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Explicit Solution for Quadratic Interactions

by Ph. Ch. Zabey and M. Ducommun
Institute for Theoretical Physics, Geneva, Switzerland

(31. VII. 70)

Abstract. Explicit operator solutions are given for quadratic interactions, both for scalar and
spinor fields. Their existence is rigorously established.

1. Introduction

We intend to construct in this paper an entirely soluble model for mass and field
intensity renormalizations, both for scalar and spinor fields.

The difficulty, with such a program, is due essentially to Haag's theorem [1],
which asserts that there does not exist unitary operators representing the time
evolution of a system with interactions. Indeed, we will meet this difficulty in the fact
that the interaction terms we introduce for the renormalizations are not defined on
the Fock space of the free field.

To bypass Haag's theorem, the main idea, due to Guenin [2, 3], is to consider the
time evolution of the system as an automorphism of the algebra of field operators.
This automorphism is not unitarily implementable, but we will show that it can be
reached by some limiting procedure performed on unitarily implementable
automorphisms.

To work out this procedure, we must first introduce cut-offs in order to make of
the interaction terms well-defined operators on the bare Fock space, and then we

prove the existence of the solution and its convergence when cut-offs are removed.
Finally, for our model to be complete, we must evaluate explicitely the physical
vacuum, allowing therefore the Wightman's construction. Usual methods for
obtaining the physical vacuum do not work in our case, but we will show that the right
result can be obtained if we use a dressing transformation.

We will essentially present the calculations for the spinor field, and give the
main results for the scalar field. Proofs are quite similar in both cases; for the scalar
field, they have been partly given in [2], and the explicit form of the dressing transformation

has been proposed by Eckmann and Guenin [4].

2. The Case of the Spinor Field
We start with a free spinor field, usually written as:

W(x)
I 1 V'2 f I m\112

: \2n) / d'P WJ etP"E{br(P) ur(P) «-"»« + d?(-p) vr(-p)e<»P<}.
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Here, x stands for (t, x), <y for (p2 + m2)112 and s for the number of space
dimension; the symbol ~ will denote the transition to adjoints spinors. The following
rules apply:

ùr(P) ur,(P) -vfp) v„(p) d„,
MP), K, (p')]+ [dfp), d*\P')]+ brrl ô (p - p')

all other anticommutators being zero. The free hamiltonian H0 is:

Hn fd'P (Op 2J{K (P) K(P) +df(- P) df- P) }
J f

We now introduce mass and field intensity renormalizations by means of the
following formal interaction terms:

ôm2 r — © r ~
V / d'x : W W: (x) + — / d'x-.uW W: (x)

4 m J 4m J
t- 0 t=0

which includes a factor l/2m for coherence in units; is equal to df — A. As in [2],
V is not defined on the bare Fock space, even if we substitute to it a once cut-off
interaction Vf of the form:

Vf=-^~ f d'x f{x) :¥¥: (x) + -— f d'xf(x) :n&¥: (*)
4m J 4 m J

t^o t=0
Let us therefore consider a twice cut-off interaction Va defined by:

Va fd'xfd'x' fma(x) cpjx') :W(x + x')W(x- x') :

t o V o

+ /d'xJd'x' f9a(x) <pa(x') :n/¥(x + x') ¥ (x - x') :

(»0 ('»0
with :

ôm2 1 a II* |!2 \ *'«S' Sm2
fm* (x) r,— exP ;— *¦ -a — when a -*¦ ° •4« \ 4 / 4m

© / a ||*||2 \ inS' ©
fm „ (*) exp >• - — when a —> 0'®aV ' 4m v \ 4 / 4m

l\ 1 Y" i "*li2\ iflS'
Al \ V,

9a (*) I — I exP I *" °(x) when a -> 0
\3i a/ \ a /

With these cut-offs, parametrized by a, /fa //„ + Vx is, after Kato's well-
known theorem, a well defined essentially self adjoint operator on the manifold
generated by the states with a finite number of particles; we take |© | ^ 1/2 and
ôm2 < m2.

w ^ w
Our aim is now to look for some limit W(x) of the field Wf\x) defined by Wa(x)

exp(» Ha t) W(0, x) exp(— i Ha t) when a goes to zero. But, by Haag's theorem, we
know that we can not compute any limit on the exponential exp (— i H^ t). Our
method is then to try an ansatz:

2Jbr(p, t) ur(p, t)=E f d'k Afp, k, t) br(k) ufk)

+ 2J fd'k Bfp, k, t) d*(- ft) vr(- ft) (2.1)
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and to write:

*«(x)={LYj^A^T6^ ^\br{p't] Ur(p> t]+d*{~p't] vA"p't]} '

Afp, ft, t) and Br(p, ft, t) are unknown functions we have to determine by
solving Heisenberg's equation:

i dt Wa(x) [Wa(x), Hf
with the initial condition ¥^(0, *) W(0, x).

