Zeitschrift:	Helvetica Physica Acta
Band:	44 (1971)
Heft:	4
Artikel:	Wirkungsquerschnitte in Ortho-Para-Wasserstoffgemischen
Autor:	Camani, M.
DOI:	https://doi.org/10.5169/seals-114292

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 14.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wirkungsquerschnitte in Ortho-Para-Wasserstoffgemischen

von M. Camani*)

Laboratorium für Festkörperphysik, ETH, Zürich

(16. XII. 70)

Summary. The dependence of the viscosity of ortho-para-hydrogen mixtures on temperature $(15-120 \,^{\circ}\text{K})$ has been measured in the range from 10 to $100\% \, p$ -H₂. From these data the relative differences of the interaction cross sections for o-o-, o-p- and p-p-collisions can be derived. The results differing slightly from earlier measurements show that quantum statistical symmetry effects are not sufficient to explain the observations. Furthermore, methods are described to produce large quantities of pure ortho-hydrogen.

1. Einleitung

Aus Viskositätsmessungen an Ortho-Para-Wasserstoffgemischen bei tiefen Temperaturen gelang es Becker und Stehl [1] bereits 1952 nachzuweisen, dass zwischen den Wirkungsquerschnitten für Ortho-Ortho-, Para-Ortho- und Para-Para-Stössen die Ungleichung $Q_{oo} > Q_{po} > Q_{po}$ besteht. Dafür, dass zwischen diesen Stossquerschnitten überhaupt Unterschiede auftreten, können mehrere Effekte verantwortlich sein:

1. Selbst unter der Voraussetzung, dass sich die Wechselwirkungspotentiale für 00-, p_0 - und p_p -Stösse nicht unterscheiden, werden nach Massey und Mohr [2] an die 2-Teilchenwellenfunktionen bei Zweierstössen verschiedene Symmetrisierungsforderungen gestellt. Die im Grundzustand nicht rotierenden Paramoleküle sind quantenstatistisch ununterscheidbare Teilchen, d.h. p-p-Stösse werden durch in den Raumkoordinaten symmetrische Wellenfunktionen beschrieben. Orthomoleküle dagegen spalten wegen der Entartung des Rotationsgrundzustandes l = 1 und wegen der drei möglichen Orientierungen des totalen Kernspins in 9 voneinander unterscheidbare innere Zustände auf. Daher werden o-o-Stösse durch eine Kombination symmetrischer und antisymmetrischer Wellenfunktionen beschrieben. Falk und Mann [3] konnten zeigen, dass diese Symmetrieeffekte allein nur die Möglichkeiten $Q_{po} > Q_{oo} > Q_{pp}$ oder $Q_{pp} > Q_{oo} > Q_{po}$ offenlassen, was offensichtlich im Widerspruch zu den experimentellen Resultaten steht. Cohen et al. [4] fanden mit einem (6;12)-Lennard-Jones-Potential die Folge $Q_{po} > Q_{oo} > Q_{pp}$, womit der Zähigkeitsunterschied zwischen den Modifikationen zwar das richtige Vorzeichen und etwa die richtige Grössenordnung erhält, jedoch die Krümmung der Isothermen $\Delta \eta / \eta =$ Fkt. (γ) den Experimenten entgegengesetzt ist.

2. Ein für die Modifikationen verschiedener, nicht-kugelsymmetrischer Anteil des Wechselwirkungspotentials wurde von Takayanagi und Ohno [5] und von Niblett und

^{*)} Z. Zt. Yale University, New Haven/USA.

Takayanagi [6] erwogen. Genauere Untersuchungen von Munn und Monchick [7] zeigten jedoch, dass der Einfluss der nicht-kugelsymmetrischen Beimischung viel schwächer ist, als der des sphärischen Potentials selbst. Waldmann [8] hat aber darauf hingewiesen, dass bei detaillierterer Diskussion nicht-sphärischer Potentialanteile die Drehimpulsabhängigkeit der Verteilungsfunktion für die $o-H_2$ -Moleküle mitberücksichtigt werden sollte.

3. Auf die Möglichkeit, die Unterschiede in den Wirkungsquerschnitten als Folge einer Zentrifugalaufweitung der rotierenden Orthomoleküle zu erklären, haben Knaap und Beenakker [9] hingewiesen. Bei 20°K ergibt sich damit für den Zähigkeitsunterschied zwischen den Reinmodifikationen nur 1/3 des gemessenen Wertes.

4. Der Einfluss eines quantenmechanischen Korrekturterms in der Viskositätsformel nach Chapman-Enskog und die Möglichkeit der Bildung von H₄-Molekülen ergeben nach Niblett und Takayanagi [6] Beiträge, die auf den beobachteten Viskositätsunterschied keinen nennenswerten Einfluss haben und sich z. T. gegenseitig aufheben.

