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Some Potential Perturbations of the Laplacian

by P. A. Rejto *)

Institut de Physique Théorique, Université de Genève, Genève and
School of Mathematics, University of Minnesota, Minneapolis, Minn. 55455 U.S.A.

(20. III. 71)

1. Introduction

Let —A denote the negative Laplacian acting in free space of dimension d. For
the case of dimensions d 3, Povzner [A.l] and Ikebe [A.2] formulated conditions on
the potential p which ensured that the continuous part of —A+p is unitarily
equivalent to —A. Their growth condition at infinity was generalized concurrently
and independently by Kato [A.25] and elsewhere [A.23].

In this paper, we further generalize this growth condition which is characterized
by a decay exponent at infinity. This is described in more specific terms in Theorem
2.2, which is our main theorem.

In Section 2 we introduce two conditions on the potential and formulate two
theorems. Our Condition I is a limiting case of a condition of Kato and Kuroda. In
Theorem 2.1 we show that if in addition the potential p is small then for a given
interval f} the continuous part of (—A + p)p over 3 is unitarily equivalent to the
corresponding part of —A. Here (— A + P)f denotes the Friedrichs extension of
—A+p. In particular, this part has no singularly continuous spectrum. Next we
introduce Condition II, which is more stringent than Condition I. It holds for bounded
potentials whose decay exponent exceeds (1 ± 1/6). In particular, it holds for potentials
whose decay exponent exceeds (1 ± 1/4), which was introduced by Kato [A.25.b].
In Theorem 2.3, which is our main theorem, we show that Condition II together with
a mild continuity assumption on p implies that the entire continuous part of (— A + p)p
is unitarily equivalent to — A.

In Section 3 we state a previously formulated abstract set of criteria for the
unitary equivalence of two operators. These criteria are stated with reference to a

given Banach space (5 which is not unique. In fact, our choice of this norm has been
motivated by the Kato-Kuroda theory [A. 10], [A. 13] of smooth perturbations. For,
our norm © is defined with the aid of a factorization of the potential which is appropriate

in their sense.

In Section 4 we establish Theorem 2.1. The main difficulty of this proof is to show
that Condition I on the potential implies Conditions GX23(J) of Theorem 3.1. The
proof of this implication, in turn, is based on an estimate formulated elsewhere [B.19].

*) Supported by N.S.F. grant GP-28933.
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In Section 5 we establish Theorem 2.2. The main difficulty of this proof to show
that the more stringent Condition II implies Conditions AX2(J) of Theorem 3.1. The
proof of this implication, in turn, is based on two facts. The first one is formulated in
Theorem 5.1. The second one is a deep result of Kato [B.3] describing the eigen-
functionals of the operator —A+p.

After this work was completed the author learned about the deep results of
Agmon2) [42] announced in Nice at the International Congress of Mathematics.

Acknowledgment. It is a pleasure to thank Professor Jauch for his interest and for
valuable conversations.

2. Formulation of the Results

Let Sd denote the real Euclidean space of dimension d, and let &oo(£d) denote the
class of infinitely differentiable complex valued functions on Ea whose support is
bounded and does not contain the origin. As is well-known [A.34] the negative

Laplacian is essentially self-adjoint on (£oo(£d) and we denote its closure by —A.

For a given potential-function p we denote by M(p) the corresponding multiplication
operator, i.e. the closure of the operator

M(p) f(x) p(x) f(x) xe£d, fe<L(d£). (2.1)

For the case of dimensions d 3 Povzner [A.l] formulated a condition on the

potential p, which ensures that —A + M(p) is essentially self-adjoint on (£<»(£a) and
that the continuous part of its closure is unitarily equivalent to —A. His result was
extended by Ikebe [A.3] who showed that it suffices to assume the condition that
follows. To describe it we need a notation. Specifically for a given potential p we set

P(Ç) smt>\P(x)\, xe£d. (2.2)

Condition P-I. Fhe potential-function p(x) of the variable x in £3 is real and square

integrable over all of £3. Fhere is a positive number e such that for the function p of

definition (2.2) we have

p(C) 0(l)(j\
4f

at f oo. (2.3)

Furthermore p is Holder-continuous with the exception of finitely many points.

The Povzner-Ikebe growth condition at infinity has been generalized concurrently
and independently by Kato [A.25] and elsewhere [23]. Specifically Kato replaced the
exponent in (2.3) by 1 ± 1/4 + s.

Our first condition is implied by the absolute integrability of p and by

limf£(|)=0. (2.4)

2) Added in proof. An informal conversation with Agmon at the recent Scattering Theory
Conference at Oberwolfach led to a sharper result formulated in the Appendix. At the same
conference Kuroda and Lavine announced similar results.
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To describe it in more specific terms for each positive v define an integral-mean for the

function p by setting

I(v, ~p)=E v* {j~]k\)1/2 / ï® # > (2-5)

V + k V1 '3

where the summation is extended over those integers k for which

/ 1 1
kel i>2'3-l, + — v2®+l),

and over the endpoints. The condition that follows imposes a more stringent local
requirement on the potential p than the one of Povzner-Ikebe. At the same time it is
stated for arbitrary dimensions d.

Condition I. Fhe potential-function p(x) of the variable x in £a is such that the

function p(!f) of definition (2.2) is locally square-integrable away from f 0. At the

same time we have

1 oo

J ' L Z(fi\ dfi 4- I Àtfi) dp <?¦ oo (2.6)\n,d>2\md^jm^<0°'
and for d > 2

sup I(v, p) < oo and lim I(v, p) 0 (2.7)
v >0

With the aid of this condition we formulate our first theorem.
It implies that for small potentials the singularly continuous spectrum is absent,

at least over a given interval.

Theorem 2.1. Let 'J be a compact interval of the positive axis which does not contain
zero. Suppose that the potential p satisfies Condition I. Fhen to the interval J there is a

strictly positive constant <50 such that for every è in [— <50, +S] the part of the Friedrichs
extension of —A + ôM(p) over the interval J is unitarily equivalent to the part of —A

over J.
We have not been able to remove completely the smallness condition of this

theorem. However, we can replace it by a more stringent growth condition at infinity,
which follows.

Condition II. Fo the potential p there is a positive number e such that for the

potential

q(x) (1 + \x\Y^° p(x) (2.8)

Condition I holds.