After some calculations, we obtain the following system:

i dt Afp, ft, t) cok Afp, ft, t) +
f l m VI2 / m \1/2 ]

JdSqWJ (v) ^\Ar'(P'9,t)Da-(k-q)-Brl(p,q,t)Da+(k-q)\,
(2.2a)

id,Br(p, ft, t) -cok Br(p, ft, t) +
f t m X1'2 / m X1'2 C

/ d'q ^) \~w'") <ÇK'(p' 9't] Dx+(k,-q)-Brl(p, q, t)D0F(k,-q)

(2.2b)
where:

Dt(P, P') =Î(P- P') {La (P + P') + haiP+P') ((P + P')2 - K ± «VW
and whose initial conditions are:

Afp, k, 0) ô (p - fe) ßr(p, ft, 0) 0 (2.2c)

the symbol * denoting Fourier transformation. Our next task is to find a solution of
(2.2) and to show that it admits a limit when we remove the cut-offs, i.e. when <x-> 0.

More precisely, we want to establish that:
(i) Ar and Br are distributions in the p variable,
(ii) Ar and Br belong to S(RS) in the ft variable,
(iii) Ar and Br converge to some limits in the S(RS) topology when a -> 0.

For this purpose, we write the system (2.2) in a more compact way: let
tp(p) 6 S(RJ), and define successively:

''exp (i mkt) Ax(p,k,t)
exv(icokt) A2(p, k,t)

U(k, t) / d'pw(p) rw' FH ' ' exp(-îco^) Bx(p,k,t)
^exv)(—iwkt) B2(p, ft, £),

c?(p' *') t~ + L Up - pv - K ± «v)2) ¦4 m 4î

fa(x)= exp I —I
M(k, q, t)

1 m yi2/1/2 m x t/2 /C« (ft, - q) «•«'*-V - C+ (ft, - g) ^*+",,»(»(. +IB

l^jl". "IP " * ~^<x V"-- — HI "
<pjk +q)[ i

"* ' x w< ¦ \C+(k,- q) ei(-w^wf>i - Cf(k, - q) &-•*+-?,
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Then we may write:

d, U(k, t) =fd'q I (ft - q) Af(fc, q, t) U(q, t)

U(k, 0) W(k) J

which is an integral equation giving the following successive approximations:

Un (ft, t) =ftdQxJFqx .J e"-Vß„ fd'qja(k -qx)...fx (qn-X - qn) X

M(k, qx,Qx) ...M(q„_x,qn,on) U0(qn,6n).

Now, by properties of /a and of cj>a, we can see that:

\\M(k,q,t)\\^ßMax{\Ct(k,-q)\},

\\fd*qCt(k,-q)fa(k-q)\\<ycok
and consequently that:

ß" y" t" w'k\UAk,t)\\^ ' * \\U0(k,0)
ni

which converges uniformely in a. This establishes (i) and (iii). We obtain (ii) by
similar techniques on 77 (1 + ft-)-* || Un(k, t) \\ and on its derivatives for each p.

i
These results enable us to solve (2.2) after having removed the cut-offs, that

is to solve the following system:
ôfn

i dt Afp, ft, t) cok Afp, ft, t) + -r-—EAr'(P' k> {)
4 m fr
ôm2 — 4 © wf

4 m
EBr,(p,k,t)

i dt Bfp, ft, 0 -ft)* Bfp, ft, t) - r~-EBr'(P' k- *)
4 m 7,

dm2 — 4 © w\
EAr'(P- k< f)

4 m

The solution is then:

*, 17 1 2œt + ôm2\ I 1 2cok + ôm2\
Ar(p,k,t)=ô fc-p — -—t \e"*' + (— + -—

(\ 2 4cokek \ 2 4coksk J J

Br (p, k,t) ô(k- p) 4<s°*-ag U* _ e^ki
4mkek {

for each r, where e2 ôm2 (1 + 2 ©) + co2 (1 — 4 ©2). Going back to our ansatz (2.1),
we obtain the detailed expression ior^JrbfP. 0 UÀP> *) as weu as t0TErdr(P: t) VÂP> 0>

and finally we can write:

W{X) \2n) I ** \TJ € ¦? {K(k) Ur{k) + d*{~k) Vr("k)
J
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where
1 / £,. \1/2

br(k) ur(k) — \JL] (1 + a,) br(k) ur(k) + (1 - a,) d*(- ft) vr(- ft)

dfk) vr(k) i- (^)1/2{(1 + «*) <*,(*) »,(*) + (1 - °0 &,*(-*) Mr(-fe)}

with aA cok (1 + 2 ©)/et. One can easily verify that these renormalized creation and
annihilation operators satisfy quasi-canonical anticommutation rules:

ibfk), bf(k')]+ [dfk), i*(ft')]+ (i + 2©) ôrr, ô (ft - ft')

all other anticommutators being zero.
kj

We have finally to construct the "physical",i.e. the renormalized vacuum |0>.

We first notice that 10 > does no belong to the bare Fock space, which describes
kj

particles with mass m ; indeed, there is no state | tp > of mass m such that br(k) \ cp > 0

for all ft and r.
KJ

The first attempt is to obtain 10 > from the time average of a two-point functional
taken in the bare vacuum |0>; but this procedure leads to:

T

limr 00^r f d8(,0\ W(t + Q,x)W(t' + Q,x') |0>

-r
[jn) /^oT {(1 + «*),«",",*"~",+ (l-a,)2^'-'')}/6-1*-*''
This expression obviously does not fulfill the spectral conditions, for it contains

both positive and negative frequencies.

The right idea, as mentioned in section 1, is to consider a kind of dressing
transformation defined by:

T exp{-fd'kf(k)E(b?(k) ufk) df(-k)vr(-k)+bf(-k)ur(-k) d*(k) »,(*))}

and to write | 0> T |0>. Actually, T is only a formal expression which is not
defined on the bare vacuum. Therefore, we ought to introduce some cut-offs and to
study the convergence of what we obtain; such calculations are rather cumbersome
for the spinor field [5], and we give here only the results, all details will be presented
for the scalar field.

KJ KJ KJ

As | 0> is obviously an invariant, the whole point is to write that br(k) |0> 0

for all ft and r. We will verify this conditions if we take:

m-1 /1-
1 + «*

and we obtain then the right two-point functional:

Û(x, x') (1 + 2 ©) /-1- V fd'k (—\e>k<*-*')e-'e*<'-*')
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3. The Case of the Neutral Scalar Field

As mentionned in section 1, the case of the neutral scalar field differs slightly
from the case of the spinor field. Therefore, we will give here simply some constructive
points for its solution, examinating in detail only the construction of the renormalized
vacuum.

A neutral scalar field is usually given by the following formulas:

w - (à)
"2 r d'k

"ie0{x)=\2-n) Jl^FWe •¦*{«<*>•-•¦* + «*<-*>'

[a(k),a*(k')] =0 (ft- ft')

all other commutators being zero. The free hamiltonian H0 is:

Hn= I d'kooka*(k) «(ft)

and the interaction terms for the renormalizations are:

ôm2 f © C
V / d'x :02: (x) H / d'x : D 02: (x) ¦

t-o *-o
The solution is easily checked and is written:

*(X) (^)Vl2^'*'*'*{"(fe) e~Uki + **<-*>''*'

with:

e\ a>i (1 - 4©2) + ôm2 (1 + 2©)
1 i s \112

«(*) y [-f-J |(1 + «*) «(*) + (1 - «*) «*(-*)

«» «>*(! + 2 ©)/«* •

Again we consider a dressing transformation:

r=exp|- fd'kf(k) a*(ft)a*(-ft)|sexp|-ß|
But we have <0 \B* B \ 0> / d'k f d'k' /(ft) /(ft') Ô2 (ft - ft'), which diverges.

