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Quasi-Elastic Electron Scattering and Nuclear Shell Structure

by Raoul D. Viollier and Kurt Alder
Institute for Theoretical Physics, University of Basel

(20. VII. 70)

Abstract. Quasi-elastic electron scattering, knocking out a proton from the target nucleus,
is treated in a distorted wave Born approximation. The coincidence cross section for the N(e, e'p) N'
reaction is calculated in the impulse approximation. Since the energy of the emitted proton
depends upon the shell and its binding energy, the nuclear shell structure can be studied directly
if the angular correlation of the emerging particles is measured. The angular distribution of the
outgoing proton is calculated and compared with plane wave Born approximation values for
40Ca, 32S and 28Si.

I. Introduction

The excitation of nuclear states by inelastic electron scattering has been a very
useful method of investigating electromagnetic properties of nuclei. However, one
obtains considerably more information about detailed nuclear structure from disintegration

processes such as N(e, e' p) N' by measuring the emerging particles in
coincidence (Fig. la). In such an experiment we gain essentially information about the
matrix element of nuclear transition current density <2V' p \J Jx) \ Ny which can be

approximated by nuclear models and compared with the experiment. According to
the energy transferred to the nucleus during the disintegration process N(e, e' p) N',
two cases can be distinguished: If the electron transfers a small amount of energy
co <^ q2j2 M (q momentum transfer, M nucléon mass) to the nucleus, the nucleus
is excited to some intermediate state N* which decays into the ground state by
nucléon emission (Fig. lb). In this case we gain some information about the
intermediate state N* which is essentially independent of the excitation method.

We are concerned with the opposite limit in which the electron transfers an

energy co x q2j2 M to the nucleus (Fig. lc). In this case the nucléon is considered to be

directly knocked out by the electron. By measuring the angular correlation of the
emerging particles we can learn something about binding energies, nuclear shell
structure and lifetimes of nuclear hole states.

Similar considerations apply to N(p, 2 p) N' experiments. However, the reaction
N(e, e' p) N' has the advantage that, since the electromagnetic interaction is well
known, the excitation mechanism can be separated from nuclear structure effects and
the electrons penetrate more deeply the inner nuclear shells.
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Jacob and Maris [1] have published an excellent review article summarizing the
theoretical and experimental work on quasi-elastic scattering of protons and electrons.

v/
^"» IN
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N *
(a) (b) (c)

Figure 1

Disintegration process N(e, e'p)N': a) without assumptions about nuclear vertex, b) the nucleus
excited to some intermediate state N* which decays by nucléon emission, c) quasi-elastic scattering.

The N(e, e' p) N' reaction has been studied experimentally by Amaldi et al. [12].
In the past their experiments have been confined primarily to the determination of the
binding energies of the proton in the various shells. However, they propose to conduct
angular distribution studies in the near future. Such experiments give more information

about nuclear shell structure since they provide a test for shell model wave
functions.

Many theoretical treatments and calculations have been published. Devanathan
[2] and de Forest [3] have deduced the coincidence cross section in the plane wave
Born approximation (PWBA), whereas Jacob and Maris [4] and Potter [5] have
calculated their cross sections by introducing the free-proton cross section in their
formula.

For an exact treatment of quasi-elastic electron scattering we have to take into
account the distortion of electron and proton wave functions. In the present
treatment, we outline a general method for the evaluation of the coincidence cross section
in a distorted wave Born approximation (DWBA). We calculate some angular
distributions of the emitted proton using harmonic oscillator wave functions for the
bound nucléon and compare the DWBA results for 40Ca, 32S and 28Si with PWBA
values.

In Section II the coincidence cross section for the reaction N(e, e' p) N' is
calculated in the DWBA for an arbitrary transition current density, which we
evaluate in Section III for the case of quasi-elastic scattering. The derivation of the
cross section in PWBA is given in Section IV and the numerical results are presented
and discussed in Section V.