Incidentally note that this condition holds for bounded potentials whose decay
exponent at infinity is greater that (1 ± 1/6). We use this condition to replace the
smallness condition of Theorem 2.1.
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Theorem 2.2. Suppose that the potential p satisfies Condition II. Suppose further
that it is Holder continuous with the possible exception of finitely many points. Fhen the
continuous part of the Friedrichs extension of —A + M(p) is unitarily equivalent to —A.

3. The Previous Theorem on Partly Gentle Perturbations

Let the operators A0 and Ax act in an abstract Hilbert space § and assume that
they are self-adjoint on the given domains 3j(A0) and T)(AX). These domains need not
be equal but we assume that their intersection is dense and we set

V AX- An on ®(An) n t>(Af)

Let J be a given bounded interval and let EnfJ) and Ex(0) denote the spectral
projector of these operators over $. We denote by Aff)) and AffJ) the part of these

operators over 3, that is their restriction to E0(J) § and Ex(3) §>¦

Next let © be a Banach space3) such that both © and § can be embedded in a
metric space 9K. We assume that this embedding is such that © O £j is dense in
V(T>(Af n X>(Af) with reference to the §-norm and in © with reference to the ©-
norm. We assume further that V considered as a mapping of X)(A0) D ^>(Af into S0Î

is continuous with reference to the 931-metric, and hence it can be extended to all of §.
In applications the abstract Hilbert space § is an 22 space and for SO? we choose the

space of measurable functions. Then these requirements are practically no restrictions.
As is well-known [B.7.d], the unperturbed resolvent set, q(A0) contains the points

of the open upper or lower half planes that we denote by ft. For a given interval fi
and angle a between 0 and n\2 we define the regions U±(V) by the relations

K±(3) {ft: Re ft± e 3 0 < arg ft < a} (3.1)±

Note that if tJ is in the spectrum of An then the resolvent R0(/F) (ft — Af-1 can not
be continued onto J as a bounded operator on £>.

Now we formulate the previously mentioned criteria which allow us to continue
the perturbed resolvent onto "3 as a form on ©x ©. To describe this in more specific
terms we introduce a convention. We say that the operators R0(ft) on § determine
bounded forms on © x ©, if the forms4)

[RobJ]® (i, g) {R0(f) f, g) on (© n s) x (© n §)

are bounded with reference the ©-norm. We denote the closure of these forms which
are defined on all of © X ©, by the same symbols [R0((i)]@ ¦ We say that the
operator VR0(fi) in § determines a bounded operator on © if

Fi?0(^)(©n§)C©
and this mapping is bounded with reference the ©-norm. Note that in general
V R0(f,) maps § into ÎR.

3) Previously this Banach space was denoted by 23. To emphasize its key role in defining the
partial gentleness criteria we denote it by ©.

4) Previously following Dirac the inner product was linear in the second argument. At present
we follow Kato and the inner product is linear in the first argument.
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Condition GX(J). For each ft in the open regions HJfJ) the operators R0(/F) on §
determine bounded forms on ©x © and the forms [R0(ft)](s, admit weakly continuous
extension onto the closures H±(J). Furthermore the norms of these forms remain bounded

independently of ft.

Condition GffJ). For each ft in the open regions TtFfJ) the operators VR0(ft) in §
determine bounded operators on ©. Fhese operators, (VRfft))®, depend continuously
in norm on ft and admit continuous extension onto the closures TiFfJ).

Actually in these two conditions it would be sufficient to assume the existence
of the radial limit only, but we shall not be concerned with this fact. Next we assume
that the operator V can be approximated in the following manner.

Condition G3(J). Fhere is a sequence of operators, {Vk}, such that for each k and ft
in the open region TlAfJ), the operators Vk R0(ft) are defined on all of $j and are bounded.
Fhe pair (A0, A0+ Vf satisfies Conditions G12(J). Furthermore

k
lim \\(VR0(/i))@-(Vk A0(p)).|| 0

Note that if V is A0 bounded with reference the §-norm then we can set Vk V.
That is, in this case, Conditions GX(J) and GffJ) imply Condition GffJ). We refer to
these three conditions by saying that the pair of operators (A0, Ax) is gentle over the
interval J, in short partly gentle. Next we state the two additional conditions.

Condition AffJ). For every co in the closed and bounded interval J, the operators
(1 — VRjf(m))& are invertible. Fhat is, they admit bounded inverses defined on all of ©.

Condition AffJ). For each ft in R±(J) on § determine bounded forms on ©x ©.
Fhese forms are related to the unperturbed resolvent via the second resolvent equation,

[RMlo - iRo(f)h [ÄiG»)]« (VR0(f)U

An elementary argument [A. 13] that if the operator V is ^40-bounded with
reference the §-norm then the gentleness conditions and Condition AX(J) imply
Condition AffJ).

After these preparations we formulate a theorem on such perturbations which was
established elsewhere [A.13].

Theorem 3.1. Suppose that the pair of operators (A0, Af is satisfies Conditions
GX23(J) over the closed and bounded interval J. Suppose further that Conditions AffJ)
and AffJ) hold. Fhen AffJ) and AffJ), the part of these operators J, are unitarily

4. The Proof of Theorem 2.1

To derive Theorems 2.1 and 2.2 from the abstract Theorem 3.1 it is convenient
to introduce a new perturbed and unperturbed operator. Let Sa-i be the (d — 1)-
dimensional unit sphere and define the unitary transformation T mapping 22(£d)
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onto£2((0, oo), £,(&_!)) by

T m (u) |w-«'2 f(i u) i e (0, oo) u e Sd-X. (4.1)

Clearly the adjoint is given by

We define the new unperturbed operator, acting in £2((0, oo), 22(Sct-i)), to be the
Friedrichs extension of

A0 T(-A) F* on T <£»(£,) (4.2)

To define the new perturbation first each f define the operator p0(i) on £2(S<j_i) by

PS) <p(u) p(Ç u) <p(u) ueSd_x, cpe£2(Sd-r)- (4-3)

Then we see from definitions (4.1), (4.1)* and (2.1) that T carries V into multiplication
by this £2(Sa~i) operator valued function. Specifically,

M(p0) F M(p) T* (4.4)

and we take this to be the perturbation.
Next we introduce a gentleness norm with reference to which the conditions of

the abstract Theorem 3.1 hold for the pair of operators ((A0 + M(P0))f, A0). We

define this norm with the aid of the positive function p of (2.2) by setting

§ fi2((0,oo),£2(S^1)) (4.5)

where

l/l
A'*

,p.
M(i) * (4.6)

The choice of this norm has been motivated by the considerations of Kato and
Kuroda [A.24], [A.27]. For it defines a factorization of the perturbation which is

appropriate in their sense.
a) Condition GX(J). To verify this condition we first observe that the norm of the

sequilinear form of R0(/t) on ©x © is majorized by the § norm of a corresponding
operator. Specifically

I! [RMÎ Wm < \\M(P)m RM M$)W \\9 (4.7)

For, remembering definition (4.5) we see that

§n®c 5t(M$)!'2).