Therefore, we have to introduce (once more) two cut-offs:

/ a llftll2\ iri S'
fjk) /(ft) exp^- -1UL j v /(ft) when a -> 0

/ i \ s/2 / ||Jfe[|2\ inS'
<PÀk) I — exp - Ü-Ü- <S(fe) when a -> 0

\n a/ \ a /
such that Sa / *Ä / ^' /a(ft) ç)a(fc') a* (ft' + ft) «* (ft' - ft) is well defined on |0>,
as we can easily show:

<0| Bt Ba |0> =Jd'k \fa(k) |2 J d'k' \<pa(k') |2 <~
The same sort of calculations can be done for B", and we can then define Fx

exp(-BJon |0>.
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We write |0a> for Ta |0>. Our aim is now to establish that:
KJ KJ

(i) a (ft) | OF) goes to 0 in some way when a ->¦ 0;
KJ KJ

(ii) 0(x) is well-defined on |0a>;

(iii) lima_ 0< 0a 10(x)0(x') | 0a>/<0a 10a> exists and is equal to

'd'k
(1+2©) \2n) Jk(x-x') n-iet{t-t')

2ek

Point (i) is formally achieved when we obtain, using the calculation rules published
in [6]:

1 /1 + 2© X1'2

|(1 - xf «*(- ft) - 2 (1 + a,) fd'p Up) q>a (ft - p) a* (ft - 2 p)\ |0>

which shows that we have to take /(ft) 1/2 (1 — aft)/(l + a.f). For points (ii) and
W <kJ w w

(iii), we must calculate < 0œ ] 0(cp) 0(cp') | 0a>, where cp and cp' are test functions:

<Oa\0(<p)0(<p') |0a>

/ 1 \s C d'k f d'k'
\2n) (2ef112 (2^)1/2

d'x / d'x' eik-xeik'-x'cp(x) cp(x') x

x {

e-"*'«-"*"' <0a| a (ft) « (ft') |0a>
e-ukteisk,t' <oj « (ft) a*(-ft')|0a>
"'e'-' --"'¦'" <0.| >(-*)« (ft') |0a>
e'V e«V' <0a| a*(-ft)«*(-ft')|0a>

which is a well-defined expression for a =t= 0 (point (ii)). Its first, third and fourth
terms, after point (i), vanish with a; the second one is of the form:

a(k)a*(-k') a*(-k')a(k) + (1 + 2©) ô (ft + ft')

the <5-part of it leading to the result (iii), the a*a-part of it going to zero after point (i).

4. Concluding Remarks and Acknowledgements

Quadratic interactions may also be written:

V -£— d'x:W W: (x) + — fd'x :da W daW: (x)2« / 2m

for the spinor field, and:

V ft fd'x :02: (x) + d fd'x : dß> da0: (x)

t-0 t-0
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for the scalar field. This way to do gives exactly the same results as what we have
achieved, as is seen by the following correspondence rule:

ôm2
d © and u © m2r 2

valid for both fields.
Now, we wish to conclude by remarking that we have accomplished our program,

i.e. that we have really renormalized mass and field intensity; to see this, let us take,
KJ

for instance, the renormalized free hamiltonian H0 of the scalar field:

#0= fd'k ska*(k) « (ft)

Evidently, it describes particles of mass (m2 + dm2)112, whose field intensity is
(1 + 2©) times the bare's one; in fact, we have immediately :H0: (1 + 2 ©) H,
the Wick product being taken with respect to the bare vacuum.

It is a pleasure for us to thank Prof. M. Guenin for having suggested this problem
and for his unvaluable help during our work.

This research was partially supported by the National Science Foundation.

REFERENCES

[1] R. Haag, Dan. Mat. Fys. Medd. 29, 12 (1965).
[2] M. Guenin, G. Velo, Helv. Phys. Acta 41, 362 (1968).
[3] M. Guenin, Lectures Notes, 9th Summer Institute for Theoretical Physics, Boulder (1966).
[4] J.-P. Eckmann, M. Guenin, private communication, and M. Guenin, Les systèmes à un

nombre infini de degrés de liberté, CNRS (1969). A dressing transformation is somewhat
analogue to what is called displacement operator in P. Kristensen et al., Math. Scand.
14, 129 (1964).

[5] They have nevertheless been done
[6] M. Guenin, Helv. Phys. Acta 41, 75 (1968).


	Explicit solution for quadratic interactions

