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Perturbations and Non-Normalizable Eigenvectors

by William G. Faris

Battelle Institute, Advanced Studies Center, Geneva, Switzerland

(10. V. 71)

Abstract. A spectral representation of a self-adjoint operator acting in a Hilbert space is
given by eigenvectors of an extension of the operator to a suitable space containing the original
Hilbert space. A perturbation argument shows the extended operator has no eigenvalues that do
not belong to the spectrum of the original operator. The abstract result is applied to Schrödinger
operators — A + V.

1. Introduction

The spectral theory of self-adjoint operators may be treated without ever
mentioning non-normalizable eigenvectors. In fact, the spectral theorem may be
stated as follows [1].

Theorem. Let A be a self-adjoint operator acting in the Hilbert space H. Then A
is unitarily equivalent to a multiplication operator. That is, there is a Hilbert space
L2(M, fi), a real measurable function a on M, and a unitary operator U:H -> L2(M, fi)
such that / is in the domain of A if and only if a Uf is in L2(M, fi), and such that
UAf=ct.Uf

Here fi is a positive measure and L2(M, /i) is the Hilbert space of all measurable
complex functions h on M such that / | h(p) \2 dfi(p) < oo. (Functions which are equal
almost everywhere are identified.) Such a unitary equivalence of A with a multiplication

operator is called a spectral representation of A. The spectral theorem asserts the
existence but not the uniqueness of spectral representations.

Let c/> be a Borel measurable function defined on the real numbers. Then <p(A)

may be defined by the spectral theorem as the operator acting in H which is unitarily
equivalent to multiplication by <p(a.) [1]. This definition is independent of the spectral
representation.

Non-normalizable eigenvectors enter the picture only when one attempts to
describe the form of the unitary operator U. A suitable space K* containing H is
chosen. Vectors in K* which are not in H are called non-normalizable vectors. (The
norm under consideration is that of H, of course.) The self-adjoint operator A acting
in H has an extension to an operator A acting in K*. When A has continuous spectrum
U is given in terms of non-normalizable eigenvectors of A.
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G. I. Kac has given an elegant criterion for showing that K* is large enough to
contain all the non-normalizable eigenvectors necessary for any spectral representation

[2]. It is desirable to choose K* as small as possible consistent with this requirement,

since this allows the widest class of perturbations and gives the sharpest
estimates on non-normalizable eigenvectors. Also, if K* is reasonably small, the

eigenvalues of A may give a good idea of the spectrum of A. (In general, since A acting
in K* is not self-adjoint, it may even have non-real eigenvalues.) Here an abstract
perturbation theory is developed to show that K* does not contain unwanted non-
normalizable eigenvectors of A. This is applied to Schrödinger operators — A + V.
In this case the results may be interpreted as estimates on growth at infinity of eigen-
functions of the Schrödinger operator. (Such results have also been obtained by
partial differential equations methods [3].) Much stronger assumptions on the
interaction would be needed in order to apply the theory of wave operators and scattering.

2. Non-Normalizable Eigenvectors

Let H be a Hilbert space. The inner product of g and/in H will be denoted <g,/>.
The convention adopted here is that the inner product is conjugate linear in the first
variable and linear in the second variable. The norm of / in H is ||/|| </,/>1/2.

We wish to consider a situation where there is given another Hilbert space K
which is a dense linear subspace of H. If / is an element of K, the norm of / as an
element of K is written ||/||x- We shall assume that the injection of K into H is
continuous. Thus there is a constant c > 0 such that ||/||^c||/||x.

Let K* be the set of all bounded linear functions from K to the complex numbers.

Proposition 1. Let H be a Hilbert space. Let K c H be another Hilbert space.
Assume that K is dense in H and that the injection is continuous. To each g in H
associate the linear function / -> <g, /> in K*. Then this correspondence is injective,
and H may be identified with a dense subspace of K*, so that we have continuous
inclusions of Hilbert spaces K c H c K*.