Hence

/ /1\1/2 ~ /1\1/2
(R0(f)f,g)%=(Ro(lt)M(pfi2M^j f, M(pf>2M[-
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Appling the Schwarz inequality and using definition (4.5) again, we obtain

I [*,(/»)]« (A g) I < \\M(Pf>2 R0(fi) M(pfi2\\^ ¦ U/h. • ngy,

This completes the proof of relation (4.7). Hence the uniform boundedness part of
Condition GX(J) is implied by the uniform of the family of operators on §,

Fi/t) M(PY<2 RM M(pf2. (4.8)

This uniform boundedness was established elsewhere [A.43.a]. A repetition of the
arguments leading to relation (4.7) shows that for each pair of points ft and co in
R±P),

\\[R0(/t)] - [R0(co)] ||B < \\M(p)W (Rff) - Rfco)) M(pfl2%

Hence the boundary value requirement of Condition GffJ) is implied by the existence
of the boundary values of the family of operators in (4.8). This was shown elsewhere

[A.43.a], for every compact interval of the open positive axis. These two facts
together establish the validity of Condition GX(J) for every such interval J.

b) Condition GffJ). To verify this condition first recall definition (4.5). This
shows that

\\M(pf R0(ft)f\\® I W-V'2 M(Po) Ro(f) f | •

\p I S

It is clear from definition (2.2) that

/iy/2 /i\i/2|
AV M{*')M{j)

These two relations together with definition (4.5) show that for each / in § O ©,

\\M(Pf) R0(ft) f II® < || M (pfi2 R0(f) M(pf2 ||e • U/H. (4.9)

At the same time it follows that

\\M(pf RJji) - M(p0) R0(a>) ||8 < !|M(^'2 (R0(/t) - R0(co)) M(pfi2\\^

<1

Hence the validity of Condition GffJ) is implied by the existence of the boundary
values, with reference the ^-operator norm, of the family of operators in (4.8). This
existence was established elsewhere [A.43.b], for every compact interval J of the

open positive axis. This, in turn, establishes the validity of Condition GffJ) for such
intervals.

c) Condition GffJ). To verify this condition for each positive k define the truncated
potential by

1

M*)
p(x) — < \x < k

k
0 otherwise

According to an argument used elsewhere [B.8] the operator M(pf R0(ft) is defined
on all of § and it is compact, in particular bounded. Clearly the truncated potentials
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satisfy conditions Glti(J). Definitions (2.2) and (4.5) show that

\\M(pf R0(ft) - M(pk>0) Rff) ||, < Hilf ((p - pf (1/pyi2) Rfft) M(pfl2\\ç

According to an estimate formulated elsewhere [A.43.c] the right-member tends to
zero as k tends to infinity. This establishes the validity of Condition G3(J). At the
same time it follows that the operator (M(p0) R0(fi))® is compact. We shall make
essential use of this fact in Section 5.

d) Condition AffJ). To verify this condition we need an additional smallness

assumption. Specifically set

1

sup \\M(p)WR0(ft)M(p)V2\
ßeTt±CJ)

According to the already established Condition GffJ) the supremum in the denominator

is bounded from above and hence <50 is bounded from below. Clearly, for each
real number à and complex number /x in TIJfJ), we have

\d| < d0 implies \\M(ôp)W R0(ft) M(ôpfl21|« < A.

Hence, remembering relation (4.9), we obtain

\\M(èp0)R0(fi)\\@^j.

According to the already-established Condition GffJ), this family of operators can be

continuously extended in the ^-variable onto the closures Tl±('J)- Hence, for each co

in these closures, the operators (/ — M(ôp0) i?0(<w))@ are invertible. That is to say
Condition AffJ) holds.

e) Condition A 2( J). To verify this condition all that we do is to refer to an argument
used elsewhere [A.23.c]. This shows that under general circumstances Condition GffJ)
and Condition AX(J) together with the compactness of the operator M(p0) R0(/t)
imply Condition AffJ).

Having established these conditions we can easily establish Theorem 2.1. In fact,
inserting the validity of these conditions in the abstract Theorem 3.1 we arrive at the
validity of Theorem 2.1.

5. The Proof of Theorem 2.2

We derive this theorem from the abstract Theorem 3.1. According to Section 4

for each compact interval J of the open positive axis Condition I alone implies
Conditions G123(J). Since according to Section 2 Condition II is more stringent than
Condition I, it also implies Conditions Gi,2,3(^)-

a) Condition AX(J). To verify this condition we show that for each to in J the
operators (1 — M(p0) Rf(co))& are invertible. According to Subsection 4.c the second
terms are compact and hence according to the Fredholm alternative [B.15.a] it
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suffices to show that each of these two operators is one to one. This is the statement
of the theorem that follows.

Theorem 5.1. Suppose that the potential p satisfies Condition II. Suppose further
that co is an exceptional point of the open positive axis and h is an exceptional vector in ©,
that is to say

(l + M(pfRf(co))mh 0 or (l + M(pa)Rf(co))mh 0. (5.1)

Fhen

h 0 (5.2)

To establish this theorem we first note that the exceptional sesquilinear form
[Rf(co)]<§ and the exceptional vector h define a linear functional on ©. Namely, the
functional which assigns to the given vector g in © the complex number [Rf (co)] © (g, h).
In view of our choice of © this functional corresponds to an Q.2(Sd-r) valued function
and symbolically we set

oo

Rf(co) h(i) =jrRt(o>) (I, rf h(rj) dr/ (5.3)
o

One of the ingredients of the proof of Theorem 5.1 is an asymptotic description of the
norm of this fi2(S(j_1)-valued function. For brevity set

