
Zeitschrift: Helvetica Physica Acta

Band: 44 (1971)

Heft: 2

Artikel: Mass differences as additional electromagnetic corrections in low
energy elastic and charge exchange N scattering

Autor: Oudes, G.C. / Rasche, G.

DOI: https://doi.org/10.5169/seals-114274

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 15.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-114274
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


160

Mass Differences as Additional Electromagnetic Corrections
in Low Energy Elastic and Charge Exchange n N Scattering

by G. C. Oades and G. Rasche

Institut für Theoretische Physik der Universität Zürich

(17. VIII. 70)

Summary. We present a treatment of low energy n~ p ->- n~ p and n~ p ->¦ tt9 n scattering
which includes non-relativistically both mass difference effects and the effect of the long range
Coulomb potential. Using this formalism we then show how the corrections to the usual charge
independent expressions can be calculated in a first order perturbation treatment.

1. Introduction

In a recent paper [1] we have given a formalism which takes into account the
Coulomb corrections to the charge independent nuclear ti N interaction. These
corrections are important when one wishes to isolate the purely nuclear scattering
amplitude for use in dispersion relations or in, tests of charge independence. It is

usually assumed that these Coulomb effects constitute the bulk of the low energy
electromagnetic corrections but, to be consistent, it is also necessary to include the
electromagnetic mass differences between the proton and the neutron and between
the 71+ and tc° in the analysis of the coupled processes tc~ p ~>tc~ p and tc" p -^tc° n.

The usual procedure, when analysing differential cross sections, is to take mass
differences into account kinematically when extracting the scattering amplitude; the
dynamic effects of these mass differences on the scattering amplitude are not treated.
In the present paper we include these latter effects in our non-relativistic treatment
of the Coulomb corrections. In so doing we adhere as closely as possible to the
notation used in Ref. [1]. In case of any confusion or for a more detailed discussion
of the problem the reader is refered to this paper which also quotes some of the earlier
literature.

In Section 2 we write down the Schrödinger equation in the simultaneous presence
of mass differences and Coulomb effects. In Section 3 we deal with the inner Coulomb
and mass difference corrections and in Section 4 we deal with the outer Coulomb and
mass difference corrections. In Section 5, for use in experimental analyses, we give
perturbation expressions correct to first order in the Coulomb and mass difference
effects. Finally in two appendices we give the connection between our corrected
S-matrix elements and the differential cross sections and we check that our S-matrix,
as constructed from the coupled two channel Schrödinger equation, is unitary and

symmetric.
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2. The Schrödinger Equation

Since the potential energy operator in the Hamiltonian is non-controversial, we
concentrate our attention on the kinetic energy term

Here the superscripts (1) and (2) stand for the pion and nucléon respectively. Because
of mass differences the mass factors are operators in isospin space with the form

1

h (1 - h) +~(A + tf) (1 - tf

h)+~-^(l-T3) (2)
mn 2

where pi- is the mass of the n~, pt0 the mass of the tc°, mp the mass of the proton and

mn the mass of the neutron, t and 1/2 r are the pion and nucléon isospin operators.
The operators in (2) are diagonal in the charge basis of isospin space, ]c> (c —, 0

denoting the tc~ p and tc° n states), and so the inverses of these operators exist, having
the form

mop - rU-^r h - y + N (1 + h) (1 - h)

™(ïl ft_ 2

1

mfl
11(1
mp 2

*»$ ™P— (1 + Ts) + ™n — (1 - t3) (3)
1 1

— (1 + T,) + mn -j
The operators m$ and mj§ commute so one can introduce total linear momentum P
and relative linear momentum p and transform to the cm. frame P 0

Using the same algebraic manipulations as in the single channel case we obtain

Hkin r/-~(P)2, P=0 (A)
1m0p

where
1

mop m0f» m0f2l

In the charge basis we have in matrix notation

1 / mp fi_ \ / m-

o a.lJ-Ll1 "
™>n f*0/ \ mof

where m~ and m0 are the reduced masses of the tc~ p and n° n systems. The inverse
of (5) is obviously

!m_ 0

0 m0
(6)

Thus we see that taking into account mass differences in the kinetic energy for
the relative motion amounts to replacing the reduced mass by a mass operator which,
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in the charge basis, has the form given by (6). In addition, one has to introduce a rest
mass operator which takes into account the difference in the rest energies of the two
channels. The form of this operator is:

1
Mop mp Y{-1 + T3> +m"~Y (i- ts) + p* (i + Q (i-t,)-/*-^rt»Q-- k)

or, in the charge basis

/mp + M_
* \ Or,

Using units with fi c

Po/

2 m.
U."P

op

1 we arrive at the Schrödinger equation

op) W E Vyop + m,

where Uop is the strong, charge independent nuclear potential and Vop is the long
range Coulomb potential. Uop is diagonal in the total isospin basis of isospin space.
We assume that no other channels are open so that Uop is a real potential. The extension

to the inelastic scattering region by the introduction of a complex Uop is trivial.
The only essential difference being that our 2x2 S-matrix is no longer unitary. Vop

has the form

Vop Vc(r)t3 112 (1 + rf,
— Vff) being the static Coulomb potential in the nr p state. The wave function xp

depends on the relative coordinates in the cm. frame, on the nucléon spin variable,
and on the isospin variables of the pion and of the nucléon.

We now go over to the partial waves corresponding to diagonal absolute value
of the total angular momentum, 3rd component of the total angular momentum and
parity,

xpl±(x, s) [R[f\r) | -> + R\l(r) |0>] -±-Ql±,, (Ö, <f>)

where Qt±iS is defined in Ref. [1]. The radial wave equations for the functions Rl±
can now be written down. For simplicity we only consider the case of I 0, although
the results can be immediately generalised, and we use the notation of Ref. [1]

R(c) RTOT

The superscript T0T means that the radial wave functions are exact solutions of the
coupled channel system in distinction to solutions of other equations which will be
introduced later.

The system of coupled equations determining RT0T can be written in matrix
form as

1

1

— 0
m-

2 1
0 —

mn

d2 /i
lr2+\ -m„ Po)

1 2
— Un+—a-
3 3 3 1

V2
-Vc^(Un-UX)

a (U0-Ux) Un+- u,

TOT\

TOT I :

0 /
ftTOT

R

(7)
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Here C/3 and Ux are the s-wave diagonal values of Uop in the total isospin basis of
isospin space. Defining wave numbers corresponding to the relative linear momenta
of the two channels by

k2_ 2 m_ (E — mp — pi_

k2n 2m0(E-mn- p0)

we can rewrite (7) in the form

dr2
+ k2_ 0

d^+k°

/2m_ 0 \
~\ 0 2mJ

±-Un+^-UX-Vc ^(Un-Uf
\F? 2 1
y~(U0-Uf) —U. +—VA

i -groT \

[Rtot)-0

(8)

We can alternatively transform this equation to the total isospin basis when we
obtain the corresponding equation for R2°T, the s-wave radial wave functions in the
total isospin basis.

Defining

m_ m0 Am

kl-k2_= Ak2 (9)

the transformed equation becomes

d2

Ir2 k_

f2

-Ak2 n

Ak2
d2

~dr2

2 m U. — -

2 }/2
-m_

m_Vc

2^2

3

-k2_

4

Ak2

3

Am Us

3

AmUn.

-Ak2

2J/2
~3~

2m_U,-

m_ Vc

4

2/2

m_ Vr

AmUx

-AmUx

(Rl0T\
\R™T)

(10)

3. The Inner Corrections

We first consider the functions R'ff which are solutions of the equation obtained
from (10) when mass differences and the Coulomb potential are only included for
r ^ r0, where

r0 max (rN,rf
Here rN is the range of the nuclear interaction and rc is the charge radius beyond
which the n~ p Coulomb potential behaves like a point charge potential. Thus we have

"

d*
h- n

¦j,m -dr2

0

0

d%
,2lr*+k-

0 r >rft (H)
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while for r < r0 the functions R$ obey (10).

We now introduce solutions R2T of the purely nuclear problem i.e.

dr2
+ k2_ 2 m__ Un

d2

Ir2 + kt — 2 m_ Ux

Rf
Rl-o (12)

and choose the two linearly independent solutions which have the behaviour

I) sin (k_ r + ôf
0

UfJ (sin(k_r+dx))

r > r.

r >rK

(13)

where ô2T are the purely nuclear charge independent s-wave phases. We have

arbitrarily defined the charge independent phases to correspond to scattering with
the tt* and proton masses so as to avoid mass corrections in n+ p scattering.