Proof: If g is an element of H, then |<g,/>| ^ || g\\ ||/|| ^ c\\ g\\ ||/||k, so
the function which assigns to/in K the inner product <g,/> is in K*. If the inner
product <g,/> 0 for all/in K, then g 0, since K is dense in H. Thus each element
g in H determines a unique element of K*. We identify each g in H with the
corresponding element of K*.

We wish to give K* the structure of a Hilbert space in such a way that the injection

of H into K* is linear. If xp is in K* and/is in K, we write <^,/> for the value of
xp on/. If xpi and xp2 are in K*, we define xpi + xp2 by (xpi + xp2,fy <yi,/> + <^2,/>.
If xp is in K* and a is a complex number, it is convenient to define the product of a
with xp to be given by <[a xp,fy a* (xp,fy. With this convention, if xp happens to be
in H this coincides with scalar multiplication in H. With the definition || xp ||k«

sup{| <V,/>|:||/||ä< 1},K* becomes a Hilbert space.
Note that we have || g H*. sup{|<g,/>| :||/||Ä < 1} < c sup{|<g,/>| :||/||< 1}

c 11 g 11. Hence the inclusion of H into K* is continuous. It is also not hard to see
that H is dense in K*. This completes the proof.
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Warning : Having identified H c K*, it is no longer permissible to identify K*
with K.

Definition. Let H be a Hilbert space and let K c H be another Hilbert space.
Assume that K is dense in H and that the inclusion is continuous. Then the triple
K c H c K* will be caUed a scale of Hilbert spaces.

From now on we shaU assume that all Hilbert spaces under consideration have
a countable orthonormal basis. (This is equivalent to their being separable metric
spaces.) This allows us to consider only measure spaces which are cr-finite.

We now recall the theorem of Kac [2].

Theorem 1. Let A be a self-adjoint operator acting in H. Assume that U : H ->L2(M, /j.)
is a unitary operator which gives a spectral representation of A. Let K c H c K* be a
scale of Hilbert spaces. Assume that there is a Borel measurable function ß which is
bounded on the spectrum of A and which does not vanish on the spectrum of A such
that ß(A) is a Hubert-Schmidt operator from K to H. Then there is a function xp from
M to K* such that for every/in K, Uf (p) (xp(p),fy for almost every p in M.

For the convenience of the reader we sketch a proof.

Proof: U ß(A) ß(a.) U:K -> L2(M, fi) is a Hubert-Schmidt operator. Represent
ET as a space L2(N, v). Then there is an s in L2(M x N, /i x v) such that for / in K,
ß(oc(p)) Uf (p) f s(p, q) f(q) dv(q) for almost every p [A]. By Fubini's theorem,
s(p, q) is in L2(N, v) as a function of q for almost every p. Thus for these p we may
define <xp(p),fy (ljß(a.(p))) f s(p,q)f(q) dv(q). xp(p) is in K* by the Schwarz

inequaHty.

Remark. In practice the most useful choices of ß are ß(a) (a — z)~k for some
integer k 1, 2, 3, and z not in the spectrum of A. Another possibility is ß(a) 1.

In this case the condition is simply that the injection of K into H is Hilbert-Schmidt.
Note. If / and g are in H, and/is in the domain of A, we have

<£. Afy jug(p)**(p)Uf(p)dß(p).

In particular, under the conditions of Theorem 1, if / and g are in K, <g, A />
/ <g, xp(p)y o.(p) (xp(p),fy dp(p). (In keeping with the usage in physics, we have

written <g, xp(p)y for <xp(p), g>*.)

Definition. Let K c H c K* be a scale. Let _4 be a self-adjoint operator acting in
H with domain D. Vet Do {/in E nfl:4 /is in E}. Assume Do is dense in K. Then

the scale extension A of 4 is defined as the operator acting in K* which is the adjoint
of A restricted to Do.

Explicitly, if g is in K*, g is in the domain of A if there is an h in K* with
<h,fy <g, Afy for all/in D0. Since Do is dense in K, h is uniquely determined and

we set A g h. A is clearly an extension of the original self-adjoint operator A.