« £2(S.-i)-

This asymptotic description makes essential use of the fact that the operator A0
admits a family of reducing subspaces and on each of them it acts like an ordinary
differential operator. To describe this in more specific terms we need the notion of the
Laplace-Beltrami operator acting in £2(S<z_i). It was emphasized by Kato [B.3],
that this is the operator B0 determined by the requirement that for every smooth
function / in § for which /(0) 0

a0 m ni) -1 (b0 + AAAJArA) m. (5.4)

As is well known [B.12], B0 is self-adjoint, its spectrum is discrete and it is given by

(0 d= 1 I

A(Z) (5.5)
\l(l +d-2) dfr2 1 0,1,2,... I

Let (£(/) denote the eigen-space of B0 with eigen-value 1(1), and let 0(1) denote the
ortho-projector on (£(/), That is set

0(1) Q2(Sd-i) =m 0(l) 0*(l), 0(l)2=I.
Following Dixmier [B.14] we set

S2((0, oo), ©(/) fi2(0, oo) ® (£(/) (5.6)
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and denote by 7® 0(/) the ortho-projector onto this subspace. An elementary
argument shows that this subspace reduces the operator A0. Let L(l, d) be the fl2(0,
©enclosure of the operator defined by

L(l, d) cp(i) <p'(£) - A. ^(/) + ^FZA^LZAj v{$ (5.7)

for those complex valued smooth functions which satisfy the boundary condition
<p(0) 0, we have bounded support and for which the right-member of (5.7) is in
£2(0, oo). Then the resolvent of this ordinary differential operator is related to the
restriction of the resolvent of A0 to the reducing subspace (5.6) by

/ <g> 0(1) ¦ R0(fj.) (ft- L(l, «*))-! ® 0(1) (5.8)

After these preparations we formulate a lemma, which is the first step in the
asymptotic description of the norm of the ^[-valued function (5.3).

Lemma 5.1. For the exceptional value co and exceptional vector h of Fheorem 5.1

we have

I RfH m Ist Od1'6) at | oo. (5.9)

Let y (I, m) denote the spherical harmonics in the usual notation [B.12] and set

h 2Jh(l, m) (g) y(l, m) (5.10)
l, m

As is well known [B.12] for each I the spherical harmonics y(l, —I), y(l, +1) span
the eigenspace of the Laplace-Beltrami operator with eigenvalue X(l). In other words

{y(l,-l),...,y(l,-l)) 0(l)USd-i).

This fact together with relation (5.8) and (5.10) shows that

Rf(co) Â(f) =£(co - L(l, d))-1 h(l, m) (|) ® y(l, m) (5.11)
l, m

Since the {y(l, mf] form a complete ortho-normal set in 31 this yields

I Rt(<») *(D II =E I (m - L^ ^Y1 hV>m) (f) i2 • (5-12)

To estimate this sum for each value of | we break it up into two parts, as follows.
First, for each integer d, define a sequence by setting

/ id — 2)2 \1/2
v(l, d) il(l + d-2) + — 1 1 0,1,2,.... (5.13)

Second, for each positive v and for the fixed co, we define three intervals by setting

1 v
X(v) 0,

2 fco j ' (5.14)!
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X(v)

3.M

"1 V

f2~Ya>'

"3 v

3 V

~2~

oo

fco
(5.14),

(5.14)3

Third for each positive £ we define t/1(l) to be the set of those integers / for which the
function v(l, d) of definition (5.13) has the property that

Ç e Jx(v(l, d))

The set of integers J2-3(Ç) is defined similarly. Finally we define

si(£) E I (w - L{-1' ^))_1 *& m) ® I2 •

leJHS)

and

4(f) E \((o-L(l,d))^h(l,m)(i)

Here and in the future the summation over m runs between — I and

brevity we do not indicate these limits explicitely.
It is clear from definition (5.12) and (5.15)12 that

\Rt(co)h(Ç)\l s*(Ç)+sl(i).

To estimate the first sum, s2(£), recall that by definition of the kernel

(5.15)!

(5.15),

and for

(5.16)

| (co - L(l, d))-1 h(l, m) (£) \2 | / (co - L(l, d))~l (|, rj) h(l, m) (rj) drj \2 (5.17)

According to definition (4.5) to the function A in © there is a function h such that

(5.18)h(rj) (p(rj) )!'2 h(rj) h e fi2(0, oo) ® %

Since p is spherically symmetric this yields

h(l, m) (rj) (p(rj))V2 • W, ™) (rj) h(l, m) e £2(0, < (S.18),,

Inserting this relation in equation (5.17) and applying the Schwarz inequality we
obtain

| (co - L(l, m))-1 h(l, m) (|) |2 < / j (co - L(l, d))-1 (|, rj) \2 p(rj) dr) ¦ \\h(l, m) \\2

(5.19)

To estimate the right member we need an estimate formulated elsewhere [B.19]. To
describe this estimate let the function cpv be a solution of the differential equation

(9V(*)),¥>.«=Wl
1

»,(1) 0 (5.20)„
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The fact that we incorporated v in the equation is a technicality. Aside from this
technicality, it is the basis of the asymptotic theories of Erdelyi [B.5] and Olver [B.7]
and it goes back to Langer [B.l]. Let C(tpf be the adjusted composition operator
corresponding to this function. Specifically, for a given complex valued function f(z)
of the complex variable z set

c(<pv) /(*;
/ i \1/2

\ Ç>,(*) /

We shall apply this operator to the function n defined by

/ | 1 \W\
n(z) min 11, —j

(5.21)

(5.22)

With the aid of these notations the previously mentioned estimate [B.19.a] can be

formulated as follows; there is a constant 0(1) such that for every fi and I and (f, rj)
in (0, oo) x (0, oo) we have

O + i)(ft-L(l,d))-i(S,v) 0(1)
f-ft

cWH^ijcW«^ft \

Since the supremum of the first factor for ft in 7l±(J) is finite this yields

(ft-L(l,d))~i (i, r)) 0(1) (v+1)

This, in turn, inserted in (5.19) yields

[\{w- L(l, d))-1 (i, r/) \2 p(rj) dr, 0(1) • (v + I)2 ¦

C(cpf n i

*'(§)*'(^) (5.23)

l/—ft)C(cpv)n\^-t
— i v

/-coCO \ p(rj) dr)

(5.24)

By definition the sum s2(£) is extended over those values of / for which £ is in the
interval Jx(v), where v v(l, d) is defined (5.13). It is clear from definitions (5.20)„>
and (5.22) that