II. Evaluation of Coincidence Cross Section in DWBA

II.1. Approximations
Before deriving an explicit formula for the coincidence cross section for quasi-

elastic electron scattering in the DWBA formalism, let us first discuss the approximations

applied.
In DWBA the static electromagnetic interaction is treated exactly by solving

Dirac's equation for an electron in a central field V0(r). It is assumed that the charge
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distributions of the nuclear ground and excited states can be approximated by a

spherically symmetric charge distribution. However, the residual interaction which is
assumed to be small is treated in first order perturbation theory. This corresponds to
the exchange of one photon between electron and nucleus. Since DWBA is applicable
to intermediate and heavy nuclei the recoil of the nucleus can be neglected.

If the impulse approximation is valid, the proton can be considered to be knocked
out directly by the electron and the many body problem is reduced essentially to a
special three body problem consisting of electron, proton and residual nucleus. The
inelastic electron scattering can thus be treated as quasi-elastic scattering from a single
proton without excitation of the residual nucleus.

The nucleus is described by the independent particle model and it is assumed
that the nucléons interact only by an average spherically symmetric potential.
Therefore we confine ourselves to nuclei with closed shells or subshells.

II.2. Formalism of DWBA
Let us deduce the coincidence cross section for the quasi-elastic electron scattering

in the DWBA formalism. The cross section for the scattering of an electron with
momentum kt to a final state kf, simultaneously knocking out a proton with momentum

pf, is in first order perturbation theory given by

da 2nö(W-W')2JE\<f\H\ *>|!
E{ d3kf d3pf
Tt (27if (2n)z

(2.1)

The relation of the proton momentum pf to the electron momenta ki and kf is shown

in Figure 2. W and W' are the total energies of the initial and final states and TJ
i

denotes the average over the initial states. The electromagnetic interaction can be
described by the Hamilton operator

Eifc

Eft
WfPf

Figure 2

Relation of the momentum of an emitted proton p,to the initial and final momenta of the electron
fe; and fe,.

H «J d*rifr)Av(r) (2.2)

where a is the fine structure constant, jv(r) the transition current density of the electron
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and the vector potential A fr) is given by an integral over the phenomenological
nuclear transition current density <[N' p \ /„(f) |2V>

f eim\r-r'\
Afr)= d*r' (N' p\Jfr')\Ny- — (2.3)

J if- f j

with

co=Ei- Et. (2.4)

The nuclear transition current density and Green's function are expandable into
multipoles

<N'p\9(r)\Ny=2jQ,/l(r)Ytß(r)
(2-5)

< N' p \J(r) | Ny -iElïut(r) Yfm(r)
\ am

and
eim \r—r' |

T7fry-rTj=4^^2;/A(«>f<)41Vf>)y*i(f)yA/4(f') (2.6)

where

r< min (r, r')

r> max(r, r')
and Jx(x) are the spherical Bessel functions, hf](x) the spherical Hankel functions of
the first kind and YIXM(r) the vector spherical harmonics [6]. Combining equations
(2.3), (2.5) and (2.6), we can write down a multipole expansion for the scalar and the
vector potential, 0(r) and A(r), as well

0(r) 4nim^0xfr)Y\fr)
(2.7)

A (r) 4 n ico (-i) £ Anu(r) Y*M(r).
IXM

In equation (2.7) we have introduced the cutoff functions or the transition potentials
for the different multipole orders

r oo

®xff) W (» r) J ]\(co r') QX/l(r') r'2 dr' + jfM r) / h{f (co r') oX/l(r')r"< dr'

(2.8)
r oo

AUM(r)=h{f\cor) f jfco r>) IUM(r') r'2 dr'+ ;>r) J hf(cor') IIkM(F)r'2dr'.
0 r

We can gauge the potentials &x (r) and AnM(r) so that the Lorentz convention and
thus the equation of continuity for the nuclear current density is fulfilled

'
V ' A + i co 0 0

CO - i/ X+l I d X + 2 \
0^{r)+V 2X+-i{lr- + --r-)A^{r)

I/2-ITT (>¦-". '-I-1--,^-«" (^
«* A-1
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The transition current density of the electron is given by (see Appendix)

fe(r)l KV,, 1

_ ]/(Ei + m)(Ef+m)
\j(r)j \fffaWrj - (An) F 4E7eJ~~

Zfr-'Md-W'-1/I, I j,\ lh \- if
xfßf V/"/- T/ Xf~lXjl \fli~ri ri~/Âi/

^^v^^W^^VV^l^}- (2.10)