Diskrepanzen zwischen den experimentellen Resultaten von Becker und Stehl und unveröffentlichten Messungen von van Itterbeck und Coremans (vgl. Cohen et al. [4]), sowie die zahlreichen theoretischen Fragen, die diese Experimente aufgeworfen haben, regten dazu an, unter Verwendung moderner Kryostatentechniken und durch Anwendung von Methoden zur Reindarstellung von Orthowasserstoff den Viskositätseffekt in einem erweiterten Temperatur- und Konzentrationsgebiet systematisch zu untersuchen.

2. Experiment

2.1. Messprinzip und Apparatur

Zur Bestimmung der sehr kleinen relativen Viskositätsunterschiede $\Delta \eta/\eta = (\eta(\gamma) - \eta(0,25))/\eta(0,25)$ ($\gamma = p$ -H₂-Molenbruch) wird eine bereits 1932 von Engelhardt und Sack [10] vorgeschlagene Brückenanordnung benützt, die auch von Becker und Stehl [1] zu Messungen an den Modifikationen des Wasserstoffs verwendet wurde. Die Anordnung zeigt starke Analogien zu der bekannten Wheatstoneschen Brückenschaltung, wobei anstelle der Widerstände Kapillaren, anstelle des Galvanometers ein hochempfindliches Differentialmanometer treten. Für laminare Strömung eines Gases ist die pro Zeiteinheit durch eine Kapillare (Radius r, Länge L) strömende Gasmenge bei einer Druckdifferenz (p - p')

$$Q = \frac{p^2 - p'^2}{R} \left[1 + \frac{4}{r} \xi(\eta, T, p + p') \right] \text{ in cm}^3 \text{ NTP/sec} .$$
 (1)

Der Term mit ξ berücksichtigt die Gleitung an den Rohrwandungen (vgl. z. B. Loeb [11]). Er ist bei tiefen Temperaturen vernachlässigbar klein, kann jedoch bei Zimmertemperatur bis zu 6% ansteigen. Da jedoch $[1 + 4 \xi/r]$ bei der Aufstellung der Messgleichung (5) in sehr guter Näherung herausfällt, bleibt die Gleitungskorrektur im folgenden unberücksichtigt. Der Kapillarwiderstand R ist für kreisförmigen Rohrquerschnitt im Falle eines idealen Gases bei der Temperatur T durch Vol. 44, 1971 Wirkungsquerschnitte in ortho-para-Wasserstoffgemischen

$$R(T) = \frac{16 L}{\pi r^4} \cdot \frac{T \cdot p_0}{T_0} \cdot \eta(T); \quad T_0 = 273 \,^{\circ}\text{K}, \ p_0 = 760 \text{ Torr}$$
(2)

gegeben. Für andere Rohrquerschnitte kann der entsprechende Geometriefaktor der Arbeit von Graetz [12] entnommen werden. Unter Benützung der empirischen Zustandsgleichung von van Agt und Kamerlingh Onnes [13] für H₂ kann gezeigt werden, dass bei den verhältnismässig kleinen Arbeitsdrucken selbst bei 15 °K die Abweichungen vom idealen Gaszustand im Messresultat einen Fehler von höchstens 0,6%bewirken.

Figur 1 Schema der Apparatur zur Messung von relativen Viskositätsunterschieden.

Die im unteren Teil von Figur 1 dargestellte Brückenanordnung ist somit abgestimmt ($\Delta p = 0$), wenn die den Kapillaren K_1 - K_4 entsprechenden Widerstände sich wie $R_1: R_2 = R_3: R_4$ verhalten. Zur Messung von $\Delta \eta / \eta$ lässt man in die Brücke bei CWasserstoff bekannter Parakonzentration γ einströmen und stimmt die Anordnung mit Hilfe der Regelkapillaren K_3 und K_4 auf $\Delta p = 0$ ab. Durch Einschalten eines der Hitzdrahtumwandler bei D bzw. E wird das Gas in einem der Brückenzweige vollständig zu Normalwasserstoff (*n*-H₂, 25% Paragehalt) konvertiert. Da der Viskositätsunterschied zwischen den Modifikationen bei Zimmertemperatur unmessbar klein ist, bleiben die Widerstände von K_3 und K_4 unverändert, während sich der Widerstand einer der Tieftemperaturkapillaren entsprechend dem Viskositätsunterschied zwischen γ -H₂ und *n*-H₂ ändert. Die Brücke wird verstimmt und aus der Anzeige des Differentialmanometers Δp kann $\Delta \eta/\eta$ berechnet werden.

