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On the Geometry Dependence ofNonlinear Electrical Conduction
in Intrinsic Semiconductors

by W. A. Schlup

IBM Research Laboratory, Zurich, Switzerland

(23. XII. 70)

Abstract. It is shown that for a cylindrical-shaped specimen the current-voltage characteristic
depends in its nonlinear part on the shape and dimensions of the cross-section. It saturates for a
large electric field and constant mobility for any nonlinear recombination rate of electrons and
holes, whereas for a linear recombination rate it exhibits a superohmic behavior. Neglecting
magneto-resistance effects the result can be generalized to field-dependent mobilities. It again
yields a saturation of the current for large fields if a linear recombination law and a saturating drift
velocity are assumed. The result agrees with experimental data essentially for large dimensions.

1. Introduction

It is a well-known fact that any electrical conduction measurement on a
semiconductor of a given shape gives rise to a current-voltage (CV) characteristic I(V, r)
depending trivially on the shape T of the specimen, e.g., the linear ohmic resistance

R(r). It has often been assumed up to now that this (trivial) shape dependence can be
avoided for cylindrical semiconductors, if the experimental data is reduced to a cross-
section averaged current density versus axial field (ACDF) relation jz(Ez, F). This is

certainly true for the linear term, which gives directly the bulk zero-field conductivity
cr0:

a(D a0 (1.1)

Contrary to this, the nonlinear deviations of the ACDF relation, in general, display a
nontrivial, rather strong shape-dependence.

This property has been observed by Jaggi [1] who sampled the hot electron data
by a law

U a0Ez(l-cp(r)ff (1.2)

which seems to fit the conduction measurements quite well at room temperature and

up to rather high fields. Experiments have been done on plates and circular cylinders
in #-type Si. Jaggi and Weibel [2] find that cp, which is related to the (extrapolated)
saturation current, shows a minimum at radius a (or thickness d) ~10~4 m for
extrinsic semiconductors becoming singular for srrfall a (> 10~B m) and nearly linear
for large a (< 10~3 m). The data for intrinsic material is less extensive, but there
is some indication of a similar trend [3].
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In order to explain this effect for intrinsic semiconductors, Jaggi [4] points to the
importance of radial currents of electrons and holes, which add up to zero and which
recombine only at the surface with a velocity s. Another important role is played by
the Lorentz-force giving rise to a pinch of electrons and holes. Though Jaggi's
explanation makes use of the approximation of a constant electron-hole density (i.e.,
constant over the cross-section), it gives a qualitatively correct solution to cp(a) for the
linear range of large a, if a constant electron and hole mobility are assumed.

The purpose of this paper is to give an explanation for cp(d) in intrinsic
semiconductors for plates on the basis of Jaggi's model. Various recombination effects will
be considered and the local mobility can be a function of the field. In order to simplify
the analysis convection, diffusion and magneto-resistance terms are neglected. The
latter can be estimated to give rise to a negligible correction in the nonlinear conduction
(by a factor IO-6 smaller than those observed). The diffusion has been discussed by
several authors [5-7] in connection with the pinch effect. A numerical discussion of the
nonlinear conduction including diffusion will be given by Slonczewski [8]. Preliminary
results indicate no qualitative change in the CV characteristic, except that no
saturation current will exist any longer.

In Section 2 the physical model will be outlined, in Section 3 the solution given
for a plate and Section 4 adds some results for more general cylinders. Finally,
a detailed discussion follows in Section 5.

2. Physical Model

Local Ohm's law will be assumed to be of momentum-equation form with a field-
dependent momentum relaxation time. Forgetting diffusion and kinetic (convection)
terms, it can be written in the form

v -ftq(E) (E + vxB) (2.1)

w ftp(E) (E+wxB) (2.2)

for isotropic materials, where v and w are the drift velocities, and ftq(E), ftp(E) the
field-dependent mobilities of electrons and holes, respectively. Assuming local
neutrality (any space charge would decay with the dielectric relaxation time) the local
charge density vanishes and the electron density n equals the hole-density p for
intrinsic semiconductors (n0 p0 equilibrium densities).