Now we can calculate the matrix element of the Hamilton operator by the integral
(2.2) (see Appendix). The formulae become particularly simple if we introduce the
incident beam coordinate system. Thus the transition amplitude for a multipole
transition E X or M X becomes

TX/l 8 n2 co a j/i!t±.*lgr+ -± ," (- !)«-*(- lYl

y&Aî(lf i 'AM '<)( if x i'\(ifx 'A

Ylf„f_T/{hf) i'f-'i é I^H,) {tfXjV (TJ A) ^ + ^(M A, /,)} (2.11)

where by reason of the parity selection rule the radial integral for an electric multipole
transition Rxx (E X,ft) contributes only for

/,(*,) +X + lf(xf) even (2.12)

and the radial matrix element for a magnetic transition Rx.x (M X, ft) only for

lfxt) +X + lf(xf) odd (2.13)

In (2.11) we have introduced the radial integrals
oo

Rxx, (E X, /i) fr2 dr (fx fx. + gx gx.) &X/l(r)
0 v

- [(«' - x) (/„ g„, + gx M - X (fx gx, - gx fx.)] Axx_! .fr)
\/X(2X+l)

- y a+i) (2XfFvF ^X'~*) (fxg* + gxf^ + (A + l) (f*Sx'~gxfx'^Au+1"^ \

(2.14)

and
oo

Rxx. (M X, ft) - fr2 dr ^y— /. i« + g« U ^ a a „ M (2.15)

Now the coincidence cross section of quasi-elastic electron scattering when the
electron beam and the target nuclei are unpolarized is given by

do Ej Ef kf Wf Pj_

dûedûpdEf k{ (2nf r^f.„f %E \ET^V (2.16)
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with

W/ P/ + M2.
In equation (2.16) we have averaged and summed over the unobserved quantities.
The summation over y can be carried out with the help of a symmetry relation.

III. Nuclear Transition Current Density
In order to evaluate the cross section of quasi-elastic electron scattering we

require the matrix element of the nuclear transition current density < V p\ Jf(x) \Ny.
If the impulse approximation holds, the electron is scattered by a single proton. Thus
the nuclear transition charge and current densities for closed shells and subshells
are given by

\<N'p\o(r)\Ny ¥fW%if (3.1)
\(N'p\J(r)\Ny WfaW^-

The proton wave functions, ï7^» and \Pf are assumed to be solutions of Dirac's

equation for a particle in a central field (see Appendix)

y -4*1/ Wf + M~ ye-^,i^,iALf » *AV't 4nr 2Wf KfM/e fIl\Mf-OfOf-Mf)
(-l)Mf-1,2Yf/Mf_af(Pf)y%f (3.2)

and the Dirac spinors are given by

Let us now calculate the radial functions

&,(')= /<N'p\Q(r)\NyYX/l(f)dÛ
Ium(r) =if<N'p\J(r)\Ny Yim(?) dû

If we introduce the transition current density (3.2) in equations (3.4), the following
integrals occur for electric E X transitions

/V*/+ YXß ¥% dû GK{ GKf (KfMf \ YXß | Kt Mf>

J^a.Y^^W^dû^^^^G^F^KfMflY^lK^y
fw%f+a-Yxx,XuW%idÛ= t{K/~ f'"/"^ GK FK (KrMf\Yx\KiMiyJ Kf AA + 1/, Kt ]/ (X+l) (2X+1) ' f f fl Al

(3.5)

and for magnetic M X transitions

f'w^a-YUßWlidu -^^^GKiFKf<-KfMf\YXlfKlMiy ¦

(3.6)

(3.4)
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The matrix elements <± KfMf \ YX/l\ K{ Mf) can be expressed in terms of 3/-
symbols (see Appendix). Thus the radial functions qx (r) and IIXM(r) are given for
E X transitions by

Q\Ar) E aRfiß GKfGK
en J J

%£*** VX(2X+\)