Theorem 2 [2]. Let A be a self-adjoint operator acting in H. Let K c H c E*. Let D
be a spectral representation of ^4 and assume that there is a function xp from M to K*
such that (C//) (p) <xp(p),fy for almost every p in Af. Assume that the scale exten-
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sion A of A is defined. Then xp(p) is in the domain of definition of A and Axp (p)

x(p) xp(p) for almost every p.

Proof : Let f be inDo. Then <xp(p), A fy UAf (p) ca(p) Uf(p) <oi(p)xp(p),fy
for almost every p. Thus for any countable subset of D0, (xp(p), A fy (x(p) xp(p),fy
for/in the subset for almost every p. Now the graph of the operator A restricted to Do
is a subspace of the direct sum of K with itself. Since a subspace of a separable metric
space is separable, the graph is separable. Thus there is a countable subset of Do such
that for each/in Do, there is a subsequence/» in the subset with/« ->-/and Afn-> Af,
in the norm of K. We conclude that (xp(p), Afy (oz(p) xp(p),fy for all/in Do for
almost every p. In other words, for these p, Axp (p) cn(p) xp(p).

3. Perturbation Theory

Theorem 3. Let K c H c K* be a scale of Hilbert spaces. Let A be a self-adjoint
operator acting in H. Assume that (A — z)-1 is a Hilbert-Schmidt operator fromK to
H for some z not in the spectrum of A. Assume that B is a self-adjoint operator whose
domain contains the domain of A and such that A + B is self-adjoint with the same
domain as A. Then if z is also not in the spectrum of A + B, (A + B — z)-1 is a
Hilbert-Schmidt operator from K to H.

Proof: The two resolvents are related by
(A + B — z)-1 [1 — (A + B - z)-!B] (A - z)-1. Let T be the closure of
1 - (A - B - 2)-* B. Then its adjoint T* 1 - B(A + B - z*)~\ Since A + B
has the same domain as A, T* is defined on all of H. But any adjoint has a closed

graph. So T* is a bounded operator from H to H, by the closed graph theorem. Hence
T is also bounded from H to H. The identity (A + B — 2)-1 T(A - z)~i thus
exhibits (A + B — z)'1 as a Hilbert-Schmidt operator from K to H followed by a
bounded operator from H to H.

Proposition 2. Let A be a self-adjoint operator acting in the Hilbert space H.
Let K c H c K* be a scale of Hilbert spaces. Assume that the scale extension of A to
an operator A acting in K* exists. Let A be a complex number which is not in the

spectrum of A. Then if (A — X)~l sends K into K, X is not an eigenvalue of A.

Proof: Assume that (A — X) xp 0 for some xp in K*. If (A — X)-1 sends K into
K, then the range of A — X restricted to Do is K. Hence (xp, (A — X) fy 0 for /
in Do implies xp 0.

Definition. Let T be a positive self-adjoint operator acting in H with bounded
inverse E-1 : H -+H. For 0 ^ s < 00, let Ks be the domain of T* with the norm
ll/lls II ^*/||- Then the family K$cHcKf, 0 < s < 00, of scales is caUed an
analytic scale.

There are interpolation theorems which apply to analytic scales. We shaU need

only the foUowing special case [5].

Proposition 3. Vet the spaces KscH, 0 ^ s < 00, define an analytic scale. Let
R : H -> H be a bounded operator and assume that it has a bounded restriction
R : Ka-^-Ka. Then R : Ks -» Ks is bounded for 0 ^ s ^ a.
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Theorem 4. Let H be a Hilbert space. Let A be a self-adjoint operator acting in H
with domain D. Let E be a self-adjoint operator acting in H whose domain contains D.
Assume that A + B is self-adjoint on D. Let the spaces Ksc H, 0 ^ s < oo, determine

an analytic scale and set Ki K. Assume that for some e > 0 and all s,
0 ^ s ^ 1, B : D n Ks -*¦ Ks + e is bounded. Then if X is not in the spectrum of A or of
A + B, and if the restriction (A — X)-1 : K -> E is bounded, then the restriction
(4 + E - A)-1: E -> E is bounded.