Die wesentlichen Teile der Messapparatur sind in Figur 1 schematisch dargestellt; die Anordnung ist der von Becker und Stehl [1] verwendeten ähnlich. Zur Messung bei Parakonzentration $\gamma \ge 0.25$ ist das Vorratsgefäss (Figur 1, ganz oben) mit gereinigtem n-H₂ gefüllt. Das Gas tritt bei A in einen mit 500 g Aktivkohle gefüllten Kryostaten, der auf 18°K bzw. auf 76,5°K gekühlt wird. Bei B erscheint dann Wasserstoff mit einer Parakonzentration von 100% bzw. 51,1%, entsprechend der Gleichgewichtseinstellung bei den beiden Temperaturen. Mit Hilfe einer Membranpumpe (Maihak Type GF-21, modifiziert) wird das Gas über einen auf die Pumpe rückwirkenden Grobdruckregler einem Feindruckregler (Edwards VPC 1) zugeführt, der für eine Druckkonstanz des Gasstromes von $\pm 0,2$ Torr sorgt. Die Kapillare K_a wirkt im Verein mit dem Kolben B_a als Siebglied zur Unterdrückung von Druckoszillationen. Nach Kolben B_a verzweigt sich der Gasstrom: Je nach Einstellung des Nadelventils fliesst ein wählbarer Teil des Stromes direkt, der andere Teil über eine Kapillare und einen Vorumwandler zum Punkt C. Diese Vorrichtung dient zur Erzeugung einer beliebigen, zwischen $\gamma = 0.25$ und $\gamma = 1.00$ liegenden Modifikationskonzentration, indem der im Vorumwandler zu n-H $_2$ konvertierte Gasstrom bei C mit dem unkonvertierten Gas gemischt wird. Bei C wird der Gasfluss über zwei Umwandler und über eine Konzentrationsmesszelle dem Brückeneingang zugeführt.

Die Umwandler sind von aussen gekühlte U-förmige Glasrohre mit je einem mit 100 Watt beheizten Platindraht (20 cm; 0,4 mm \emptyset). Durch die U-Form und die beidseitige, stabilisierte Heizung wird vermieden, dass zwischen C und D bzw. C und E «barometrische» Druckdifferenzen (vgl. z. B. Lehrer [14]) entstehen. Dass die Kompensation dieser Druckdifferenzen sowie die Konversion zu n-H₂ vollständig ist, wurde sorgfältig geprüft. Die Konzentration des Modifikationsgemisches wird während der Messperiode ständig mit einer Differential-Wärmeleitungszelle (Gow-Mac, Type 9454-30-S mit Drähten WX) kontrolliert. Die Empfindlichkeit dieser Zellen, deren Schaltung Figur 2 zeigt, ist genügend gross, um bei 25 °C eine Messgenauigkeit von mindestens $\pm 0.3\% p$ -H₂ zu gewährleisten.

Figur 2 Wärmeleitfähigkeitsmessung zur Bestimmung der Modifikationskonzentrationen. Die Eichung der Konzentrationsmesszelle hängt vom Brückeneingangsdruck p_1 ab. p_1 ist seinerseits wegen der Temperaturabhängigkeit der Kapillarwiderstände (2) eine Funktion der Kryostatentemperatur, die in Figur 3 dargestellt ist.

Die Tieftemperaturkapillaren K_1 und K_2 sind 800 cm lange Kupferrohre mit einem Innendurchmesser von 0,6 mm, die bifilar auf einen Kupferzylinder (8 kg) gewickelt und gelötet sind. Der Kupferzylinder ist in einem Durchflusskryostaten in direktem Kontakt mit einem grossflächigen Sinterbronze-Austauschkörper. Der Kryostat folgt der von Klipping [15] angegebenen Bauweise und kann innerhalb von weniger als \pm 0,1 °K auf beliebig wählbare Temperaturen zwischen 4 °K und 270 °K stabilisiert werden. Die Temperaturmessung erfolgt mit Dampfdruckthermometern [16] mit einer Präzision, die je nach Arbeitstemperatur zwischen \pm 0,1 °K und \pm 0,01 °K liegt. Als Thermometerflüssigkeiten wurden je nach Temperaturbereich H₂, Ne, N₂, O₂ und CH₄ benützt. Das Gebiet zwischen 29 °K und 64 °K konnte damit leider nicht erfasst werden.