KA, even J J

hx-iß (r) EjKf^ ^Tffbf- Gk; FKf (3.7)
K,-Kf-X

T M- V K.-Kf+X+lu+1"[r) ~KpJKf*» PPW K* Kf

and for M X transitions by

where we have introduced the coefficient

/ IfX I\IIfX IA h\-Mfft MJ \A 0 -A) yL,Mrat (Pf ¦

2J denotes £ with Lf (Kf) +X+Li (Kt) fcn) (3.9)
r««n ^ I.0«10- J

KAodd S '

IV. Cross Section in PWBA

In this chapter we evaluate the cross section for the quasi-elastic electron
scattering in PWBA. The matrix element of the electromagnetic interaction is
given by

</ |H|,->=i^LÜF)(kf) y,&(*,) J, ¦ (4-1)

J' is the Fourier integral of the nuclear transition current density

/„ J' d*xei**(N'p\Jll(x)\Ny (4.2)

and q2ß the square of the momentum transfer

q\ q2-co2. (4.3)

For the Dirac spinors we have chosen the normalization of Källen [7]. Since we do not
observe a polarization of the electron we average over the initial and sum over the
final states of the electron

irK/l^l^^-)2^/,/, • (4-4)
rr' \ 9ß /
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In equation (4.4) we have introduced the expressions

N„ YÏTË {ki» k" + k'* k" + \& b^ (4-5)

and

Jp={J,iQ), J,= {J*.iQ*)- (4-6)

Now let us evaluate the Fourier integral of the nuclear transition current density

q= [<[N'p |e(r) | Ny A«' d* r 4nJTi* RX/l Y'Xß(q)
Kß

J= [<N'P\ 7(f) | Ny f«' dH=-4n iJTix Sim Y'IXM(q)

The radial integrals are given by
oo

^ [ eAß(r)ix(°r)r2dr

(4.7)

sum J 7/amM /a(? r) r2 dr

(4.8)

The formulae (4.7) become particularly simple if we introduce the coordinate system
in which q lies in the direction of the z-axis

g )/4lz2JiXÎRXn,
*

(4.9)
J -i]/4n 2JiX<X01r\Iry X Snrx'r-

Ht

J(T are the spherical unit vectors

Xi --^(ex + iey)

Zo «, (4.10)

X-i=r^(ex-iey).

The average and sum over the initial and final states of the proton are simplified by
application of a symmetry relation

E EJpJv= E J^Jv 2EJniv (4.11)

Thus the coincidence cross section is given by

do Et EfkfWfpf / 4 na.x2
dûe dûp dEf k, (2 n)5 (^A N„22Jj,f,. (4.12)

V Iß I M{
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V. Numerical Results and Discussion

In this section we present some numerical results of quasi-elastic scattering of
elections from nuclei and discuss those parts of the calculation in which the numerical
procedures are of interest.

The problem of calculation falls naturally into two parts: (1) The evaluation of
the radial integrals and (2) the calculation of the cross section. The numerical calculation

of radial integrals is accomplished by the method of Runge-Kutta-Gill.
Normalization of the wave functions and determination of the phase shifts is

achieved by comparison of the calculated values fx and gx with their WKB-solutions
at some large value r R (see Appendix). Once the radial integrals are known, the
evaluation of the cross section is easily performed by means of equation (2.16). In
order to speed the convergence of the series in equation (2.11), we made use of the
reduced series as Yennie et al. [11]. This powerful method is based on the recursion
relation for spherical harmonics. The reduced series converges considerably faster than
the original series.

As the calculations are rather extensive a few representative examples have been
selected for discussion. In the following calculations, the radial dependence of the
ground state charge distribution has been taken to be of the Fermi shape:

o(r)=--e°—.
r - c (5.1)

1+1J4Â7

For the bound proton we have used harmonic oscillator wavefunctions (see Appendix),
and the emitted proton has been assumed to be distorted by a square well potential
of the depth V. The oscillator parameter X is determined by finding the expectation
value of the square of the nuclear radius <f2> (see Appendix), which is given by

<r2y R20A2l\ (5.2)

where A is the number of nucléons in the nucleus and R0 has been fixed to R0 1.4 F.
Numerical calculations are carried out at incident energies of 200 MeV and

300 MeV, and a study of the behaviour of the cross section is made for the closed shell
and subshell nuclei 40Ca, 32S and 28Si at a fixed electron scattering angle & 50°.