The recombination law for electrons and holes then becomes in the bulk,

div nv div n w — R(n) + R(nf) (2.3)

and at the surface,

nvx nw± S(n) — S(nf) (2.4)

where R(n) is the syntonous volume recombination rate and S(n) the corresponding
surface rate. The total current density (q unit charge)

j qn (w — v) (2.5)

obeys the continuity equation div./ 0.

In a very simple picture the recombination rates follow power laws
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R(n) r n0 (—) S(n) s n0 (—) (2.6)
\ «0 / \ »0 /

where r is the volume recombination frequency and s the surface recombination
velocity. The power 1 2 belongs to direct recombinations of electrons and holes,
whereas 1=1 belongs to a recombination via an impurity level (electron traps).
Highers I's can be attributed to complicated more electron-more hole recombination
processes. These processes compete with each other and I can be quite different
near equilibrium and for high electric fields. Therefore, in general, r, s and even /
have to be considered field-dependent.

Together with Maxwell's equations, equations (2.1) to (2.6) give a unique solution
to the problem of determining the ACDF relation. Since 1=1 and I > 2 behave quite
differently, a classification according to I is necessary.

3. Formulation and Solution for a Plate

We consider an infinite plate with middle plane at x 0 and surfaces at x + a

(thickness d=2a). By symmetry arguments no quantity depends on y and z,
whereas n, vz and wz are even and vx, wx, By and Ex are odd functions in x.

The continuity equation j'x 0 with boundary condition jx 0 for x + a

immediately gives jx 0 or vx wx. By elimination of Ex from equations (2.1) and
(2-2),

vx= -fiqfpEzBy, (3.1)

v, w?- — ^ EZ (3.2)
Pg Pp

are obtained since magneto-resistance corrections 0(B2) axe neglected. The recombination

law gives

[nvr
L\ n0 }

(3.3)

and at the surface x a holds the boundary condition

(3.4)x a: n vr
n A

n,

whereas for x 0 no partial current should enter (source-free middle plane),

x 0:nvx 0. (3.5)

Maxwell's equations for local charge neutrality are fulfilled if the induction law

K Po Iz Poq (pq + Pp) Ez n (3.6)

holds (^o absolute induction constant).

It should be noted that in the case of field-dependent quantities fiq, ftp,r and s

nothing changes, though for isotropic materials E (E'x + Ez)112 has to be inserted as

argument. Since Ex 0(Bf), E'x 0(B2) which has already been neglected; i.e., field-
dependence is consistently accounted for if field-dependent quantities are replaced
by its value at the applied field Ez.
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The average current density through the plate follows from equation (3.6) by
integration,

Poa

Introducing the units

/ r A'2
E0 -,——-7 /o o-o ^o (3-8)

\ Po1no(Pg + Pp)PqPp J

and the dimensionless quantities

1 —. y(f) —-— e ^^
(3.9)

i -- yl), 1=
7o s

the differential equation for y(tf) becomes (¦ d/d£)

(yy)'=f-)'-i (3.10)

and the boundary conditions are

f 0 yy 0, (3.11)

£ =1 Ay y l-(-M ¦ (3.12)

Case Z 1 :

By direct integration of equation (3.10) using equation (3.11) it follows that

y y -y-l; (3.13)
e

applied to f 1 a second equation besides equation (3.12) results for y(l) and y(l),
allowing the determination of i,

1+1- Ife2 + ((1 + l)2 + 2 (1 - l)je2 + 1/e^2
t. e- ^— (3.14)

which for small field gives

t e(l±e2± (3.15)

and for high fields

1+11 1-1 1 \
f £^r(1 + (iTi)^+---)- (3-16)