Proof: We have E Ei c Ks c Eo H for 0 ^Ç s <! 1. The space D n Ks may
be given the norm (|| ^4/||2 + ||/||f)1/2, where ||/||« is the norm on Ks.

Write (A + B - A)-1 2^ o (- 1)K ((-4 - A)-1 B)» (A - A)-i
+ (-l)'((4-^B)'(i+B-l)-i.

Consider the first r terms in the sum. Since (A — X) ^1 : K -> D O E and
5 : E n D ^ K are bounded, each term is bounded from E to Do K c K.

To treat the final term in the sum, we use interpolation. Since (A — A)-1: H -> H
and (A — A)-1: E -> K are bounded, it follows from Proposition 3 that (A — A)-1:
Es -* Ks is bounded for 0 ^ s ^ 1. Take r so large that ljr < e. Then
B: D n K(n-i)fr -> E„/r is bounded, » 1,2,3,...,r. Since (^4 — A)-1 : K„jr^-D nE„;f
and (.4 + E — A)-1 : H -> D sere bounded, the final term is bounded from H o E to
D r\KcK.

4. Schrödinger Operators

Let E L2(R3, dx). Let o > 0 be a real function on R3 which is bounded and
never zero. Let K L2(R3, g(x)~1 dx). Then K c H, the injection is continuous, and K
is dense in H. So E c H c E* is a scale of Hilbert spaces. The nice feature of this case
is that K* has a natural realization as a space of functions. It should be considered as

K* L2(R3, q(x) dx). Then if g is in E* and/is in K, <g ,/> / g(x)* f(x) dx and

l<*./>l<llflMI/lk
In the following we shall require that q be bounded away from zero on compact

sets. This ensures that the K, H, and K* norms are equivalent on any set of / with
fixed compact support.

Example. Consider the Laplace operator A. A is a self-adjoint operator
acting in H and one spectral representation is given by the Fourier transform
F:H->L2(R3, (27t)-3dk). (E Af) (k) - k2 Ff(k), so A is isomorphic to
multiplication by a.(k) — k2. Assume now that q is in Ll(R3, dx). Notice that for

/ in K, (Ff) (k) f exp(— i k x) f(x) dx (xp(k),fy, where xp(k) is the function
exp(ikx) in E*. The xp(k) are non-normalizable eigenvectors: Aexp(ikx)
— k2 exp (i k x).

Definition. Let V be a real function on R3 such that V Vi + V2, where Vi is
in L°°(R3, dx) and V2 is in L2(R3, dx). Then V will be said to satisfy the Kato condition.

Proposition 4 [6]. Let H L2(R3, dx). Assume that F is a real function on R3

which satisfies the Kato condition. Then — A + V is a self-adjoint operator acting
in H with the same domain as that of — A.
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Theorem 5. Let q ^ 0 be a function on R3 which is bounded on R3 and bounded

away from zero on compact subsets of R3. Assume that q is in L1(R3, dx). Let EcEcE*
be the scale L2(R3, q(x)~1 dx) c L2(R3, dx) c L2(R3, q(x) dx). Let F be a real function
on R3 which satisfies the Kato condition. Then for any spectral representation
U: H -> L2(M, fx) of — A + V there is a function xp from M to K* such that for each

/ in K, (Uf) (p) (xp(p),fy for almost every / in M. The xp(p) are (possibly non-
normalizable) eigenvectors of the scale extension of — A + V for almost every p
in .¥.

Proof: If z > 0, (z — A)~x is an integral operator acting in H with kernel
(4 n | x — y |)-1 exp(— z1!2 | x — y |). Now (4 n \ x — y | )-1 exp(— z1/2 \x — y\)ç(y)112
is in L2(R6, dx dy). Hence it is the kernel of a Hilbert-Schmidt operator from H to H.
Next note that multiplication by j?-1/2 is an isomorphism from K to H. It follows that
(2 — d)-1 is a Hilbert-Schmidt operator from K to H.