Since (11) and (12) coincide for r > r0 we can write the general solution of (11)
in terms of four constants <x3, a.x, ß3, ßx, in the form

Rn «g R3oL + ß3 Rxß

R[N «i RS. + ßi R r >rn (14)

Performing the same manipulations as in Ref. [1] we arrive at implicit relations
between these constants of the form

Zs A, shi (6y

1

3 k-

¦ôx)
o

drRl[2m_Vc(RiN-]/2R[N)

+ 21/2 Am (1/2 U3 R™ + Ux R[N)

+ fïAk2 (1/2 R{N + R[N)] (15a)

Xi=<*-iAn(dz-ôx)

1

ef,u t drRNxß[2f2m_Vc(R\
0 - 2 Am (]/2 U3 RiN + Ux R{N)

\/2 R{N)

- Ak2 (1/2 Ri" + R{N)]

Thus combining (14) and (15) we have

(15b)

Ri Ri %3 R*

R'rJN Xi
sin (<53 — ôx

sin(<53-f31) lß

RL + ßi Riß

r>r„
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Finally we select two linearly independent solutions R'ff,a an(1 Rir.ß corresponding
to the choices a3 1, ßx 0 and a3 0, ßx 1 i.e.

p/JV r>N Xza pj\*V>„ Kn„ H : Tn n~T «1s" 3* r sin^-df) "lß

R'F — 'f^—- R*
sin (ô3-of 3a

(16)

TjIN __ _ Xsß oN
K^-sin(o3-ox)Klß

jdIN Al ß t-)At i nA'

4. The Outer Corrections

We now have to take into account the tail of the Coulomb potential and the
effect of the mass differences for r ^ r0. It is convenient to work in the charge basis

so we transform (16) to obtain

fi^

sin (<53 - (SJ

sin W.- ôi)

nINK0<x 'ft ¦nN
^3« + )/4 a.4+ ft Xla

T}N
K3a

sin ((53 -àx)

K0ß -n p.V + IT XzßRißA¦ft Xlß
p.V
•«¦3a

r>r0 (17)

sinß,-^)
From (8) we see that 7?T°r and R'f satisfy the same coupled equations for r < r0
and so we can write

?TOT\ i jjIN
(T>TOT\

1 -dIN \ / p/iV \

^H-GeH'Gc) '^" (I8)

where Aa and Aß are arbitrary constants.
Also from (8) we see that for r>r,, R™T satisfy the equations

(f- + k2 RT0T + 2m_Vc RT0T 0
\dr2 J ~ (19a)

{t2+k°)RT°°T ° • (19b)
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We now define two independent solutions of (19a), ua and Uß, with asymptotic
behaviour

ua ~ sin (k_ r + ra ' — aQ + r\ ln 2 k_ r)
r —> oo

Uß ~ sin (k_ r + ri~) — o"0 + r] ln 2 k_ r) (20)

where the Coulomb parameter rj is given by
e2 m-

V ^F~ (e2 a 137.0388-1)

and the s-wave Coulomb phase is given by
On arg r (1 + irj)

The phases T(a_) and Ff) are fixed by imposing the condition

ua

u„

R'
R'F
R

— tx

IN*

R'f1«
(21)

where the prime denotes differentiation with respect to r. For r 7> r0, Rff obeys the
same equation as ua and u » so we can write

RTOT=Botua+BßUß r^rn. (22)

Matching value and derivative of R_°T at r0 as given by (18) and by (22) we obtain

Ba XaAa, Bß=XßAß (23)

where the constants Xa and I. are given by

ua(r0) X"1 R'_» (r0)

ufi (r0) Xf1 R'_» (rf (24)

In the same spirit we define two independent solutions of (19b), y and vß with
asymptotic behaviour

va ~ sin(k0r+ T(a0))

vfi ~ sm(k0r + r^)
r —> oo

the phases r^ and r^ being determined by

r ¦¦

(25)

RIN,JV0a

R'N
DIN'
^Oß
R'N

We also define two constants Ya and YA by

va(rf) Y"1 Ä«f (r0)

vfi(r0) Yf1 R™ (r0)

(26)

(27)



Vol. 44, 1971 Mass Differences as Additional Electromagnetic Corrections 167

For r > r0, RJor obeys the same equation as vx and Vß and so we arrive at the analogous
result to (22) and (23),

Rl0T Ax Ya y + AßYßVß r > r0 (28)

Thus our general solution of the two channel tc~ p, tc° n problem with Coulomb
interaction and mass differences included has the form

where A^ and Aß are arbitrary constants.
Using the known asymptotic behaviour of the us and the v's we can proceed

from (29) to obtain the S-matrix elements in the charge basis, taking care to include
the correct normalisation factors since the n~ p and ti° n systems have different
relative velocities. The resulting expressions are:

Stot k Yfi e<(< »-40')- Xfi Ya e'H ]-^})]d^t

(k-m
\*/*

¦^-±) [-2iXxXßSm(r^-r^)] D£T

Ihm \1I2

S%T=\J^rTj [^YaYßSin(r^-rf)] D£T

S°t°ot k Y/ e-^] ~ *D - Xß Ya e-iV '^)} D&

(30)

where

DTot Xa Yß e-^V +*f) - Xß Ya eAV + *«) ¦ (31)

In Appendix I we show how the scattering amplitudes are constructed from these
S-matrix elements and in Appendix II we check that the values given by (30) and (31)

correspond to the elements of a symmetric and unitary matrix.