Case 1=2:
Substituting y p(y), an exact solution of (3.10) is possible. It becomes

ci7w (3i7>
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where

(!-"'
V 1/2

1T^j • (3-18)

The integration constant C follows from

C Ws(z), C lcf,fz) (3.19)

where

fe(z) f JJ* (3.20)
J P(y)

Uz)= Zl{Z) (3.21)YAI 1 - p2(z)je2

and the current

i z\C (3.22)

In the limit ê -> oo (A > 0),

£(*) (1 - 22)1'2/*, y)oo(z) 1 - (1 - ^2)1'2, ^oo(z) (1 - 22)1'2 (3.23)

exist and therefore the saturation current

/ 2 X1'2
to /1 + TJ • (3.24)

For warm electrons and 1 < oo we have the expansion

™y* " n — g2)1'2
'

up to small nonanalytic terms in e, therefore the current is

e2
- 2+--

For 1 oo this expansion becomes

t e(l- (In 2- 1/2) e2+ (3.27)

showing a discontinuity in the cubic-field term.

The high-field result equation (3.24) follows direct from the differential equation
(see Section 4), but whereas equation (3.11) is fulfilled for finite fields, it breaks down
in the limit e -*¦ oo; this means that the electron current has a discontinuity at x 0

or the middle plane acts like a sink of electrons. The saturation formula (3.24) shows

that 1 0 has a specific asymptotic behavior giving no saturation current, but

-fj + --.) (3.28,

i.e., it becomes linear again with a high-field conductivity, which is twice the low-
field conductivity. For I 2 it has been shown that the saturation current is always
approached from below for all 1 > 0. For 1 2 also a monotonicity law for t(e, 1)

holds stating

(3.26)
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((e, If > t(e, 12) if ;.! < 12 (3.29)

or if for a given field Ez, a is increased, the average current density jz decreases.

The electron density shows in all cases a pinch effect, i.e., n(x) decreases and By(x)
increases with increasing x (>0). This means that electrons and holes, because of
n(a) < n0, are generated at the surface planes and move inward according to the
Lorentz force. Though there is volume recombination for \x\ < x1 < a (n(xf n0),
a strong accumulation remains at the center plane in the stationary state; it will be
attained when the electron and hole density in the center region is high enough for
it to be compensated by volume recombination.

Case I 3,4 ...:
Cases with higher recombination power I behave qualitatively, like case 1 2;

the larger I, the smaller the cubic term in the ACDF relation, whereas the saturation
current is independent of / (> 2) as will be proven in the next section.

4. The Current Saturation in a Nonlinear Recombination Model
with Constant Mobilities

The problem discussed in Section 2 will be generalized here to arbitrary cross
sections y. In order to avoid non-existing saturation currents, we restrict ourselves
to l^ 2.

In analogy to the plate a consistent solution to the equation (2.1) to (2.6) and the
Maxwell equations follows from

/, 0 |,s0 (4.1)

since 0(B2) terms are disregarded. If divB 0 is satisfied by introducing the potential
w(x, y) in the x, y plane through

-(-*¦£)¦
the partial currents perpendicular to the z-axis follow from

dw
v f,q f,p Ez-rr- (4-3)

The induction equation

éy>=*-?°-Eji (4.4)
n0

and the recombination equation

V (n v) —r
\«o/

1 (4.5)

with the boundary condition (2.4), (2.6).

Finally, an equation for w in y results, which has a well-defined /-independent
limiting form for large fields,
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» =- ju0a0r

PqPp

Poaos

(4.6)

A
dW

AV-JFdv fiq fip
On the outside of y rot B 0, B± continuous implies

Aw 0 w continuous. (4.7)

The averaged saturation current density becomes from equation (4.4),

;,= —^— j d2xAw (4.8)
Po Q J

(0)

where Q is the area of the cross-section y.
The result is independent of I, since according to equation (4.4) njn0 O (ljEf

and the power term in the recombination equations vanishes. Though it seems that
1=1 would also be included in this result, it can be shown that in this case only the
assumption of unphysical sources will give a saturation of the current (e.g., for a plate,
n vx is discontinuous for x 0 meaning the center plane acts like an electron-hole sink).

