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Is a Quantum Logic a Logic?

by R. J. Greechie1) and S. P. Gudder
Kansas State University, Dept. of Mathematics, Manhattan, Kansas, USA

and University of Denver, Denver, Colorado, USA

(1. V. 70)

In a recent study Jauch and Piron [2] have considered the possibility that a

quantum proposition system is an infinite valued logic. They argue that if this is the
case then for any two propositions p and q there must exist a conditional proposition
p -> q. Following Lukasiewicz [3] the truth value [p -> q] of the conditional p -> q
is defined as follows: [p -> q] min {1, 1 — [p] + [q]} where [p] and [q] are the truth
values of [p] and [q] respectively. Here [p] 1 is interpreted as 'p is true'. Note that
[p] 1 and [p -> q] 1 implies [q] 1 so we have a law of deduction, which is a

property that any reasonable logic should possess. Notice further that if [p -> q] 1

and [q -> r] 1 then [p -> r] 1 so that implication is transitive as it should be.

Let £ be an orthomodular poset (representing some quantum proposition system)
and let S be an order determining (full in [1]) set of states on £. We further assume
that if mx,m2e S, then 1/2 mx + 1/2 m2 e 5, that is, S is closed under the formation
of mid-points. We say that a, b e C are conditional is there exists ce C such that for
all m e S m(c) min {1, m(a') + m(b)}. If c exists it is unique. We call c the conditional
of a and b and write c a^-b. We say that £ (or, more correctly, the pair (£, S))
is conditional if every pair a, b e £ are conditional. Now if £ is to be a logic with a

law of deduction then £ must be conditional. Jauch and Piron [2] have shown that
standard proposition systems (that is, ones that are isomorphic to the lattice of all
closed subspaces of a Hilbert space) are not conditional and thus cannot be logics in
the usual sense. We generalize their results to the orthomodular posets £ considered
above. In fact we obtain the strong result that £ is conditional if and only if £
{0, 1}. We then characterize the pairs a, b e £ which are conditional.

Undefined terms appear in [1]. If a ^ V we write a + b for a V b. If a ^ b we
write b — a for b A a'. We first state a useful lemma whose simple proof is left to the
reader.

Lemma 1. (i) m(a => b) 1 if and only if m(a) < m(b); m(a -^ b) m(a') + m(b)
if and only if m(b) < m(a) 1.

(ii) m (<z->6) m(b) if and only if m(b) 1 or m(a) 1.

This lemma will be frequently used without further comment.

Theorem 2. £ is conditional if and only if £ {0, 1}.
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Proof: Clearly {0, 1} is conditional; in fact 1 0 -> 1 and 0 1 -s- 0. Now let £
be conditional and suppose there exists a e £ — {0, 1}. Then c a -*¦ a' exists and
m(c) min{l, 2 m(a')}. Since S is order determining a' ^ c. Hence there exists
b e £ such that a' + b c. Now m(b) m(c) — m(a') min {m(a), m(a')}. Thus
m(b) < 1/2 for all me S- It follows that b < è' since S is order determining. Hence
b 0 and c a'. Thus m(c) min {1, 2 m(c)} and hence m(c) 0 or 1 for all meS-
Moreover since 0 < c < 1 there exist mx,m2e S with mx(c) 0 and m2(c) 1.

Letting m 1/2 mx + 1/2 m2 we have m(c) 1/2, a contradiction. Hence £ {0, 1}.

We have seen that, for non-trivial posets £, not every pair of elements is
conditional. We now study the properties of pairs of elements that are conditional.

Lemma 3. If a -> b and a' V b exist and are equal then a C b.

Proof: There exists d e £ such that b + d= a' V b. We show d < a'. Otherwise there
exists we S such that m(d) > m(a'). Then m(a' V b) m(b) + m(d) > 1 — m(a) + m(b)
so m(a) > m(b). Hence m(a' V b) m(a => b) 1 — m(a) + m(b), a contradiction.
Now there exists e e £ with rf + e a'. We show e =ï7 ô. Otherwise there exists

we S with w(e) > m(b). Then w(a') m(d) + m(e) > m(rf) + m(b) m(a! V è) y w(a'),
a contradiction. Hence there exists / e £ with b f + e, a' d + e and / < & < d'
so that a' C b. Thus a C b.

Lemma 4. If c a -> b exists then a' sf c and b < c.

Proof: If a' ^ c then there exists me S such that w(c) < m(a'). Hence w(c) < 1

and 1 — m(a) + m(b) m(c) < 1 — m(a). Thus m(b) < 0, a contradiction. That
b ^ c is immediate.

We say that S is sufficient if 0 4= a e £ implies there exists me S with w(a) 1.

Theorem 5. Let S be sufficient and assume that a' V b exists. Then a -> i exists
if and only if « y è or & y «.

Proof: Clearly, if a y b then a -»- b 1 and if b < a, then a -> 6 a' + b.

Conversely, assume c a -> & exists. By Lemma 4 c > «' V J. Hence there exists
rf e £ such that (a' W b) + d c. Suppose d 4= 0. Then there exists w e S such that
m(d) 1. Hence m(a') m(b) 0 and m(c) 1 — m(a) + m(b) 0, a contradiction.
Therefore d 0 and c a' V ô. It now follows from Lemma 3 that a C b. Suppose a

and b are not comparable. Then a A b < a and a A b <b. Hence there exists

mx,m2e S such that mx (a — (a A &)) 1 and m2 (b — (a A &)) 1. It follows that
mx(a) m2(b) 1 and mx(b) mx (a A b) m2(a) m2 (a A b) 0. Let m
1/2 (1/2 mx + 1/2 m2) + 1/2 wx 3/4 mx + 1/4 w2. Then m (a A b) 0 and w(i)
1/4 < 3/4 m(a). Hence m(a') + m(b) m(c) m (a' V b) m (a' + (a A b))

m(a') + m (a A b). Thus m(b) m (a A b), a contradiction.

Corollary 6. Let S be sufficient and a' V b exist. If a -> b exists, then a^-b —

a' V b, b -> a exists, b' V a exists, and b -> a V V a.

The proofs of the previous theorems depend heavily on the fact that S is order
determining, sufficient or both. If we strengthen S still further we obtain a stronger
result. We say that Sisstrongly order determining if {me S:m(a) 1} C {meS: m(b) 1}
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implies that a < b. It can be shown that strongly order determining implies both order
determining and sufficiency. (The converse fails; see [1].) Notice that the set of states
on the lattice of all closed subspaces of a Hilbert space is strongly order determining.

Theorem 7. If S is strongly order determining, then a -+b exists if and only if
a ^ b or b < a.

Proof: As in Theorem 5, if a and b are comparable, then a ->b exists. Now
assume c a =>b exists. Suppose a «^ b and b A^ a. Then there exists m9, mxe S

such that m0(a) 1, m0(b) < 1, mx(a) < 1 and mx(b) 1. Note that m0(c) m0(b)
and mx(c) 1. Let m 1/2 m0 + 1/2 mx. Then m(a) 1/2 + 1/2 mx(a) < 1, m(b)
1/2 m0(b) + 1/2 < 1 and m(c) m(b). This last sentence contradicts Lemma 1 (ii).
Hence a and b are comparable.
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