It is in principle possible to distinguish the proton emitted from different shells by
measuring the energy of the outgoing proton. The assumed binding energies of the
proton in the various nuclear shells are given in Figure 3.

The maximum cross section is obtained for % 180°, when all three vectors kt,
kf and pf are coplanar. Experimentally this is the most favorable arrangement,
therefore we confine our theoretical study to this particular case.

Some typical results are presented in Figures 4-12 where we show the angular
distribution of the emitted proton obtained from the exact calculation (DWBA) and
the PWBA for different nuclear potential depths. The coincidence cross section for
quasi-elastic scattering by a 1 rf6/2 shell proton of 28Si is given in Figure 4. We have
plotted the exact calculation (solid curve) and the PWBA (dashed curve) for the
potential depths V 0 and V 10 MeV. The angular distribution of the knock-out
proton shows a minimum around the proton angle cp 50°. The main effect of nuclear
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distortion can be treated by replacing the proton momentum pf by an effective
momentum peff within the nucleus

X "0 "Si "Ca

20

AO

60

2»fc 1.?

-ip« U.1
4dx -I4.S

y<% «.*

*%—"
¦Wt— «•

Yp*-M
^ 3S Yp^£

4S» « ¦**
v <p&— <«-4>

¦<p%—

¦fa*—»

*s—"
¦fsii— «o

80

(Mev)

Figure 3

Binding energies of the proton assumed in
the calculation.

MSi(e^p)27Al

1d^2 shell

20 E, 200MeV

E, 160 MeV

— exact
— PWBA

^15 -\2
<N N\\ ^ / /îô

c \\ \ \ ^ V= 10 MeV / //,cd
r* \\\N/ ////\ \ \ V / / ' /\\\A 'ft/t« \\ \/N / ///

\ \ >v _/ 7 /

5 ^^ \ n * /v=o \ ^ ^ /

1 1

20° 40° 60° 80°

Figure 4
The coincidence cross section for the 1 <y2 shell
of 28Si at an ingoing electron energy E{ 200
MeV and an outgoing electron energy Ef
160 MeV. The solid curve represents the exact
calculation (DWBA) and the dashed curve the
PWBA. The outgoing proton has been distorted

by a potential of depth V 0 and V
10 MeV.

Peff

w.
fw,eff -M2

(5.3)
eff~Wf+V

In Figures 5-7 the angular distribution of a proton emerging from the 2 s1/2 shell
of 32S is given for three different electron energies. At an ingoing (outgoing) electron

energy E{ 200 MeV (Ef 160 MeV) the angular distribution shows a peak around
cp 50° and two minima (Fig. 5). In contrast to Figure 4 the shape of the distribution
is sensitive to the depth of the nuclear potential V. The curves with V 0 show very
pronounced peaks, whereas the curves with V 10 MeV are washed out.

By varying the electron energies the behaviour of the angular distribution is

completely changed due to the different effective momentum peff. At Et 300 MeV
and Ef 220 MeV the angular correlation shows only one peak for V 19 MeV, but
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if the nuclear distortion is neglected a double peaking appears (Fig. 6). At Ef
230 MeV this double peaking is very much pronounced for V 0 and can be seen even
if the outgoing proton wave function is distorted by a nuclear potential of the depth
V 19 MeV (Fig. 7).

"S^e'pfP
2si,2 shell

E| 200 MeV

E, 160MeV

exact
PWBA /

MeV
- \yS3

\ J

20° 40° 60° 80°

4 -

:*3

2

^SMppP
2si/2 shell

E,= 300 MeV

E,= 220 MeV

—exact
— PWBA

—^_ * V=19 MeV
J^^ *OC //y W// \\// \\^"ms_ „Jf \-/7\\ //a\t A \ > .' / x\ \/ A \/x—y / \\ \r ft X / A \fi / \ / \\ \\i / _\ y A \\

u r^^^ —~—' \\ n
L \\ A/ v=o A x\

V
• A^

\\\\\\\\v
•

20° 40" 60° 80°

Figure 5

The coincidence cross section for the 2 s1/2
shell of 32S. E. 200 MeV, Ef 160 MeV,
potential depths V 0 and V - 10 MeV.

