?i ^ M j + terms in ß+ 4+ (A24)
(h <">¦ h) J

Equation (A24) can be slightly simplified by introducing the conventions (A7) and

(A19).
The vacuum-expectation value of the commutator between two four-particle

operators can be expressed in the formula

<o I [DAX (jx h J, Is n J') D+Afi il k, H f. K')] 10 >

àa A' hx- y- ¦

A —.— \ àJK àj,K, ôj(jx /2 fx jl) ôj, (i- /4 f3 j'f)
a h n n h itn ii iin ïz it I

+ (-)J+J'+A ôJK, ôrK ôj(jx u il il) ôj, (is n fi il) +

/ (fiilK)
- / J'KK' I 0j(jx h fx ff) ôj, (u ii il il) l il UK' \ - (-)«+«+«{£ <-> f,} +
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_ (_)«+«+*" y> <_> Q + (_f+il+K+H+iFK' il'i *"+ /il j
I

_
(A25)

If the convention (A19) can be used, (A25) is simplified to the form

<o I [DAX(jx j2 j, jz j, j'), d+x.(jï /; k, j', /; k')] io>

Ôaa' à». ôhj, ôhj, dM ÔJA lôJK ôj,K, + (~y+J'+A ôj,K ÔJK, ôkh dMt

(hi*K) \
~ Mn M.n M'A M'A JJ'KK'ljn jtK' \ 0,-J

(h > it > is > ii, fi > il > il > il). (A26)

which is to be used for the description of base states. It can be seen from (A26) that
by the convention (A19) the four-particle operators become orthogonal with respect
to the total angular momentum and the single-particle spins. Therefore, only the
orthogonality of operators with the same single-particle spins and the same total spin
must be investigated further. First we consider two special cases:

If all single particle states are different or if j2 =t= /3, the operators are indeed
orthogonal. If only the middle single-particle spins are equal, the operators can be

orthogonalized by recoupling the spins with help of (A22), so that the states which are
equal are coupled first. Then Pauli's principle can be satisfied by allowing only even
values of the intermediate angular momentum. We thus define orthogonal four-
particle operators in this case as follows:

(ii
ii J

'

i i J'\D+x(iiis,inS'). (A27)
s S'A,Feven \2 $S'

In the case that three or four single-particle states are equal the operators with
different intermediate coupling modes create a non-orthogonal and redundant set of
states. Then an orthogonal set of states is constructed numerically by Schmidt's
procedure, starting with the state of lowest seniority. We thus define the general
four-particle creation operators by

t>ix .(ii it is ii) EdJL ih it is n) d+x (jx j2 j, js j. /'), (A28)
//'

where dA]'Jjx j2 j3 jf) are the coefficients of numerical orthogonalization or the
coefficients in (A27) and a denotes the different orthogonal coupling possibilities.

It is easy to show that the general orthogonalization coefficient drA a (we denote
here the pairs of intermediate angular momenta symbolically by small greek letters)
can be expressed by the recursion formula
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1

E EdA,dßAx<.0\DA!{F),DUo)\Oy
N

1

A

if ß

ii ß

(oc-1) if AT > 0

and

<a 0, if N 0,

where N is the norm of the constructed orthogonal states

N=ÊdAadAa<0\DAX(v),DUv) |0>.

(A29)

(A30)

(A31)

For the description of 'recoupled' exchange terms it is convenient to define the
'recoupled' orthogonalization coefficients

J a Ah h h h
7-7 /

27 / /' L L- if/ {ù i r \ dZ (ii h h in
777 l "¦

(A32)
./,/ II' A

where the phase factor is given by

Ù'*
h1m

(l+(-)Lôu)(l+(-)L'ôk
(i + a«) (i + ôkm)

if it h,it, it.it
if h it,ik ii,ii
if ii ii,ih it.it
if ii it,ik ii,it

i,
_ /_\Jl+J«+/

_ (_)l>+il+/'
(_\»l+/»+/+li+/«+/'

7s. 7„

?4> 7»

?4

/4

?3' (A33)

It should be noted that the transformation (A32) is in general not equivalent to
(A22), for the orthogonalization procedure is not unitary and cannot be inverted.
However, if only the middle single-particle spins are equal, we get by (A22)

J A(ss')(lt h It h) —
1

w
\ja+jl+L+L' + A

''L'S "LS' (A34)
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