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Effect of Nonlinear Processes on the Plasma Heating
in Magnetoacoustic Resonancex)

by J. Vaclavik
University of Fribourg, Department of Physics, Fribourg, Switzerland

(31. X. 70)

Abstract. In magnetoacoustic resonance, the effect of nonlinear processes on the temperature
increase of a dense collision-dominated plasma is investigated. It is shown that the nonlinear
processes diminish the theoretical value of the temperature increase even for very small amplitudes
of the excited waves.

1. Introduction

The heating of a plasma by means of magnetoacoustic resonance has already
been treated in many papers. In the most of them, the heating was investigated in a

relatively thin plasma (n ~ 1013-1014 cm_s), where the transfer of electromagnetic
energy is due to a collisionless damping of magnetoacoustic waves (e.g. [1,2]). On the
other hand, Hoegger et al. [3] investigated the resonant absorption of magnetoacoustic
waves with small amplitudes in a dense and comparatively cold plasma (n ~ 1015-
1016 cm-3, T ~ 1-2 eV). It was shown that the dominant dissipative process which
occurs under these conditions is the Joule heating of the plasma, i.e. the collisional
damping of the waves. However, the experimental and the theoretical values of the
temperature increase, as given in the quoted paper, differ somewhat from each other.
In particular, the theoretical values are considerably greater than the experimental
ones. In our opinion, one of the reasons of this discrepancy might be the fact that the
theoretical values are derived under the assumption that nonlinear electrodynamic
effects are negligible for small amplitudes of the waves.

In this work, the effect of the above-mentioned nonlinearities on the energy
dissipation of magnetoacoustic waves in a dense plasma is investigated theoretically.
It turns out that the nonlinear processes play an important role in the plasma heating
even for very small amplitudes of the absorbed waves.

2. Formulation of the Problem and the Basic Equations

We consider a homogeneous fully ionised plasma column immersed in a
homogeneous axial magnetic field. The typical values of the plasma and the field parameters
are assumed to be: n0 ~ 1015-1016 cm~3, T0 ~ 1-2 eV, B0 ~ 1-5 kG. The plasma
column is surrounded by conducting walls on which an azimuthal oscillating current
is excited with the typical frequencies co <~ 1-2 MHz. This current induces, inside the
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plasma, radial magnetoacoustic waves. Since the collision frequency wei is much
greater than m the waves are considerably damped, a part of their energy is absorbed
and consequently the plasma is heated.

Under the stated assumptions the processes which occur in the plasma may be

described by means of the following magnetohydrodynamic equations [4]

|+div(e«) o, (i)

dv 1

+ (v ¦ grad)v — (jxB), (2)
Ot QC

4n
rotB —j (3)

c

1 dB
rotE= 4

c dt

j o ¦ (e + — (vxB)\ (5)

I +(v grad) T+\t divi> J- QJoule (6)
Ot i on

where all the quantities have their usual meaning, Qjouie ~ f-jcs is the Joule heat.
We now adopt a cylindrical coordinate system r, cp, z and assume the length ol

the plasma column to be infinite. Hence we can consider only the purely radia,
oscillations of the plasma, writing d/dcp s djdz s 0 in equations (1) to (6). Furthermoref
we write

q q0+~q B B0+B, v v, j=], E E, T=Ta+T,
O^n+^, Bn (0,0,Bf,

where the quantities with the subscript 0 are static and those with the symbol ~
represent the perturbations caused by the excitation.

On taking into account all these assumptions and the boundary condition

B(r= R,t) (0, 0, Bex cosco t) (7)

and eliminating the quantities_; and E by virtue of equations (3) and (5) we can reduce
the given set of equations to

do i d ~

J-+ r 5> teo+e)) 0, (8)

di - di 1 1 ~ dB
-r- + v r- + • - (Bn + B) — 0 9
dt dr Qn + q 4 n

v ° ; dr
K '

dB c2 1 d dB ~ \ Id,.Ar- r -^-{^+,-(^0+ S))+~--r(rv (Bo+B)) 0 10
dt 4n r dr \ dr J r dr ^ '

df df 2 ~ i d l/c \2 ^0 +1 (dëy
Öt+V dr+ 3-{T°+T)~r dr-{rV)-~3-(^) ^TT V*) =°'

(11)
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where v vr, B Bz, |0 + £ (o0lpç, + o^)-1.
In what follows it is convenient to introduce the dimensionless variables

r Ca
r' — f — t

R R

and the dimensionless functions

p v B f |
q —. » —. ^' -=-. r# - -, r -f-

where c^ A0/|/4 n q0 is the Alfvén velocity. If we omit the prime (') and introduce
the differential operators

d
T

à „ l d d
M =—- L — r N — r —dr r dr r dr dr

equations (8) to (11) and the boundary condition (7) may be rewritten as follows

dg- +Lv=-L(pv), (12)

dv dv 1

dtAMB -Q..-di-(l + p)^Mv2-
1

~2
MB2 (13)

dB
-—-aNB + Lv L(a£MB-vB),dt v ' (14)
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2
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(15)