Die Kapillaren K_3 und K_4 (Cu, 18 cm lang, 1 mm Innendurchmesser) mit den zugehörigen Regelkapillaren stehen in Verbindung mit einem auf $(25 \pm 0,1)$ °C thermostatisierten Kupferblock. In den Regelkapillaren fliesst das Gas durch einen Gewindegang, dessen Länge variiert werden kann; sie dienen zur Abstimmung der Brückenschaltung. Das Differentialmanometer wurde bereits in einer früheren Arbeit [17] beschrieben. Für diese Messungen wurde eine 13μ dicke, beidseitig aluminisierte Mylarfolie verwendet. Damit wird eine Empfindlichkeit von $0,675 \pm 0,020$ Hertz/ μ Torr erreicht. Zur Vermeidung von «Transients» bei Schwankungen des Absolutdruckes wurden ferner die Kammervolumina beidseitig der Membran ausgeglichen. Die Nullpunktsschwankungen lagen während der ganzen Messperiode unter der Erfassungsgrenze. Zur Anzeige von Δp (Schwebungsfrequenz) wurden simultan zwei Vorrichtungen benützt: Ein Countingratemeter mit Schreiber diente zur ständigen groben Kontrolle, während für die Messungen ein dekadischer Frequenzzähler benützt wurde. Die Daten des Frequenzzählers wurden automatisch in Intervallen von je 100 Sekunden ausgedruckt. Die Strömung ist bei einer Reynoldzahl ≤ 60 mit Sicherheit laminar. Am Brückenausgang wird das Gas über eine weitere «Siebkette» (Kapillare K_e und Kolben B_e) abgepumpt. Bei Messungen mit $o-H_2$ wird das Gas aus dem Vorratskolben auf direktem Wege von Punkt A zu Punkt B geleitet.

2.2. Messgleichung und Dimensionierung der Brücke

Figur 4 zeigt die Prinzipschaltung der Kapillarbrücke. Die Brückenzweige rechts und links sind symmetrisch, d.h. $R_1 \simeq R_2$, $R_3 \simeq R_4$. Unter der Annahme, dass im linken Zweig *n*-H₂, im rechten γ -H₂ strömt, verändert sich R_2 entsprechend dem Viskositätsunterschied $\Delta \eta / \eta$. Die Gasströme werden somit nach (1)

$$Q_{1} = \frac{p_{1}^{2} - p'^{2}}{R_{1}} = \frac{p'^{2} - p_{2}^{2}}{R_{3}}$$

$$Q_{2} = \frac{p_{1}^{2} - (p' - \Delta p)^{2}}{R_{2} (1 + \Delta \eta/\eta)} = \frac{(p' - \Delta p)^{2} - p_{2}^{2}}{R_{4}}.$$
(3)

Dabei ist – wie bereits in 2.1 begründet wurde – die Korrektur für die Gleitung an den Rohrwandungen, die im folgenden in guter Näherung¹) herausfällt, weggelassen. Ferner wird der Wasserstoff als ideales Gas behandelt, wodurch im ungünstigsten Fall (15°K) ein Fehler von 0,6% im Endresultat entsteht. Der Nullabgleich der Brücke erfolgt bei Speisung beider Zweige mit n-H₂; dabei ist

$$\Delta \eta / \eta = 0; \quad \Delta p = 0 \text{ und } R_1 / R_3 = R_2 / R_4.$$
 (4)

Aus (3) und (4) kann unter Vernachlässigung von Termen höherer Ordnung in Δp und $\Delta \eta/\eta$ (Einfluss $\leq 0,1\%$) die Messgleichung

$$\frac{\Delta\eta}{\eta} = \Delta p \cdot \frac{2 p'}{p'^2 - p_2^2} \cdot \left(1 + \frac{p'^2 - p_2^2}{p_1^2 - p'^2}\right)$$
(5)

hergeleitet werden. Der Term $(p'^2 - p_2^2)/(p_1^2 - p'^2)$ entspricht nach (3) dem Kapillarwiderstandsverhältnis R_3/R_1 und hängt wegen der Temperaturabhängigkeit von η und der Gasdichte von der Kryostatentemperatur T sowie von der Dimensionierung der Kapillaren ab. Wegen der Nichtlinearität des Druckabfalls in den Kapillaren wird die optimale Empfindlichkeit der Anordnung nicht wie beim elektrischen Analogon mit vier gleichen Widerständen erreicht.

¹) Der dadurch verursachte Fehler in $\Delta \eta / \eta$ beträgt bei 120 °K ca. 0,8%.

Vol. 44, 1971 Wirkungsquerschnitte in ortho-para-Wasserstoffgemischen

In Figur 5 ist die für die Empfindlichkeit der Brücke massgebliche Grösse $\Delta p/(\Delta \eta/\eta)$ als Funktion von R_3/R_1 bei vorgegebenem Brückenausgangsdruck p_2 für verschiedene Werte des Brückeneingangsdruckes p_1 dargestellt.