1/4

min.(|?)y(«)|W 1). (5.25)I C(cpf n(z) |

v" z" — 1

Remembering definition (5.14)x this shows that for £ in the interval Jx(v

f-co "¦ 2^i^) -khY (5.26)
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According to an estimate formulated elsewhere [A.43.c]

oo

/
j
C(<p„) n (^- r)}

*

p(rj) dr, 0 (—A_j (5.27)

o

Inserting these two estimates in estimate (5.24), for such f we obtain

oo

f\(co-L(l,d))-i(Ç,r,)\2p(r,)dr, 0(1).
o

Inserting this estimate, in turn, in estimate (5.19) we obtain

4(i) 0(l) £ \\h(l,m)\\2, (5.28)
lejHC)

if we remember definition (5.15)!. According to definitions (5.18) and (5.18) lm the
sum extended over all (I, m) is finite. In fact,

E\\h(l,m)\\2= P||2<oo.
i, m

Inserting this fact in estimate (5.28) we arrive at

sup s2(f) < oo (5.29)

Incidentally note that in the proof of this estimate all that we needed was that the
potential p satisfy Condition I.

To estimate the second sum, s|(|), we shall make essential use of the fact that p
satisfies the more restrictive Condition II. Let U0 by a spectral transformation of the
unperturbed operator A0. More specifically it is a unitary transformation which
carries A0 into the multiplication operator on £2((0, oo), 51). Then according to the
basic Lemma 3.1 of [A.16], assumption (5.1) implies that

Un h(œ) 0 (5.30)

Let U0(l, d) denote a spectral-transformation of the operator L(l, d). Then relations
(5.8) and (5.30) together with definition (5.4) show that

US, d) h(l, m) (co) 0. (5.30)lm

Since L(l, d) is an ordinary differential operator we can construct a spectral
transformation for it according to the considerations of Titchmarsh [A.31]. Specifically,
we can obtain its kernel from the boundary values of the kernel of the resolvent. For
brevity we omit the details and just give the result. Namely,

Ufl, d) (|, rj) ß(v) /„,„ (A"A n (5.31)
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where ß(v) is some constant depending on v v(l, d) and tli3 function fv>0 is related
to the boundary value of the resolvent by the formula

(co- L(l, d))-1^, rj) a(v, (5.32)

where a(v, co) is some constant. Insertion of formula (5.31) in relation (5.30) lm yields

/«&) h(l, m) (rj) dr, 0

This, in turn, inserted in formula (5.32) yields

(ft) - L(l, d)fl h(l, m) (£) %(v, co)

(/— CO y-cot,.AL=s)t,JFrf-iJ^t)\ —iv j \—iv J ' \ — iv
h(l, m) (rj) dr.

(5.33)

Remembering definition (5.18) and applying the Schwarz inequality, we arrive at

| (co - L(l, d))-1 h(l, m) (|) |2 < \<x(v, co) \2 / \h(l, tn) (rj) \2 dr,

i,., (£5 A ,,„ (flrf _ /m (Fjl A u„ (Ff A
\—iv J \—iv J \—iv I \—iv J

p(rj) dr.

¦ (5.34)

According to definition (5.17)2 the sum s|(|) is extended over those values of I for
which | is the union of the intervals J2(v) and J3(v). In view of definitions (5.14)2i3
this yields in

1 v 1 v
ç ^ -=- and r, > =¦,2 fco ' 2 fco

if we remember the limits of integration in relation (5.34). According to an estimate
formulated elsewhere [B.19.b], for this range of the variables f and r, we have

/;~m 0(1) C(cpf n
}/—co-0

and

/,,.(-ty).„(1)CW„(L:.y)

(5.35)0

(5.35)o

At the same time it follows that for fixed co the constant oc(i>, co) is of the order

j a(v, co) | 0 (v + 1) (5.36)



722 P. A. Rejto H. P. A.

Insertion of these estimates in relation (5.34) yields

| (co - L(l, d))-1 h(l, m) |2 0(1) (v + l)2 / \h(l, m) (rj) \2 dr,

C(cpf n
v-<co À 2

^, lf-oi \
71) CMn[~ÏVV p(rj) dr,

(5.37)

According to assumption (2.8) the potential p can be written in the form,

/ 1 \l/6 + e

tW iTTiJ ~q{ri) '

where q satisfies Condition I. Hence

oo _
¦y-w \i2

C(<p,v)"(^7,?) P(rj) dr, <
1 \1/6

1 + 1
C(cpf n

V--co \— r,\
iv I

~q(rj) dr,.

(5.38)

Since q satisfies Condition I we can replace p by q in estimate (5.27). This yields
oo

j C(<pf n {^ r,} f q(rj) dr, 0 (-A-) (5.39)

Inserting estimates (5.38) and (5.39) in estimate (5.37) we obtain

| (co - L(l, i))-i h(l, tn) (if |2 0(1) (v + 1) (y^V
"

C(cpf n &*) \h(l, m) (rj) \2 dr,

(5.40)

It was observed elsewhere [B.19.d] that definition (5.20)„,, (5.21) and (5.22) imply for
each positive

Cfff n L^ |-i v
0(1)

/ 1 \1/3 /
I 1 mm\v+l) \

l.l£ f

This estimate together with definitions (5.14)2> 3 yields for each U2(v) \j U3(v) in

'f-co .\|2/ 1 \1/6 + e

«•(5s) (nr) '-wate"- (5.41)

Inserting relation (5.41) in estimate (5.40) we arrive at the existence of a constant
0(1) such that for every such and for I 0,1,

| (co - L(l, d))-1 h(l, m) |2 0(1) (1 + !)1/6~6 f\h(l, m) (rj) \2 dr, (5.42)
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The summing these estimates over those values of / for which the given fixed is in
the union of the intervals J2(v) or J3(v) and remembering definition (5.15)2 we arrive at

oo

s2(!) 0(1) (1 + tffi-E f\h(l, m) (rj) |2 dr,
I, m %

From this, in turn, remembering definitions (5.18) and (5.18) lm we arrive at

CO

s2(!) 0(1) (1 + ^-ef\h(rj) lit dr, (5.43)

At the same time it follows from definition (5.18) that

\h(rj) \\dr, < oo

Finally inserting estimates (5.29) and (5.43) in relation (5.16) we arrive at the validity
of conclusion (5.9) of Lemma 5.1.

In the proof of Theorem 5.1 instead of Lemma 5.1 we need a sharper result. This
is formulated in the lemma that follows. The proof will make essential use of the
estimates of Lemma 5.1 and of a induction argument that goes back to Ikebe [A.3].