Figure 6

The coincidence cross section for the 2 sxi2
shell of 32S. Ei 300 MeV, Ef 220 MeV,
potential depths V 0 and V 19 MeV.

The angular distribution of the outgoing proton knocked out from the 1 d5ii shell
of 32S for Ei 300 MeV is given in Figures 8 and 9. As in the case of the 2 s1/2 shell we
have a maximum around tp 50° for V 23 MeV and Ef 220 MeV (Fig. 8). For
V 0 the effective proton momentum peff is lower and the double peaking appears
again in our curve. The same happens if we change the outgoing electron energy to
Ef 230 MeV (Fig. 9). This gives us a weak minimum around cp 50° for V 23 MeV
and two very pronounced peaks in the case of V 0.

For discussion of the 1 <23/2 shell we have selected the nucleus 40Ca. In Figures
10-12 the angular distribution of the 1 dsj2 shell proton of 40Ca is shown at different
electron energies. The shapes of the angular correlations are similar to those of the
1 d5j2 shells. The main difference lies in the binding energies of the bound proton.
The binding energy of a 1 dzl2 shell proton in 40Ca (B 8.3 MeV) is much smaller than
the binding energy of a 1 dbl2 shell proton in 32S (73 18.7 MeV). This affects the
effective momentum peff and therefore the double peaking appears only weakly in
Figures 10 and 12.
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The coincidence cross section for the 1 d3/2

shell of 4°Ca. E{ 200 MeV, Ef 160 MeV,
potential depths V 0 and V 10 MeV.
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Figure 11

The coincidence cross section for the 1 d3i%

shell of 40Ca. E. 300 MeV, Ef 220 MeV,
potential depths V 0 and V 20 MeV.
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The coincidence cross section for the 1 d3i„
shell of 40Ca. E. 300 MeV, Ef 230 MeV,
potential depths V 0 and V 20 MeV.
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Appendix

A. Harmonie Oscillator Shell Model

The radial wave function Rnl(r) of a particle in a harmonic oscillator shell model

potential

V(r) - V0 + — m co2 r2 (A.l)

is given by [9]

Rn,(r) NntA *
r>Lî+K^ (X r2) (A.2)

where L'+$+y (X r2) is the Laguerre polynomial

*£&* (9) =£(-1)* *© (2£V*+")M g* (A-3)

and the normalization constant Nn, is defined by

2
2>-» + 2(2l + 2n+ l)\\X'+si2

nl fn nl[(2l+l)\\]2
' [ ' '

The associated binding energies are given by

B=Vn-(2n + l-\)co. (A.5)

The integral <« / \r2\ niy has the value [10]
oo

fnl \r2\ niy j R2nl(r) F dr 2n+ +3I2
(A6)

o

B. Electron in a Central Field

In this section, we discuss the Dirac equation for an electron in a central field.
The discussion presented here is primarily to establish the notation and convention
used in the text.

The solutions of the Dirac equation for an electron of energy E and mass mina
central potential V(r) may be written in the form [8]
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« /ft, (r) 7& \W" VL(r)xU' (BA)

(B.2)

(B.3)

where the angular momentum functions are given explicitly by

ZJÎ=27</«»-T|T|j»yi^(f)||,T>.
T

« is the eigenvalue of the spin-orbit operator

(oL+l)fx -xfx
and is related to / and I by the following equations

x I (I+!)-() + |)2

i(x) | x | - |
Z(x) /(x) + | sgn *

The radial functions /x and gx are solutions of the coupled differential equations

K- 1

(B.4)

I ft«/

-(*-*-FW)
(B.5)

w — F(r) —

For the Coulomb potential V(r) — Z x/r the regular radial wave functions are given
explicitly in terms of the confluent hypergeometric function by

iL(r)
\gJLr)

{Im\Re]

f>

[(y + i rj)

E — m
Ë + m

1
(krf-i

2V e*r,l2 \r(y + - 'n)\
r(2y + l)

ei<e e-ikr iFx(y + l + it),2y+l, 2ik r)] (B.6)

with

y fx' - (a Z)2

a ZE
V k

p2i<p

i -nm-* ++
y + in

The regular Coulomb wave functions have the asymptotic forms

IE —m
\t» 1

k r
V E + 1

sin (kr + rj log 2 kr — (I + 1)-^ + ôx

cos (k r + r\ log 2 k r - (I + 1)§ + ôx

where the phase shift of the partial wave is

i rt m
1 -*+E

àx - arg r (y +i rj) + -— arg —
2 y + i rj

ny F(l+1):

(B.7)

(B.