Figur 5 Variation der Brückenempfindlichkeit mit dem Kapillarwiderstandsverhältnis R_3/R_1 bei konstantem Brückenausgangsdruck $p_2 = 17,2$ Torr für div. Eingangsdrucke p_1 . Die p_1 zugeordneten Temperaturen T entsprechen Figur 3.

Der Dimensionierung der Kapillaren und der Wahl der Arbeitsbedingungen liegen folgende Überlegungen zugrunde. Die Wahl von $p_2 = 17,2$ Torr ist ein Kompromiss: Einerseits soll p_2 nicht zu klein sein, weil sonst die Gleitungskorrektur (prop. 1/ $(p' + p_2)$) zu grosse Werte annimmt; andererseits würde ein zu grosser Wert für p_2 zu einem bei Messungen mit o-H₂ unzulässig hohen Gasverbrauch führen. p_1 soll insbesondere bei tiefen Temperaturen, wo die grössten Abweichungen vom idealen Gaszustand zu erwarten sind, möglichst klein sein. Das Widerstandsverhältnis R_3/R_1 wurde so gewählt, dass bei der tiefsten Temperatur T = 15°K mit $p_1 = 28$ Torr optimale Empfindlichkeit gewährleistet wird.

Für alle übrigen Messtemperaturen T ist damit und mit der Beziehung $p_1(T)$ nach Figur 3 die Empfindlichkeit $\Delta p/(\Delta \eta/\eta)$ sowie R_3/R_1 festgelegt (gestrichelte Kurve in Figur 5).

Typische Betriebsdaten der Viskositätsbrücke sind folgende:

Druck vor Kapillare K_a	p_a : 690 Torr,
Druck am Brückeneingang	p_1 : vgl. Figur 3,
Druck in der Brückenmitte	<i>p</i> ': 22,0 Torr,
Druck am Brückenausgang	<i>p</i> ₂: 17,2 Torr,
Gasstrom pro Brückenzweig	Q: 0,25 cm ³ NTP/sec.

Da nach Figur 1 der Druck p_2 sowie die Druckdifferenzen $p_k = p_1 - p'$ und $p_w = p' - p_2$ mit Ölmanometern direkt messbar sind, folgt aus (5) die für die Auswertung der Messungen verbindliche Gleichung

$$\frac{\Delta\eta}{\eta} = 2 \ \Delta p \ \frac{\not p_w + \not p_k}{\not p_w \cdot \not p_k} \cdot \frac{2 \ p_2 + \not p_w + \not p_k}{2 \ p_2 + 2 \ p_w + \not p_k} \cdot \frac{\not p_2 + \not p_w}{2 \ p_2 + \not p_w} \cdot \tag{6}$$

2.3. Darstellung von Orthowasserstoff

Orthowasserstoffkonzentrationen oberhalb 75% entsprechen thermodynamischen Nicht-Gleichgewichtszuständen. Trotzdem gelingt es, diese Grenze zu überschreiten, indem man die Rotationsbehinderung der Moleküle in der physikalisch adsorbierten Phase ausnützt, die insbesondere bei tiefen Temperaturen zu einer merklichen Verschiebung des Modifikationsmischungsverhältnisses führt. Durch fraktionierte Desorption konnten verschiedene Autoren (z.B. [18] und [19]) die bevorzugt adsorbierte Orthomodifikation in kleinen Quantitäten nahezu rein darstellen. Diese Methode wird jedoch empfindlich durch die - selbst bei nicht-paramagnetischen Adsorbentien – unvermeidliche Ortho-Para-Konversion gestört. Der Konversionseffekt wirkt sich um so störender aus, je länger das Experiment dauert und beschränkt daher die bei hohen Orthokonzentrationen produzierbare Gasmenge sowie die Zahl einsetzbarer Trennstufen. Da bei den vorliegenden Experimenten sehr grosse Gasquantitäten (ca. 100 Liter) benötigt werden, wurde nur eine einzige, allerdings bei ca. 15°K betriebene Trennstufe verwendet. Damit kann nahezu reiner Orthowasserstoff in Quantitäten von ca. 1 Liter hergestellt werden. Da die Produktion von grösseren Gasmengen bei hoher Orthokonzentration mit grossem Aufwand verbunden ist, begnügte man sich bei den hier beschriebenen Viskositätsmessungen mit einer Konzentration von ca. 90% $o-H_2$.

Figur 6

Apparatur zur Darstellung von Orthowasserstoff.