If 2 > 0 is sufficiently positive, then — 2 will not be in the spectrum of — A + V
[6]. Hence Theorem 3 implies that (2 — A + V)~l is Hilbert-Schmidt from K to H.
Thus Theorem 1 applies to — A + V.

We now show that — A + V has a scale extension. First note that the L2(RS, dy)
norm of (4 n \ x — y | -1 exp(— 21/21 x — y | is finite and independent of x. It
follows that (2 — A)'1 g is in L°°(R3, dx) for g in H. Hence the domain of definition of
A is contained in L°°(R3, dx). Now consider the space Di of functions in the domain of
A which have compact support. Clearly Di is dense in K. —A sends Di into K.
Multiplication by Fi leaves K invariant. On the other hand, since the domain of A is
contained in E°°(/?3, dx), multiplication by V2 sends Di into K. Thus — A + V sends
the dense set Di into K. This implies that the scale extension of — A + V exists and
hence that Theorem 2 applies.

Surprisingly, Theorem 5 does not imply that the non-normalizable eigenfunctions
are bounded. The exceptional set of p in M for which the xp(p) are not eigenvectors in
K* will depend in general on the choice of the scale. Maslov [7] has given an example
of a bounded continuous V for which the non-normalizable eigenfunctions for some
interval of energy are unbounded at infinity. Berezanskii [8] has given estimates on
their rate of increase.

In the following we write r \x\.
Definition. Let F be a real measurable function on R3. Assume that V =Vi + V2,

where | Vi(x) | ^ c(l + r2)-«/2 for some e > 0 and some c, and F2 is in L2(R3, dx) and
has compact support. Then V will be said to satisfy the condition of sHght decrease.

Note that a function V of slight decrease satisfies the Kato condition. In addition

it is a relatively compact perturbation of — A, so that the essential spectrum of
— A + V is [0, 00) [9]. In particular, the spectrum of — A + V contains the spectrum
of - A.

A particularly convenient choice of the function q defining the scale is q(x)
(1 + r2)-"/2, s > 0. The condition that q is in L1(R3, dx) is satisfied provided s > 3.

Theorem 6. Fix s, 0 < s < 00. Let KscHc Kf be the scale L2(R3, (1 + r2Y2dx)c
c L2(R3, dx) c L2(R3, (1 + r2)-*/2 dx). Let F be a real function on R3 which satisfies the
condition of slight decrease. Then the scale extension of — A + V to an operator in
E? has the complex number A as an eigenvalue only if A is real and in the spectrum of
the self-adjoint operator — A + V acting in H.
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Proof: Let T be the operator given by multiplication by (1 + r2)1/4. Then the
scale in the theorem is the analytic scale associated with T; E. is the domain of T',
s >0.

In order to apply Theorem 4 we first show that for z > 0 or 2 not real, (z + __)-1:
Ks -*¦ Ks is continuous, s ^ 0. Start with the case when s is an integer multiple of 4,
s 4 k. By taking Fourier transforms we see that this is equivalent to showing that
(z — k2)~l is a continuous multipHcation operator from D(Ak) to D(Ak). For / in
D(Ak), expand Ak((z — k2)_1f) as a sum of products of partial derivatives of (z — k2)-1
and of/. The partial derivatives of/can be estimated in L2 norm in terms of || /4*/||_
and ||/||2- On the other hand, the partial derivatives of (z — k2)-1 are all bounded
functions (since they are Fourier transforms of integrable functions). Thus we have an
estimate on || Ak((z — &2)-1/) ||2> which disposes of the case when k is an integer. The
general case now foUows from Proposition 3.

The other hypothesis of Theorem 4 follows from the assumption of sHght
decrease. MultipHcation by Vi is bounded from Ks to Ks + s for some e > 0. On the other
hand, F2 is bounded from D to Ks for all s ^ 0, since D c L°°(R3, dx) and F2 has

compact support. Thus V: Ks O D -> Ks+ e is bounded.
So if A is not in the spectrum of — A + V, (— A + F — A)-1: Ka -*-Kt is

bounded. The theorem then follows from Proposition 2.
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