5. Perturbation Expressions

We have shown in the previous section how the full S-matrix elements can be
obtained once the functions R'CN are known. These R'f can be obtained by numerical
solution of the coupled equations for 0 y r < r0 or alternatively they can be approximated

by replacing the R'ff. by R2T in (15a) and (15b) thus obtaining approximate
values of the ^'s to substitute into (16). This latter procedure amounts to treating the
Coulomb interaction and the mass differences as perturbations. The first order values
obtained in this way are

Xz«= -~ J dr(Rl)2 (2 m_Vc + 4 Am U3 +2 Ak2)

o

Xsft= Jkl J dr{R3° R§ (2 V2m_Vc-2f2AmUx- </2 Ak2)

o
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Xlx 3 k-
dr(R%a Rff (2 |/2 m_ Vc - 2 f2 Am U3 - ]/2 Ak2)

Xiß 3 k- dr(Rff)2 (4 m_ Vc + 2 Am Ux + Ak2) ¦ (32)

The nuclear potentials U3 and Ux can be eliminated by using (12) to obtain

U, V2T
2T- k2_R%f) •(2ttt_4)-1.

Having obtained the R'f, either numerically or in the approximation described
above, we then have to calculate values for the X's, F~rs, Y's and t(0)'s. Using (20)
and (24) and matching value and derivative at r0 we obtain

F0(-ri, k- r) R'f;(r) - F0(-v, k- r)' R'fa(r)
tan t' '

¦

X.

G'0(-r), k-r) R'fa(r) - G0(-r,, k.r) R'Z(r)
R™*(r)

cosT(a » F0(-ri, k-r) + sin-r^ > G0(-r), k-r) r_ u (33)

Analogous expressions are obtained for Ff'1 and Xß by replacing R'fa by R'fß. In a
similar way using (25) and (27) we obtain

[k0rjn(k0r)] R'0"'(r) - [k0r j0(k0r)]' R™{r)
tanr (0)

Y

[k, r n0(k0 ,)] R'ff(r) - [k0 r n0(k0 r)]' R™(r)

cosT(a0) [kn r j0(k0 r)] - sinr^» [kg r n0(k0 r)] r _ n (34)

t^0) and Yß being obtained by replacing R'fa by R'ff. The notation suggests the obvious
generalisation to I 4= 0.

Having obtained the values for the X's, Y's and t's the S-matrix elements can
be calculated directly from (30) and (31). Alternatively values can be obtained for the
eigenphases t3 and rx and the mixing parameter co as defined in Ref. [1]. We have
from Ref. [1]

S~n- + S^r e2"3 + e2iri (35a)

• (35b)

tot
CO-
JT0T

o-O
JTOT

f2 tan œ
*)

If we define A's and e's by
higher order terms.

tL-> <53 + 4-> tL0, ^ + 40)

r'-'^ + zl'-' rf dx + Af
xa ]/-! (i + 4_)) ^=|/|-(i + 40))

^=-1/1-(1 + 4"') Yß= ]/-! (1 + e<°>) (36)
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then from (30) and (31) we obtain the first order results

+ 2*
3

ç00 _ 3,i»n
¦-'TOT ~ K

2 i
2A[^ + Af

o-O
JTOT

VA
3 lU

k-mnA'2 2e3-J-24°> + 4->-e!
W-

(0)

(37a)

A[-ï + 2Af + 2A[-1 + AxV\

{e2iä'[l + i (4~> .4-))]_^[i_î-(4-)_4-))]}, (37b)

Since the decomposition of a complex number into the sum of two complex numbers
each of modulus 1 is unique, we have on comparing (35a) and (37a),

4-> + 2 4°>

A 24-) + 4°>
(38)

Using (38) and comparing (35b) and (37b) we have

¦1/2 T 1/2
tan co V2 Ik-m^y

\knm-l 2(4"' o<oh

+
2(4-)

3 / + (ei

zi(o))--(4-)-4<'))

(-> e(o)^

tan(r33-<y
(39)