Figur 6 zeigt die verwendete Apparatur. Normalwasserstoff wird zur Reinigung über eine mit Al_2O_3 gefüllte Kühlfalle geleitet. Ein Hitzdrahtumwandler sorgt dafür, dass die bei der Reinigung eventuell auftretende Konversion rückgängig gemacht wird. Man lässt das Gas während ca. 30 Min. durch ein mit 500 g Al_2O_3 (Korngrösse 0,5–1 mm, während ca. 100 Std. bei 120 °C entgast) beschicktes Adsorptionsgefäss fliessen, das in einem Klipping-Kryostaten auf 15–16 °K gekühlt wird. Nach dieser Zeit ist das Adsorbens gesättigt. Der Gaszustrom wird nun bei A unterbrochen und das über dem Adsorbens stehende Gas während 30 Sekunden abgepumpt. Dann wird das Adsorptionsgefäss mit 200 Watt geheizt und die in den ersten 3 Minuten desorbierte Fraktion abgepumpt. Während der folgenden 10 Minuten können etwa 10 Liter NTP Wasserstoff bei einer Orthokonzentration von ca. 90% desorbiert und in einem

Vol. 44, 1971 Wirkungsquerschnitte in ortho-para-Wasserstoffgemischen

Vorratskolben gesammelt werden. Zur Überwachung der Orthokonzentration in den verschiedenen Phasen des Desorptionsvorganges können Fraktionsproben in den bei B angeschlossenen Glaskolben gesammelt werden. Die Konzentrationsbestimmung erfolgt wiederum durch Messung der Wärmeleitfähigkeit relativ zu n-H₂; im Gegensatz zu Figur 2 werden hier die Gow Mac-Zellen mit stationären Gasfüllungen (p = 200 Torr) betrieben.

2.4. Durchführung der Messungen

Zur Messung von $\Delta \eta/\eta$ als Funktion von T und γ wird die Temperatur der Kapillaren K_1 und K_2 auf den gewünschten Wert eingestellt und die Brücke mit γ -H₂ gespeist. Beide Umwandler (bei D und E, Figur 1) werden eingeschaltet und die Brücke mit Hilfe der regelbaren Anteile von K_3 und K_4 abgeglichen. Der Nullabgleich nimmt ca. 2 Stunden in Anspruch, bis am Differentialmanometer keine Schwankungen mehr registriert werden. Dann wird einer der Umwandler ausgeschaltet. Nach wenigen Sekunden erscheint sowohl bei der Konzentrationsmesszelle als auch am Differentialmanometer ein Signal, das nach einigen Minuten einen stationären Wert erreicht. Während der folgenden 10 Minuten werden der p-H₂-Molenbruch γ , die Anzeige des Differentialmanometers Δp (ca. 5 wiederholte Messungen), sowie der Stand der Ölmanometer (p_k , p_w und p_2) gemessen. Danach wird durch Umschalten der Umwandler die Konzentration in den beiden Brückenzweigen vertauscht und das Prozedere wiederholt. Die Differenz der gemessenen Differentialmanometeranzeigen entspricht dem doppelten Zähigkeitseffekt. Aus den Messdaten γ , Δp , p_k , p_w und p_2 ergibt sich nach (6) $\Delta \eta/\eta$. Jede Messung wurde 5mal wiederholt.

3. Resultate

Die Messresultate für $\Delta \eta / \eta$ sind in Figur 7 und in Tabelle I in Abhängigkeit von der Kapillartemperatur T und von γ dargestellt.

γ (%)	100	80,0	62,4	51,1	44,0	36,2	10,0
<i>T</i> (°K)	$(arDelta\eta/\eta)$ ·	10 ³			12 - M ₂ -1		
15,0	9,01	7,06	5,16	3,54	2,72	1,52	- 2,40
16,0	8,15	6,45	4,70	3,26	2,53	1,50	-2,18
17,0	7,59	6,24	4,59	3,30	2,43	1,44	- 2,18
18,0	7,21	5,76	4,23	2,90	2,31	1,39	- 2,13
19,0	6,90	5,53	4,03	2,80	2,24	1,32	- 2,03
20,3	6,57	5,30	3,86	2,75	2,16	1,34	- 1,92
25,0	5,38	4,33	3,22	2,47	1,83	1,09	- 1,71
29,0	4,64	3,75	2,82	2,18	1,61	0,97	-1,47
64,3	2,12	1,75	1,31	1,00	0,74	0,46	- 0,65
77,3	1,60	1,34	1,01	0,76	0,58	0,35	- 0,56
90,0	1,37	1,14	0,87	0,62	0,47	0,31	- 0,43
120,0	0,81	0,72	0,56	0,42	0,31	0,19	- 0,30

Tabelle I

Figur 8 Temperaturabhängigkeit von $\Delta p/(\Delta \eta/\eta)$ nach (6) und $p_1(T)$ gemäss Figur 3. Die Fehler sind kleiner als die Punktdurchmesser.