Lemma 5.2. Fhe exceptional vector h of Fheorem 5.1 is such that

lim|i?±(«))A(!)|a 0. (5.44)

To establish this lemma first we maintain that

lim s2(!) 0 (5.45)
£ oo

For, it is clear from inequality (5.34) that for each fixed I

OO

I (co - L(l, d) |-i h(l, m) |2 0(1) f 11(1, m) (rj) \2 dr,
s

This estimate together with estimate (5.28) yields the validity of relation (5.45) if we
repeat the arguments leading to relation (5.29).

Insertion of relation (5.45) and estimate (5.43) in definition (5.16) yields

/ oo \l/2
I RtH *(*)!«= 0(1) (1 + !)1/12"e/2 / f\h(rj)\\dr,\ + o(l) (5.46)

In case the exponent of the second factor is negative or zero conclusion (5.44) clearly
holds. Accordingly assume that

-j - | > 0 - (5.47),
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Recall assumption (5.1) which shows that

|Atf)|«<£(£)|*£(«>)A(0|«.

Hence remembering definition (4.5) we obtain

\mw<(m)ii2\Rt(oy)mw-
From this, in turn, remembering assumption (2.8) we obtain

/ 1 \ 1/12 + 6/2

\m |« < (yTJJ W" I Ro(^ h® W, (5-48)

where q satisfies Condition I. Inserting estimate (5.46) in inequality (5.48) we arrive at

\h(S)U o(l) (y^j)26'2 Cm)112, (5.48)x

if we use (5.47)0 and that according to definition (5.18)

CO

f\h(rj)\\dr, 0(l)
s

Inserting estimate (5.48)!, in turn, in estimate (5.46) we arrive at

| Rf(co) A(0 |. o(l) (1 + Di/12-ü+ i/2>* + 0(i) (5.46)!

if we use that since q satisfies Condition I

oo

jq(£) d£ < oo

i
In case the exponent of the second factor in (5.46)x is negative conclusion (5.44)

clearly holds. Accordingly assume that

i-(i + y)«>o- <5-47>i

This allows us to repeat the previous argument and we obtain

|À(!) |, 0(i) (yTjY'2^(l))1/2 (5-48)a

Next let k be the smallest integer for which relation (5.47)t does not hold, that is for
which

— - \k + — |e <0.12 I 2 / ^
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Then it is clear from the previous argument that

| Rf(co) h(£) |w 0(1) (1 + f)l/12-(*+l/2)e + o(1) _ (5_46)^

This implies the validity of conclusion (5.44) and completes the proof of Lemma 5.2.

Having established Lemma 5.2 we return to the proof of Theorem 5.1. According
to the other basic Lemma 3.2 of [A.16] assumption (5.1) implies that the function

/(!) Rf(co) A(0

is a weak solution of the equation

(An + M(pff cof.

Remembering that A0 is unitarily equivalent to the Laplacian, we can invoke a

version of a theorem of Kato [B.3]. This implies that /(!) 0 for large enough which,
in turn, together with the unique continuation principle [B.10] implies that /(!) 0

for every Finally remembering assumption (5.1) we arrive at the validity of conclusion

(5.2). This completes the proof of Theorem 5.1. At the same time this establishes
the validity of Condition AX(J).

b) Condition AffJ). To verify this condition all that we do is to refer to an
argument used elsewhere [A.23.c]. This shows that under general circumstances
Condition G3(J) and Condition AX(J) together with the compactness of the operator
(M(pf Rn(ft))® imply Condition AffJ).

Having established these conditions we can easily establish Theorem 2.2. For,
inserting the validity of these conditions in the abstract Theorem 3.1 we arrive at the
following: over each compact interval J of the positive axis which does not contain
zero, the parts of the perturbed and unperturbed operator are unitarily equivalent.
This fact together with the countable additivity of the spectral projectors implies
unitary equivalence of the parts over the entire positive axis. The arguments of
Subsection 4.c show that the difference of the perturbed and unperturbed resolvents
is compact. Hence the part of the perturbed operator over the positive axis equals the
entire continuous part. This establishes the validity of Theorem 2.2.

APPENDIX

A Charper Version of Theorien 2.2

In this appendix we show that the conclusion of Theorem 2.2 holds under the
following, more general condition.

Condition A. Fo the potential p there is a positive number s such that the potential

(1+ \x\Yp(x)

satisfies Condition I.
More specifically we show that for such potentials the following theorem holds.

Theorem A. Suppose that the potential p satisfies Condition A. Suppose further
that it is Holder continuous with the possible exception of finitely many points. Fhen the

continuous part of the Friedrichs extension of — A + M(p) is unitarily equivalent to — A.
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We derive this theorem from the abstract Theorem 3.1. Clearly Condition A
implies Condition I. Hence remembering the proof of Theorem 2.2 we see that
Conditions GX23(J) hold for the present perturbation problem. At the same time we see

that the validity of Conditions Ax ffj) is implied by the validity of Theorem 5.1 for
the class of potentials satisfying Condition A.

We establish Theorem 5.1 for this class of potentials with the aid of the two
lemmas that follow. They are similar to Lemmas 5.1 and 5.2. The argument used to
establish these lemmas was called a boot-strap argument by Agmon. In fact the
norm for the present boot-strap argument was suggested by him during an informal
conversation at Oberwolfach.

Lemma A-1. Suppose that the potential p satisfies Condition A and define the

positive number e by this condition. Let the positive number co and the vector h in (5 be

the exceptional value and exceptional vector of Fheorem 5.1. Fhen for each positive
integer n we have

\RtWHt) I i?(0(i+ *)"*#<<»¦ (A-1).

First we establish this conclusion for the value n 1. In other words we claim
that

^MMf)]! £(!)(!+ !)<*!<<*> (A-1)!

To verify this recall estimate (5.24) which says that

| (co - L(l, d))-1 rj) \2p(rj) dr, 0(1) • (v + l)2 C(tf) rt (A-"»I)*
IV J

&) 2

p(rj) dr.