B (r l,t) b cosco0 t, (16)
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This set of equations must be completed by an explicit expression for the
dimensionless resistivity |. The general expression for the resistivity, as given in [4], is too
complicated in the region of the considered plasma parameters, where coce ~ wei
(coceis the electron cyclotron frequency). For our purpose, however, it is sufficient to
use the following approximate formula

f - (1 + à T) (1 + T)-3'2 - 1 (17)

where

g„(2 Tf 2*2

UT0) - 1

and f0(A0) is given by the formula (4.34) in [4].

3. Solution of the Equations and the Temperature Increase

In order to solve the set of equations derived in the foregoing section we use a

perturbation method. In particular, we seek the solution in power series with the
parameter 6 <^ 1, i.e. we write
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B B<« + B<2> + • • ¦

where B(1) ~ b, B(2) ~ b2 and analogously for g, v and 77

In the first (linear) approximation the solution is easily obtained by neglecting
the right sides of equations (12) to (15). If we write Bm and analogously the other
quantities in the form

BW(r, t) B(f(r) e''"''1 + B[l)(r) elm't

(the bar designates the complex conj ugated quantity) and make use of the boundary
condition (16) we find

B[*=J, ff ~-MJ, Q[V=(Kl-Yj, Ff ^-(K^J (18)
ICOn \COnj 3 \ (I),, J

where

1
2 D Jo{Kl r)- Dl Jo{Kl) ' Kl W° (1 ~ ia Mo)~W '

and /0 is the Bessel function.

Having found all the quantities in the linear approximation we may proceed to
higher approximations. The equations (12) to (15) for the second order quantities are

dp<2>

dt
+ L v™=- L(qV>vW) (19)

dv<v diP-i 1 1

--+ M A<2> - p(« — M t>«>2 - - M B<«2 (20)
dt ^ dt 2 2

v '

dB®
a N A<2> + L i<w L(a £»> MP - i;»> B<») (21)

dA(2> 2 2 2 a
-— + I w(2> + w(1) M T«) + — A« L »œ (M ß<»)2, (22)
dt 3 3 3/3

with the boundary condition A(2> (r 1, t) 0.

If we insert the expressions (18) in the right sides of these equations we can see

that the resulting set of inhomogeneous equations is rather complicated. In order to
simplify the whole problem we assume, in what follows, that

a < 1 ß < 1 (23)

We now let

£<2>(r, t) Bf](r) e'2^ + c.c. + Bf(r); analogously for v<2>

and

QW(r, t) p{f\r) e'2"""' + c.c. + Q$(r) t; analogously for T<2>

Then the quantities of the second order are found, after some simple rearrangements,
in the form

Bf q? P(2 cof (m / (^J/ - 2 /)} - (24)

Af J--{\M J(1)\2-\M J\2} (25)
co,
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42) =rr1~{Q(2co0)
2 ico0

M2 JM J f- - 2 /coö

7f) -i-|2P(2a,0)[M/(^-2/

- 2 / M J | (26)

--^P+-^w(MjA, (27)
3 co0 ß J

/n> 4 a
U? ~j\MJ\2, (28)

where M /(1) M /|r=1 and p02) ~ v$> ~ 0(a). The quantities P and Ç are the
integral operators defined by the following relations

r

P(2 co0)xp n co0 Df1 \j0(2co0) \no(2 co0 r) fJx(2 co0|) y>(S) £ d£ +
o (29)

i i
+ Jn(2co0r)JNx(2conè)y,(Ç)Çdï]-N0(2co0) J0(2coer)j J\(2a>0S) y»(f) I #}

r 0

Ç(2û)o)V=(MP(2a)0)-l)V, (30)

where D2 /0(A2), A2 2 co0 (1 — 2 * a a>0)^1/2, /x is the Bessel function and Ax0, A\
are the Neumann functions.

Essentially, we are interested in the temperature increase. From the time
dependence of the quantity 7,(2) it is immediately seen that the time average value of
the temperature increase (.dF2)jdty per a time unit is given by the expression (28), i.e.

<-*£->-«•• (31>

This result has been found in [3].

It should be noted that owing to the assumptions (23) the quantity 770(2) is

determined just by the right side of equation (22) which includes the magnetic field
in the first order only. That means, the temperature increase in the second approximation

is not influenced by nonlinear electrodynamic processes. In order to show how
these processes are involved in the temperature increase we must find the solution of
equations (12) to (15) in higher approximations that the second one. Before doing that,
however, it is useful to determine, by means of a preliminary analysis, up to which
order the equations must be solved.

