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1. Introduction

In the analysis of the structure of quantum mechanics, Wigner’s theorem [1] on
symmetry operations plays a fundamental role: from the postulated invariance of
transition probabilities it derives that symmetry operations act as linear(or antilinear)
transformations in Hilbert space (superposition principle). Another characterization of
symmetry operations is due to Kadison [2]: it states that a symmetry operation (acting
on the states of a quantum mechanical system) commutes with the operation of
mixing. This is a necessary condition for any operation describing the kinematical or
dynamical behaviour of a system.

Unfortunately, Kadison’s work (and a related paper by Roberts and Roepstorft
[3]) is written for experts in C*-algebras and obscures to others the quite elementary
nature of the theorem. As a teacher I have tried to find a proof using tools available to
physics students. The result is presented in this note, which I dedicate to Markus Fierz
as a contribution to our discussions on the teaching of quantum mechanics.

2. Statement of the Theorems

Let # and 5"’ be complex Hilbert spaces of dimensions >2.I1(#) denotes the set
of all one-dimensional projections 7 on . The set of all finite convex combinations of
elements 7 € II(5f) is called E (5#). The theorems state the equivalence of the following
definitions:

I. A symmetry operation is a linear or antilinear isometry U of 5# into ¢
II. A symmetry operation is a mapping S:7 — #’ of II(5#) into II(5#') such that
(Tr = trace)

Trmymy = Trmm,. (1)

ITI. A symmetry operationisa one-to-one mappingS:4 — A’ of E(5#) into E(5#") such
that for0<a<landall 4,, 4, € E(#)

(ad; + (1 — @)4;)" = ad} + (1 — )4}, @)

The equivalence I ~ IT (Wigner’s theorem) and I ~ III (Kadison’s theorem, adapted to
ordinary quantum mechanics) is to be understood in the sense

7w =UnrU"! and A'=UAU L.
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In both cases, U is determined by S up to a complex factor of modulus 1 (phase). In
quantummechanics, 5## and J#” are coherent subspacesand S 15 required to beamapping
onto. Then U is unitary or antiunitary. We now turn to the proof of Kadison’s theorem.

3. Preliminary Remarks

II(5F) is the set of the extremal elements of the convex set E (). Therefore, since
S is one-to-one, S maps I1(5#) into I1(5#"). S has a unique linear extension to the real-
linear span E (5#) of E (5#) (or of II(##)), which is the real vector space of all symmetric
operators of finite rank. This extended mapping 4 — A’ has the properties:

A" #0 if 4 #0,

A'>0 ifA>0, (3)

TrA'=TrA.

Later we shall choose between the (unique) linear or antilinear further extension

of S to the complex-linear span E(5#) of E (), which is the algebra of all operators of
finite rank. Then we have

(A7)* = (4%, (4)
TrA for the linear extension,

Trd'= | —— - : (5)
Tr A for the antilinear extension.

4. Proof for dims¥ = dims¥f’ =2

We identify # and # with C2 by introducing an orthonormal basis in # and 5.
S then becomes a one-to-one mapping of E(C?) into itself satisfying (2). The elements
7 € [I(C?) are the 2 x 2-matrices

m=3(1+26)

with 2e R?, |¢| = 1, where & = (0,,0,,03) is the set of Pauli matrices:

0 1 0 —i 1 0
7o) 2T o) 2T lo af

E(C?) is the space of all hermitian 2 x 2-matrices
A=3ayl+d-5), a=/(ad)eR"

S therefore extends to a linear mapping of R* onto itself which leaves the planes Tr4 =
ay = const. invariant and which maps, in the plane g, = 1, the sphere |z| = 1 onto itself.
It follows that S has the form: '

S:(ag, @) — (a9, Ra) with R e 0(3).
From the theory of spin 1/2, we know that this implies
A'=UAU"L,
where U is unitary (if det R = detS = +1) or antiunitary (if detS = —1), and is deter-

mined by S up to a phase. Note that our definition of detS is inérinsic, i.e. independent
of the choice of the basis in S# and 5#".
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5. Reduction to Wigner’s Theorem

Lemma 1. Let M be a 2-dimensional subspace of 5. Then S maps E (M) onto E(M"),
where M' is a 2-dimensional subspace of H#'.