By assumption the potential (1 + \x\)ep(x) satisfies Condition I. This assumption
allows us to apply to this potential the basic lemma of [A.43]. Its conclusion says
that there is a constant 0(1) such that for every v

v v(l,d), 1=0,1,...,
we have

oo

(v A 1) J cw.fe«)
0

It follows, in particular, that
oo

(v+1)J CM n (*=£,)

p(S) (1 + !)e d£ 0(1). (A-2)

p(S) dÇ 0(1).
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Inserting this estimate in (5.24), which was recalled before (A-2), we obtain

| (co - L(l, <*))-* r,) \2p(r,) dr, 0(1) ¦(*+!)• C^n(^ (A-3)

Inserting estimate (A-3), in turn, in inequality (5.19) we obtain

| (co - L(l, d))-* h(l, m) |2 0(1) • (v + 1) • C(Pf n P~- A

II 1(1, m) ||2

Finally inserting this estimate, in definition (5.12) we arrive at

\ RtH H£) \l= 0(1)E(v A 1)- C(Pfn(^-i "

l, m \ —IV
h(l, m)

(A-4)

(A-5)

Recall relation (5.25) which shows that for each the family of functions

(v + 1) ¦ C^nUfTLA
is bounded. Note that we do not need and it is not true that this bound is uniform
in v. All that we need is that for almost every the family of positive functions

/*(i) 2> + i)
î-0, m

• p® ¦ (i + tr*>"(^H
does converge. Hence application of Fatou's lemma [B.15] yields

oo

2> + i)

<E / (" + ¦

\ —iv
K!) (1 + II *(/. »») II2 <*!<

.^(!)(l + !)^!-||À(^m)

(A-6)

Inserting conclusion (A-2) in this estimate we obtain

* Z oo

2> + i)
Z-0, m

C(0J n (l-£ A '
p(£) (1 + if • || h(l, tn) ||2 if

/ oo

0(1) E\\h(l,m)\\

(A-7)

From this estimate, in turn, we obtain

oo

j l ä±(co) A(!) 11 £(!) (l + !)* # 0(1) || h ||2. (A-8)
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if we multiply estimate (A-5) by p(£) (1 + !)e and integrate over and recall relations
(5.18), Since according to (5.18) the right-member is finite we arrive at the validity
of conclusion (A.1)^

Next we establish conclusion (A-l)2. First we maintain that the function s2 of
definition (5.15)j is such that

s2(!) • p(S) (1 + !)2e d£ < oo (A-9)

To establish this estimate set

m
£.(£)- / \(a>)-L(l,d))-i(Ç,r))\2p(rj)drj (A-10),

and

t\,M) =y I (ft) - L(l, «*))-* rj) \2p(r,) dr,

m

Then clearly
oo

<U« + &,(*) f I (o>- Uh d))-1 f/) I2 P(V) dv

(A-10),

and in analogy to estimate (A-3) we have

| (co - L(/, i))-i A(/, m) |2 < 2 i2^(!) • || A(/, ») II2

oo

+ 2tlfÇ)J \h(l,m)(r,)\2dr,.
4/2

(A-ll)

To estimate tXiv(!) we need an estimate which is implicit in [B.19]. It says that to each
bounded subset of £x x £x there is a constant 0(1) such that for every (!/i>) and (jj/v)
in this subset,

| (co - L(l, rf))-i | (0(1) - (v + 1) ¦ min [(~j • (y)")

• C(Pf n (-& S) C(Pf n (£». r,
\ — iv ] \ — iv

(A-12)

Next we choose the value I and the corresponding value v in terms of To do this
recall definition (5.14)x which shows that

e 3X(!) implies <
1 1

~2 ~fcù
(A-13)
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Hence for such values of I the kernel in definition (A-10)1 can be estimated by the
right-member of (A-12). This yields

%,AS) 0(1) C(<f>fn[ÏF^ç
-i v

4/2

(f)

(V+l)2

C(Pfn p(rj) dr,.

This in turn, yields

tl M o(i). (v + i). C(Pv)n[^ (tT- (A-14)

if we replace the first factor in the integral by its maximum and estimate the resulting
integral by conclusion (A-2). At the same time remembering (A-13) we see that for
such values of I the corresponding value of v is such that

ym < 2 v

Hence for each positive integer k we have

-Mihï-
Inserting this estimate in (A-14) we obtain

tlfi) 0(1) - (v + 1)

1 \"
~2

i \*
r±y (A-15)1cw.(ty)

To estimate £2>J,(!) recall the key estimate (5.23). Inserting it in definition (A-10)2

• (v + l)2 j C(Pf n (AZ"_ A

4/2

cW.(-ty,)

we obtain

&M o(i)

p (rj) dr,.

Clearly

4/2

C^n^v)

4/2

p(v) dr, < (yyr)

p(v) (i + vT dv ¦G(pfn [ ^-r,
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This estimate together with conclusion (A-2) yields

4/2

C(pf n (-££,) 2p(v) dv 0(1) (j^j)'- (-JL.) • (A-16)

Inserting this estimate in the previous one we obtain

«) 0(1) • (v + 1) • C(ç4„) n (A^!J
2

- (yA (A-15),

Incidentally note that in contrast to estimate (A-15)x the present estimate (A-15)2
holds for all values of I.

Inserting these two estimates in estimate (A-ll) we obtain

| (co - L(l, d))-* h(l, m) |2 0(1) • (v + 1)

l(ïtï)' | h(l, m) 2 + / I h(l, m) (r,) |2 iq
sr

Note that this estimate is a variant of estimate (A-3). This variation is due, so to speak
to the variation in the range of values of I. From this estimate, in turn, we obtain

s?(!) 0(1) E (" +
lejl(i),m I

+ od) e (» + i) c<M^)

i
|Ä(/, w)||2

1 + !/
CO

f \h(l,m)(rj)\2dr,.

sr

(A-17)

if we remember definition (5.15)2. Recall that estimate (A-15^ holds for each positive
integer k and hence so does this estimate. This shows that

(1 + !)2e 0(1).
1 +

This estimate together with conclusion (A-2) yields

(v+1) CM n {^AfVf)
2

• (tt7) *(1 +l)2s ~m ** =0(1) • ^A"18)l

To estimate the integral corresponding to the second term in (A-17) recall assumption
(5.1) which shows that

\Hv)h<P(v)- \Rt(o>)Hv)k-
Hence remembering definition (4.5) we obtain

\h(v)\l<P(v)- \Rt(°>)h(v)\l- (A-W
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This inequality together with the already established conclusion (A-l^ implies that
setting

hi(v) (1 + vYßh(v) and || hx \\2 (1 + rj)e )\h(rj) l|dr,

we have

[|Àl||2<00.