On taking into account the time dependence of the quantities of the first and
second orders one can easily see from equations (12) to (15) that any quantity of the
third order has the time dependence of the following form

Y3)(r, i) n,f(y) e-^«* + (%pf](r) + yffr) t) e"1"''1 + c.c.

Thus, in the third approximation the considered equations would yield only an

oscillating solution. At the first glance, it might seem that one should seek the solution
up to the fourth order. Fortunately, it turns out that owing to the assumptions (23)
the time average value of the temperature increase in the fourth approximation is
determined only by the quantities of the first, second and third orders. In particular,
according to equation (15) the following relation holds
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dr<4>

UT

H A<2> L v®>

vm m A«3» + T<3> L »t« + w<2> M T<2> +
3

2 a
(p(1>2 - !<« p(1> - p(2> 4- |<2>) (Af A<«)2 +

2 (£<» - p<") M A<« M A<2> +(M A<2))2 + 2 M A«« M A<3>

(32)

Hence we see that the only quantities we must still find are A'3' and A(3). The
latter may obtained in the same way as the quantities of the second order. Since
the explicit expressions for A(3) and T(3) are very cumbersome we do not write
them. On inserting all the necessary quantities in the right side of the expression

(32) we finally obtain, after rather tedious rearrangements, the following
formula

2 a col lb/ dTM

\ dt / 3 ß\Dx\i \ 2

+ Jx(co0r)(C2(r)-2colCn(r))

where y ô — 3/2,

15
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3
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N0{a>o) /iK r) / /o(w01) y{£) £d£\,
o J

>'(')= — P(<o0) fx(co0r)

JfcOnr)[3 W(r)+^L)G(r) - ~r <?K)
COQ I ' \ COn

F(r)=-^iQ(cof

/iK H h 3 A(ft)0 r) - Jl(tx>n r)
\ conr

/ÎK)

4. Discussion of the Results and Conclusions

It is obvious that in the considered approximation the complete temperature
increase A T per the time interval At is given by the superposition of the expressions
(31) and (33), i.e.

AT
dT®

~tW + ¦

dA<4»

w dt (34)

This quantity was computed for some typical values of the parameters n0, B0, T0, b

and At 2 n/co0 as a function of the frequency co0 and the radius r.
The results are given in Figures 1 to 4, where the dashed lines represent the

quantity AT computed in the second approximation. The maximal value of the
temperature increase A Tmax with respect to the radius r is given as a function of the
frequency co0 in Figures 1 and 2, the resonant value of the temperature increase A Tres

is given as a function of the radius r in Figures 3 and 4. From these curves it is

immediately seen that the nonlinear processes diminish the value of the temperature
increase even for very small values of the parameter b. For higher values of this
parameter the quantity Zl77, as given by the expression (34), cannot be computed
since the fourth order term becomes comparable with the second order one and it
would be necessary to take into account higher order terms.

The results may be explained by the following argument. The Joule heat is

proportional to the plasma resistivity which decreases as the plasma temperature
increases. This effect, however, appears in the formula for the temperature increase

only in higher approximations than the second one. Thus, it is clear that the
formula (34) gives lower values of the temperature increase than that derived in the
second approximation.

Furthermore, from Figures 3 and 4 it is seen that the nonlinear processes change
also the radial distribution of the quantity ATres. Namely, the maximal value is
shifted more to the centre of the plasma column.

In conclusion we can summarize the results of our investigation in the following
way. In a dense collision-dominated plasma the energy dissipation of resonant
magnetoacoustic waves is considerably influenced by nonlinear processes even for
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n0 5.5-10,5cnv>

c
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J> B0= 1.5kG

ATmax b =0.06

02 1 \
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1 \

\\
0.1

0
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Figure 1

Variation of temperature increase with
frequency in hydrogen plasma.
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Figure 3

Variation of temperature increase with
radius in hydrogen plasma.
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ATmax Bo 5.4 kG
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1.5 2 2.5 3 10„ (rel.units)

Figure 2

Variation of temperature increase with
frequency in argon plasma.
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03

02
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0.1 /
0 *S 1 1 i

0 0.2 0.4 0.6 0.8 1 r(rel.units)

Figure 4
Variation of temperature increase witli
radius in argon plasma.

very small wave amplitudes. The problem of a plasma heating by means of magnetoacoustic

waves with great amplitudes is not to be solved within the framework of the
perturbation theory and consequently, it is necessary to solve equations (12) to (15)
by a numerical computation method.
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