(B.9)
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The irregular solutions are obtained from the regular solutions if y is replaced by — y.
An incident (outgoing) electron of energy E, asymptotic momentum k and polarization
t is given by a linear combination of tp%

f r=4*j/

4*j/

E + m
2iT 2Je±a- i'ilpc-rir\ipty Y'lß_T(k) tf

r
Kil

2E -¦ — \f-i-l)r^^ (B.10)2jl~l 1 (-1)" 2

where

/ \/2 i + 1 k
k

Beyond the limits of the nuclear charge distribution the potential is simply that of a

point charge, in which case the WKB method [8] can be used to obtain solutions of the
form

y

rf

E-- V + m
]/Qo A Qx

E-- V — m

-Qt

exp (i J (Qo + Qx dr)

exp(» J)/Qn-Qi dr)

(B.ll)

(B.12)

with

Qx

<?2

X

r2

x
~r2

2EÇ ym2+ —2--L
r r

r (E + m) + £

c

(B.13)

r (E — m) + £

y2 x2 — tf
C= Zoc

p2 E2 — m2

With the approximation

/00 + Qx ~ /<?o

(B.14)

Qi
•° "21/Ço

the integral (B.ll) can be evaluated explicitly giving

(B.15)

Qo
Qx_

2]/Qo
dr )/Q+r]log(}/Q +pr + rj)-yd+ \sgnx®(m) (B.16)
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with

rj p r — y2
arcsm

fyf + y2pr

~CWr+lTf + 72
(B.17)

0(m) arcsm-

{*r+T&fV* + f
Q p2 r2 + 2 rj p r — y2

The solution of the second integral (B.12) can be found by the substitution

m -> — m

x^-x. (B.18)

/ {fÖ*~ JWo)dr =]/® + rl l0g(^ + P^ + V)-YÖ-{sgnx 0(-m) -

(B.19)

Thus the WKB solutions with the correct asymptotic behaviour are given by

r g j/ p%+n))/<fF^ C0S W^ + ^ogO/Q + pr + rj)-y(B- Bf)

+ \ sgn x (0(m) - 0fm)) - rj - (I + 1) f + ôx]

(B.20)

r^~1 p%+Zwx ^WQAnlog(yQ + pr + rj)-y(8-e0)

- | sgnx(0(-m) + 0o(m)) -rj-(l+ 1) f 4- <5J

with the asymptotic values

rj
0n arcsin —0 fr? + y2

— t m
0o(m) - 0o(-m) arcsin ,-2-y=r (B.21)

p vt + y
After straight-forward calculation the angular integrals

/ €f+ Ylß y% dû (fX{ fXf + gXi gX/) <Xffif | Yx„ | x{ /O (B.22)

J €f+ « * Yxx_XßtfidU rj~^r [(Xf - x,) (fXf gx. + gXffX{) -
X (gXf L. - fXf gH. )] < Xf ft/ \YX/l\ xt fii y (B.23)

Jtff+ a ¦ Yxx+Xßtft dû
m + 1)\2X+1)- K*/" *«) (/.,6., + &.,tut)

+ (^ + 1) (&.,/„, - Lfgx)] <*ff*f I ^ I *, to> (B-24)
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Jtff+a-Yxx^xtdû= ^-Zl_ (xi + xf)(fXfg>Ci + gXfU

<"*//</lyA„l*i^> (B.25)

may be evaluated. For the integral

<*//«/ I yA, I *i N> / f^ YV ft dQ (B-26)

we get a contribution only for lf+ X + l{ even by reason of the parity selection rule

<**i^i«*>-<-^^(-^)(£4)
x y (1 + (-1)'/+*+'«). (B.27)
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