Die relativen Fehler in $\Delta \eta/\eta$ sind kleiner als 6,5% und setzen sich aus folgenden Anteilen zusammen: 1. Unsicherheit von $\leq 2\%$ in der Eichung des Differentialmanometers nach der Methode von Lehrer [14]. – 2. Schwankungen bei der Messung von Δp , die in erster Linie auf Temperaturschwankungen im Kapillarkryostaten zurückzuführen sind. Die getroffenen Massnahmen zur Temperaturstabilisierung sowie die Verwendung sehr kurzer, thermisch isolierter Verbindungsleitungen im Brückensystem bewirken, dass diese Schwankungen höchstens 3% des Zähigkeitseffektes erreichen. – 3. Die in Figur 8 dargestellte Eichkurve $\Delta p/(\Delta \eta/\eta) = \text{Fkt.}(T)$ ist mit einem Fehler von ca. 1,5% behaftet, der hauptsächlich von der Unsicherheit bei der Ablesung der Drucke p_k , p_w und p_2 (\pm 0,04 Torr) herrührt.

4. Diskussion

Für das binäre Gemisch von p-H₂ und o-H₂ mit dem p-H₂-Molenbruch γ ist nach Eucken [20] der Koeffizient der inneren Reibung

$$\eta(\gamma, T) = C(T) \left[\frac{\gamma}{\gamma Q_{pp} + (1-\gamma) Q_{po}} + \frac{1-\gamma}{(1-\gamma) Q_{oo} + \gamma Q_{po}} \right]$$
(7)

 Q_{pp} , Q_{oo} und Q_{po} sind dabei die Wirkungsquerschnitte für Para-Para-, Ortho-Orthound Para-Ortho-Stösse. Dem Vorgehen von Becker und Stehl [1] folgend, kann durch Einführung der auf Q_{pp} bezogenen relativen Wirkungsquerschnittdifferenzen

$$q_{00} \equiv \frac{Q_{oo} - Q_{pp}}{Q_{pp}} \text{ und } q_{p0} \equiv \frac{Q_{po} - Q_{pp}}{Q_{pp}}$$
 (8)

unter Vernachlässigung von Termen höherer Ordnung in q_{oo} und q_{po} der experimentell bestimmte relative Zähigkeitsunterschied als

$$\begin{bmatrix} \underline{\Delta\eta} \\ \eta \end{bmatrix}_{(\lambda, T)} = a(\gamma) \cdot q_{p0}(T) + b(\gamma) \cdot q_{00}(T)$$
mit: $a(\gamma) = 2\gamma^2 - 2\gamma + 3/8$,
 $b(\gamma) = -\gamma^2 + 2\gamma - 7/16$
(9)

dargestellt werden. Diese Beziehung ist in Figur 9 mit den Abkürzungen $y(\gamma, T) = (\Delta \eta/\eta) \cdot (1/b(\gamma))$ und $x(\gamma) = a(\gamma)/b(\gamma)$ graphisch dargestellt. Die eingetragenen Punkte entsprechen den Messwertepaaren γ und T; dagegen wurden die Werte für $\Delta \eta/\eta$ den in Figur 7 eingezeichneten «bestfit»-Kurven entnommen. Die durchweg ausgezeichnete Linearität in y(x) demonstriert eindrücklich die Gültigkeit der Mischungsformel (7).

Dabei ist zu beachten, dass bei der Überprüfung der Linearität nur die Messfehler der Sorte 2 (Kap. 3) eingehen, während sich für die Bestimmung der Parameter q_{po} und q_{oo} der Geraden y(x) alle Messunsicherheiten auswirken. Nach (9) bzw. Figur 9 wurden die relativen Wirkungsquerschnittsdifferenzen q_{po} und q_{oo} bestimmt, deren Werte in Tabelle II und in Figur 10 dargestellt sind. Die Fehler in q_{po} betragen etwa 10%, in q_{oo} etwa 5%. Figur 10 zeigt ferner die von Becker und Stehl [1] bei 15,0; 20,3; 63,2; 77,3 und 90,1°K aus Viskositätsmessungen bestimmten Daten, sowie die Resultate von Wärmeleitfähigkeitsmessungen von Müller, Eichenauer, Heinzinger und Klemm [21] bei 21°K.

Da im ganzen Temperaturbereich $q_{oo} > q_{po} > 0$, ist die Grössenfolge der Wirkungsquerschnitte für o-o-, p-o-Stösse eindentig: $Q_{00} > Q_{0p} > Q_{pp}$. Zudem ist stets $(q_{oo}/q_{po}) > 2$, was nach (9) gleichbedeutend damit ist, dass die monoton steigenden Isothermen $\Delta \eta/\eta =$ Fkt. (γ) eine negative 2. Ableitung besitzen. Die Resultate bestätigen somit, dass die in Kap. 1 genannten Symmetrieeffekte allein zur Interpretation der Messresultate nicht hinreichend sind.