APPENDIX I

Differential Cross Section in Terms of S-Matrix Elements

The connection between the S-matrix elements and the differential cross sections

proceeds in a similar way to that outlined in Section 3 of Ref. [1]. The asymptotic
form of the radial and isotopic part of the wave function for a.n~ p incoming state
of given / value is

r /tt 1

sin (k_ r -~ al + r, ln 2 k_ r) + -A~(Sff - 1) f^i*l2-°t+^2k-') | _>

2i \k0 m

k- wo\1/2so- gi(V-J»/2)|0>] (Al.l)

where the Sj'±c are the full S-matrix elements i.e. such that
cc' c
°0+

ccf c
JTOT

Defining the quantities

(SF- - l) e-*>i/;i± 2i
1

f°l± * 2i ";±
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the same treatment as in Ref. [1] shows that the scattering amplitude can be written
in the form

Fc'~ f~ + i a ¦ ft gc'~ c' -,0
where

r'-= ôc,_ FCp + ^-Ç[(i+1) n±- +1 ft'-- ] Pt (cose)

gc'- ^Z[fct'F-~n'--]p}(cose).

Fc is the point charge pure Coulomb scattering amplitude and rt is the normal to the
p

scattering plane.

In terms of fc'^ and gc'~ the differential cross section is given by
da

f'~ 2_|_ „c'- 2

It should be noted that the usual treatments of n~ p charge exchange scattering
approximate the expression

1 (k-moYl2So-
2i \k0m_J l±

in equation (Al.l) by the charge independent limiting value in neglecting the mass
differences and putting rj 0. Making this approximation the mass difference effects
are only allowed for in the kinematical factor which comes in, if one goes from
the amplitude to cross section. One then can write

7^ ~ JfL rl fi- 12 I „o- i*,
dQ_ _+ 0 - v.

U /a' +l gN |J-

Here v0 and v- are the relative cm. velocities of the tc° n and tc~ p systems; f°f
and g°r- are the purely nuclear amplitudes, neglecting all isospin violating effects
[2, 3].

APPENDIX II

Symmetry and Unitarity of the Full S-Matrix
As a check on our calculation we show explicitly that the S-matrix we obtain is

symmetric and unitary.

a) Symmetry
Since wa and uß are two independent solutions of the same differential equation

their Wronskian is independent of r and from (20) we have

W[ua,Uß] k_sin(r^-r^).
Using (24) then gives

A_ Xa Xß sin(T<r>- t<->) W[R'fa R'fß]r __ r.



(A2.1)

TOT ' TOT — ' yl\£.^j
ç çO-* | çOO* ç-0 _ n [AI C\
JTOT °2~Or "^ JTOT JTOT — u ¦ \rn..jj
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Similarly
k0 Ya Yß sin(TL°> - t«°) W [R™, R™]r __ f§

and so from (30) we have

DT0T ¦ (jT0T — c>tot) ~

However, i?™7 and R'f aie regular solutions of (8) for r < r0.
Using this system of coupled differential equations one obtains

— W [Rfa Rfß] +—W [RZ R™]=0 0 < r < r0
m~ r m0

Thus the right hand side of (A2.1) vanishes and so

^TOT ^TOT ¦ (A£.Z)

b) Unitarity
We have to prove the three relations
| c— 12-4-1 c°- 2 — i CA2 31
I TOT \ ' I TOT | — > lIli',J/

-0 0 |2 i I Ç-0'TOT I "T I JTOT
J Ç0-* çOOi
'TOT JTOT ' JTOT ^TOT

Writing (A2.3) in the form

n co- |2 _ I n 12 _ I n c;— 12
| "TOT '-'TOT I — I "TOT I I "TOT °TOT I

we insert the explicit expressions from (30) and (31) to obtain

4 J^n Y° ^ Sin2^ -^ ^X«YßXß Ya sin (r«"' - T<T>) sin (r<°
p

Thus we must prove

£¦ Ya Y, sin(r«°> - r<°>) + ±XmX, sin(r<"' - t,"') 0
m0 r r m~ r

but this follows at once from the results of the previous section.
To prove (A2.4) we note from (30) that
("tot ' STOr) (DT0T • ST0T) (Az.o)

and so (A2.4) follows at once from (A2.3) which we have just proved. Finally we use

(A2.2) and (A2.6) to rewrite (A2.5) as

(DT0T • r>T0T) ' 2 Re (DT0T • STOt) " •

However, from (30), we see that DT0T Sf<>T is pure imaginary and so this relation is
also proved to be true.
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