Proof : If P(M) denotes the projection onto M, the statement A € E(M) is equiva-
lent to the two conditions +4 < ¢P(M) for somec > 0. Let P(M) = m, + m,, 7, € [I(5).
Then it follows from (3) that +4' < ¢(r] + m3) < 2¢P(M’), where M is the subspace of
' spanned by the ranges of =] and ;. Hence A’ € E(M’), and since dimM’ < 2and S
is nonsingular, we have dimM' = 2.

Corollary : The restriction S(M) of S to E(M) is of the form
A > A" = UMAUM)™, (6)

where U(M) is determined up to a phase as a unitary/antiunitary mapping of M onto
M’ if detS(M) = +1/-1. In particular,

mf = U(M)m, UM)* (7)

for any pair m,, m, € II(5#), where M is a 2-dimensional subspace containing the ranges
of m; and m,. Therefore (1) is satisfied.

*

Having thus reduced Kadison’s theorem to Wigner’s theorem, we could now refer
the reader to Bargmann'’s proof [4], for example. But since we already have the tools
at hand, we complete the proof.

Lemma 2. detS(M) s independent of M (and from now on denoted by D(S)).

Proof: It suffices to show that detS(M,) = detS(M,) for M| N M, #{0}. Then we
can rotate M, continuously into M, in the at most 3-dimensional subspace N spanned
by M, and M,. Since S is linear, it is continuous on E(N), therefore M, is rotated con-
tinuously into M. It follows that detS(M,) is continuous under this rotation and
therefore constant.

Definition: S is now defined on E () by linear/antilinear extension if
D(S) = +1/-1.

Lemma 3. For all A, A, ef(,}f) we have (A, A,)' = A 43.

Proof : Since S is linear or antilinear, it suffices to consider the case 4, = m; € II(3#).
By (7) we have
mymy = U(M)m,m, UM)™".

On the other hand, (6) extendstoall 4 € E (M) since both sides are either linear or anti-
linear in A. Therefore, (mm,)’ = 7173.



236 Walter Hunziker H.P. A.

6. Construction of U

1. Choose a fixed 7 € II(5#) and unit vectors ¢, ¢’ in the ranges of =7’
2. Let a e be arbitrary. If a = ce (¢ complex), define
ce' if D(S) = +1
U(ag) =a =
ce' if D(S) =—1.

Otherwise, let M be the 2-dimensional subspace spanned by ¢ and a. Define (the phase
of) U(M) by U(M)e = ¢’ and then U(a) by

Ua) =a' =U(M)a.

By construction, U is isometric and reduces to U (M) on any 2-dimensional subspace
M containing e. By Lemma 3, S preserves orthogonality of projections, therefore U
preserves orthogonality of vectors. It follows that

A'=UAU! (8)
forallAd e Z=Z(M ), M being any 2-dimensional subspace containing e. In particular,
7 =UngU™!
for all 7w € I[1(5#). It remains to show that U is linear or antilinear, or equivalently, that
- ((ay,ay) if DS)=+1
(af,a3) ={ —— .
(a,,ay) 1if D(S) =-1

foralla,,a, e #°. Let M, be the subspace spanned by ¢ and ;. Then the linear operator
A, e E(M,) defined by

{ai foru=e

0 for (u,e)=0
satisfies (8). Therefore,
a; foru' =¢
|
0 for (u',e') =0,
and it follows from (4), (5) and Lemma 3 that
TrA¥A,=(a;,a;) if DS)=+1
TrA¥ A, = (a,,a;) if D(S)=-1.

(@f,a3) = (A} e, A} ) =Tr(A))* A; ={

Finally, it is clear that U is determined by S up to a phase, since this is true for the re-
striction of U to any 2-dimensional subspace.
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