Figur 9

Tabelle II

Graphische Darstellung von (9) als $y(\gamma, T) \equiv (\Delta \eta / \eta)(\gamma, T) \cdot 1/b(\gamma) = q_{p0}(T) \cdot x(\gamma) + q_{00}(T)$ mit $x \equiv a(\gamma)/b(\gamma)$.

<i>T</i> (°K)	$q_{00} \cdot 10^{3}$	$q_{p0} \cdot 10^3$	$T~(^{\circ}\mathrm{K})$	$q_{00} \cdot \mathbf{10^3}$	$q_{p0}\cdot 10^3$
15	12,80	4,14	25	8,15	2.15
16	12,06	3,80	29	7,20	1.76
17	11,42	3,50	64.3	3.32	0.65
18	10,88	3,32	77.3	2.70	0.50
19	10,30	3,07	90	2.15	0.40
20,3	9,78	2,85	120	1,35	0,22

Figur 10

Temperaturabhängigkeit der relativen, auf $p-H_2$ bezogenen Wirkungsquerschnittdifferenzen q_{00} und q_{p0} nach (8). --- diese Arbeit (mit Fehlergrenzen), Punkte + entsprechend Viskositätsmessungen nach [1], Punkte \triangle entsprechend Wärmeleitfähigkeitsmessungen nach [21].

Ich danke Herrn Prof. Dr. F. Heinrich für sein grosses Interesse an der vorliegenden Arbeit und für seine stetige fördernde Unterstützung herzlich. Unserem Mechaniker, Herrn M. Racheter, und dem Glasbläser, Herrn B. Nussberger, bin ich für ihre Hilfe beim Aufbau der Messapparatur sehr zu Dank verpflichtet. Herrn G. Salvadé danke ich für seine tatkräftige Mithilfe bei der Vorbereitung der Messungen sehr. Fräulein S. Günther bin ich für die wertvolle Mithilfe bei der Auswertung dankbar.

Der Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung hat die Arbeit finanziell unterstützt.

LITERATURVERZEICHNIS

- [1] E. W. BECKER und O. STEHL, Z. Phys. 133, 615 (1952).
- [2] H. S. MASSEY and C. B. O. MOHR, Proc. Roy. Soc. London A141, 434 (1933).
- [3] G. FALK und A. MANN, Z. Phys. 142, 277 (1955).

- [4] E. G. D. COHEN, M. J. OFFERHAUS, J. M. J. VAN LEEUWEN, B. W. ROOS and J. DE BOER, Physica 22, 791 (1956).
- [5] K. TAKAYANAGI and K. OHNO, Progr. theor. Phys. 13, 243 (1955).
- [6] P. D. NIBLETT and K. TAKAYANAGI, Proc. Roy. Soc. London A 250, 222 (1959).
- [7] R. J. MUNN and L. MONCHICK, Molec. Phys. 16, 25 (1969).
- [8] L. WALDMANN, Physica 301, 17 (1964).
- [9] H. F. P. KNAAP and J. J. M. BEENAKKER, Physica 27, 523 (1961).
- [10] H. ENGELHARDT und H. SACK, Phys. Z. 33, 724 (1932).
- [11] L. B. LOEB, The Kinetic Theory of Gases (Dover Publications, Inc., New York 1961), S. 278.
- [12] L. GRAETZ, Z. Math. Phys. 25, 316 (1880).
- [13] F. P. G. A. J. VAN AGT and H. KAMERLING ONNES, Proc. of the section of sciences 28 II, 674 (1925), Koninklijke Akademie van Wetenschappen te Amsterdam.
- [14] E. LEHRER, Ann. Phys. 81, 229 (1926).
- [15] G. KLIPPING, D. VETTERKIND and G. WALENTOWIZ, Cryogenics 5, 76 (1965).
- [16] G. KLIPPING und F. SCHMIDT, Kältetechnik 17, 382 (1965).
- [17] M. CAMANI und F. HEINRICH, Helv. phys. Acta 39, 567 (1966).
- [18] C. M. CUNNINGHAM, D. S. CHAPIN and H. L. JOHNSTON, J. Am. Chem. Soc. 80, 2382 (1958).
- [19] D. A. DEPATIE and R. L. MILLS, Rev. Sci. Instr. 39, 105 (1968).
- [20] A. EUCKEN, Lehrbuch der chemischen Physik, Band II,1 (Akademische Verlagsgesellschaft, Leipzig 1948), S. 321.
- [21] K. H. MÜLLER, W. EICHENAUER, K. HEINZINGER und A. KLEMM, Z. Naturforsch. 25a, 247 (1970).