Defining the function ]lx(l, m) similarly yields

I h(l, m)

4/2

(v)\2dr, o(i)^J^J\\hx (I, m)

(A-20),

(A-21)

(A-22)

This estimate together with conclusion (A-2) yields

(t+1) C0,)»(I^-f) \h(l,m)(r,)\2dr,-p(Ç)-(l + Ç)28dè

4/2

0(1) \\hx(l, m) \\2.

(K-23)x

Estimates (A-18)^ (A-23)x and (A-17) together imply
00

/,s?(!)^(!).(l±!)2^! 0(l)||A1II2, (A-24),

similarly to the way estimates (A-4) and (A-7) did imply estimate (A-8). At the same
time we see from estimate (A-21) that the right number is finite. This establishes the
validity of estimate (A-9).

Second we maintain that

4(t) m (i + £)8e <% < oo. (A-25)

To establish this recall estimate (5.37) which says that

| (co - L(l, d))-1 h(l, m) |2 0(1) ¦ (v + l)2 ¦ / | h(l, m) (rj) \2 dr,
4

C(Pf n
[/-co

C((/>f n — r,-iv
p(rj) dr,.

At the same time it follows that this estimate is uniform for those values of I which
are not in 31(!), that is to say over which the sum s2(!) is extended. Insertion of
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estimates (A-16) and (A-22)x in this estimate yields

| (co - L(l, <*))-i h(l, m) |2 (1 + !)2e 0(1) ¦ (v + 1)

w.(^j) \~hi(l, m)
(A-2b)x

Note that this estimate is another variant of estimate (A-3). This variation is due,
again, to the variation of the range of values of I. Summing estimates (A-2b)x over
those values of / which are not in ^(!) and remembering definition (5.15)2 we obtain

s2(!) (i + !)2* 0(1) y (v +1)
HAÄk),m

««.(*£«) \\hx(l,m)\\2 (A-27)x

Similarly to the way conclusion (A-2) did imply estimate (A-7) we see that it also

implies

/ oo

E
-0, m
2> +1) C(<f>f n (^ff | f .p(|) (i + f). ,| ~hi(f m) y« rf|

\ -iv
I 00

0(l)E\\hi(l,™)\
1 0, m

(A-7)!

Similarly to the way estimates (A-4) and (A-7) did imply estimate (A-8) we see that
the present estimates (A-27)x and (A-7)! do imply

s2(!) y(!) (l + !)3£^! 0(1) E fhi(l,m)
1 0, m

(A-28)x

Since according to estimate (A-21) the right member is finite we arrive at the validity
of estimate (A-25). Then combining estimates (A-9) and (A-25) we arrive at the validity

of conclusion (A-l)2.
To complete the proof of conclusion (A-l)„ in the general case we proceed by

induction. Accordingly assume that it holds for n and show that it also holds for
n + 1. In analogy with definition (A-20^ set

hfv) (1 + V)nm Hv) and || hn \\2 \ hn(v) \\ dr, (A-20),

Then conclusion (A-l)„ implies

IIÀJ|2<oo (A-21),,

similarly to the way conclusion (A-l)x did imply estimate (A-21)r Defining the function

hS< m) analogously to definition (5.18),m we clearly have

I h(l, tn) (rj) |2 dr, 0(1)

4/2

1 \nt
TT"!/ \\hn(l,m)\\. (A-22),
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As a first consequence of this estimate and of conclusion (A-2) we obtain

oo oo

[/-6)
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(r+1)
4/2

CW n (A^\-,v
| h(l, m) (rj) |2 dr,

sr

¦ p{i) (1 + !)(«+" d£ 0(1) || hn(l,m)

(A-23)„

Recall that estimate (A-15)i holds for each positive integer k. At the same time we
see from conclusion (A-2) that for k greater than ne

(r+1) cmn (~iv-s)* ' ~m (ttï)*(1 +1)("+1) dî 0(1) • (A"18)n

Estimates (A-18)„ and (A-23)n together imply
oo

te) • p(S) (l + !)(^1)e^! 0(1) IÙJI2, (A-24)„

similarly to the way estimates (A-18)!, (A-23)x and (A-17) did imply estimate (A-24)j.
As another consequence of estimate (A-22)„ we obtain

sfä) (1+ &»-**= 0(1) Y (v + l) c^AFfLs) HS, m) II2, (A-27)„

if we remember the way estimates (A-16) and (K-22)x did imply estimate (A-27)x.
Estimate (A-27)„, in turn, implies

4(fi • P(S) (1 + !)(M+2)^! 0(1) E WhnV:

/ oo

n
Ü, m

m) (A-28)„

similarly to the way estimate (A-27)j did imply (A-28)v Finally combining estimates
(A-24)„ and (A-28)„ and remembering relation (5-16) and estimate (A-21)„ we arrive
at the validity of conclusion (A-l)n+1. This completes the proof of Lemma A-1.

We shall use this lemma in the proof of Theorem 5.1 via the lemma that follows.

Lemma A-2. Fhe exceptional value co and exceptional vector h of Fheorem 5.1 is
such that Rf(co) h(!), the Q2(Sd-x)-valued function of the variable is square integrable.
Fhat is to say

Rt(co)heä2((0,°o),22(Sd„x) (A-29)

To establish this lemma we need an elementary estimate observed elsewhere

[B.19.d]. It says that

/ 1 \1/3
| C(Pf n(z) | 0(1) \-f-rjj min(l, |^2|),
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which implies

q«.(fc£«) / 1 \ 2/3

-0(I»Ui) ¦

v+l (A-30)

First inserting estimate (A-30) in estimate (A-27)n we obtain for each positive integer «

4® (1 + ï)"' 0(!) (A-31)!

if we remember estimate (A-21)„. Second inserting estimate (A-30) and (A-22)„ in
estimate (A-16) we obtain for each positive integer n,

s2(!) (1 + !r 0(!), (A-31),

if we use estimate (A-21)„ again. Finally combining estimates (A-31)! and (A-31)2
and remembering relation (5.16) we arrive at the validity of conclusion (A-29). This
completes the proof of Lemma A-2.

Having established Lemma A-2 we can derive Theorem 5.1 from it for the
present class of potentials similarly to the way we derived the original version from
Lemma 5.2. This extended version of Theorem 5.1 implies Theorem A similarly to the

way the original version did imply Theorem 2.2. For brevity we omit the proofs.
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