The equation (4.6), (4.7) can be solved for a few simple cases. Of practical interest
is the circular cylinder and the double plate:

a) Circular cylinder radius a

r.(^)"(1 + ^'*. (4.9)
\PoPqPpl \ ra/

b) Parallel double plates, thickness d a — b, distance of inner surfaces 2b
(outer surfaces 2a)

r (_f^)"VI+y)"7 ,«0,\ PoPqPp I \ rd J

the result is independent of the inner distance 2b of the plates, in analogy to the
magnetic field of an infinite current sheet which is independent of the distance from
the sheet.

c) One plate of thickness 2a [see equation (3.24)] follows from b) for b 0

\ PoPqPp 1 \ ra J

These three cases can be expressed by one formula,

B-. (^^)"!(1 +^f (4.12,
\ PoPqPp \ rayJ

where ay is some mean radius of the cross-section y defined by
2<?

«y=yy- (4.13)

where U is the circumference of y. It has not yet been investigated whether this result
can be proven quite generally, eventually as an asymptotic approximation for large ay.
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5. Discussion

For l 2,3 the final formula (4.12), (4.13) agrees with the result of Jaggi [4],
if one puts r 0 (no volume recombination processes) up to a factor 2. This difference
comes from Jaggi's approach n const, which does not admit any pinching. For very
thick cross-sections, the saturation current density becomes independent of the shape
of the circumference. The typical length for the influence of the surface is the surface
recombination length

ls=— ; (5.1)
r

it describes the range where surface recombination overrides the volume recombination
effects. For typical semiconductors it is of the order of some IO-3 m, and it is outside
the range of Jaggi's experiments. Therefore a linear dependence of 99(a) is observed,
since a <^ ls still. But cp(a) should become constant for very large a ^> ls, in agreement
with physical intuition. Our result gives a linear «-dependence even for very small a's
and does not explain the increase of <p(a) for small a's observed in experiments,
primarily done on extrinsic material.

The ACDF relation exhibits a super-ohmic behavior for small fields [see equation
(3.26)] contrary to the observation. In order to fit the experimental data, field-
dependent mobilities have to be assumed, which are sub-linear at room temperature
and may well compensate the super-linear behavior in the ACDF relation. But it is
then inconsistent to use the constancy of the mobilities to explain the saturation.
This criticism is very severe, since applied fields go up to IO6 V/m.

The field-dependence of mobilities can be deduced from time-of-flight measurements

[9]. Assuming that for isotropic material v(E) obeys Jaggi's formula, the local
(a fortiori geometry-independent) mobilities become

Pp,q(h) 2F°p,qE (5-2)
1/2

V '

where fjp is the zero-field mobility, and vfq the saturation drift of holes and electrons.
For large fields [t(E)pq behaves like ljE. If the same behavior also holds for the
recombination quantities, a saturation of the current density will result in the case

1=1 (recombination via traps) from equation (3.14).

The saturation current again depends on the geometry, and cp(a) behaves for
small a like a2 and becomes constant for a > ls. Near the point of inflection it shows a
linear behavior. This field-dependent version again does not explain the increase of
99(a) for small a.

The current density for small field will become sublinear if the cubic correction
in equation (3.26) is smaller than the local cubic-field term derived from equation (5.2).

A detailed calculation is only possible if the functions f.q(E), ftp(E), r(E) and s(E) are

explicitly known in the range of fields where nonlinear conduction measurements can
be done.
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For an interpretation of the data in the form of equation (1.2) it is sufficient to
have a model with some quasi-saturation, i.e., r(E), s(E), have only to decrease in
some manner, but the l/E-law is not necessary in that sense.

The author wishes to thank Dr. R. Jaggi for many interesting discussions.
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