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Helvetica Physica Acta
Vol. 45, 1972. Birkhäuser Verlag Basel

A Generalization of the Hopf Bifurcation Theorem

by R. Jost and E. Zehnder

Seminar für theoretische Physik, ETH Zürich

(30. VIL 71)

Zusammenfassung. Mit Methoden, die z.T. den klassischen Methoden der analytischen
Mechanik nachgebildet sind, z.T. von M. W. Hirsch und C. C. Pugh stammen, wird eine
Verallgemeinerung der E. Hopfsehen «Abzweigung einer periodischen Lösung von einer stationären Lösung
eines Differentialsystemes» behandelt. Insbesondere wird gezeigt, wie bei der Explosion einer
stabilen Gleichgewichtslage im R* anziehende zweidimensionale Tori entstehen können. Die Resultate

stehen in den Theoremen 1, 2 und 3.

Introduction

In reading the paper by David Ruelle and Floris Takens : On the Nature of Turbulence

[2] it appeared that their discussion of normal forms for families of diffeo-
morphisms with a fixed point is very closely related to the classical work by G. D.
Birkhofï on area-preserving analytic diffeomorphisms with fixed point in the plane
[3] §21. It seemed to us that these old-fashioned methods could possibly be of some
pedagogical advantage especially for physicists. For this reason we present them here.

We restrict ourselves to the special case of four dimensions. Generalizations are of
course possible and in many situations straightforward. Since the case of two dimensions

has been dealt with by Ruelle and Takens, our discussion is a direct continuation
of their work.

The justification for our restriction to an even number of dimensions is similar to the
justification given in [2] §5 for the reduction to two dimensions (cf. proposition (5.2)).

Section 1 contains the proof of Theorem 1, which describes normal forms for our
family of diffeomorphisms. The family of diffeomorphisms is parametrized by two real
parameters. Following E. Hopf [4] we are interested in the situation where the two pairs
of complex conjugate eigenvalues cross the unit circle (explosion of a stable point of
equilibrium). Our normal forms, however, are in general not unique. They decompose
up to terms of higher order, naturally into a dissipative part and into a measure
preserving part. The special truncated normal form which underlies sections 2 and 3 is
unique.

In section 2 we analyze the explosion of the stable equilibrium point for a truncated
family of diffeomorphism from which the given family of diffeomorphisms is obtained by
the addition of a small perturbation. This discussion is elementary and we restrict
ourselves to a special case. As a result of the explosion certain invariant circles and two
dimensional tori appear. Our interest is limited to the cases where these invariant manifolds

are attractive.
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Section 3 finally discusses the effect of the perturbation which leads from the
truncated diffeomorphism to the actual diffeomorphism. As was to be expected the perturbation

does not change the nature of the invariant attractive manifolds which result
from the explosion. The results are stated in theorem 2. Section 3 leans heavily on the
work of Hirsch and Pugh [1].

We thank David Ruelle for sending us his manuscript prior to publication and for
his kind encouragement in the course of this work.

It is a special pleasure to dedicate this paper to our teacher, colleague and friend
Markus Fierz on the occasion of his 60th birthday.

1. Normal Forms

1.0. Statement of Theorem 1

We consider a two-parameter family {cp(p)\pe I <= 7?2}. 7 open, of
diffeomorphisms U -> 7?4, U cz R* open. Each 9(p) has the origin 0 e U of R4 as a fixed point.
Define 0: U x 7 -> R4 x R2 by

9:(x,p)^(9(p)(x),p). (1.0.1)

We assume

9eCK(UxI), K>6. (1.0.2)

Of the spectrum of (Dcp(p))(0) A(p) we require

a(A(p)) {A, (p),Xx (p.),X2 (p), A2 (p)} (1.0.3)

and

Xa(p)*Xa(p), ae{l,2}. (1.0.4)

In addition 0 e 7 and

\Xa (0)| 1. (1.0.5)

We write

XAtA-PoW1*-™

Pa(p)eR+, xo(p)e(0,2n). (1.0.6)

Let R:I -> R2 be defined by

R:pr^(Px(p),P2(p.)). (1.0.7)

We finally assume (DR) (0) to be non-singular. It is then no essential restriction to put

pa(p) l+pa. (1.0.8)

According to these assumptions 9(p) can be expanded into powers of x:

9(p)(x) A(p)x + | /«%)(*) + 6K, (1.0.9)
k-2

with fm (p) a vectorvalued homogeneous polynomial of degree k in x and coefficients
from Cx-*(7). 8K is of order K in x.
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After a suitable /.(.-dependent linear coordinate transformation in x, A(p) will be of
the following normalform : A(p) :x\-> x'

x\ ± ix2 =(14- px)e±iatW (xl ± i%2)

x'i ± ix4 (14- p2)e±iX2<-^ (x3 ± ix4). (1.0.10)

Theorem 1 generalizes this normal form to higher powers of x.

Theorem 1. Assume that

sx xx (0) 4- s2 x2 (0) 27rra; sael, met
||s|| |s,| + |s2|<S4-l, SeHn, S<K (1.0.11)

implies [|s| 0, then the following statement holds:

Isczl, Is open, 0 e 7S and a two-parameter family {T(p)\p e Is) of coordinate
transformations exist with the properties

i) T(p):V ^U'czU.U'open 0r^0 (1.0.12)

ii) T(p) e C- (R4) (1.0.13)

iii) T : (x, p) h-> T(p) (x), p) satisfies T e CK~S (R4 x 7S) (1.0.14)

iv) 9(p) T(p)~l o 9(p) o T(p) :x h^ x'

is of the form

(xi ± ix'n) Px (p)(io)-e*Q,(W», (*. ± ix2) + 6S+1.

(X; ± ix'J P2 (p)(co) ¦ *±<OaW> (x3 ± ix4) + 6S+X (1.0.15)

with real polynomials Pa(p) and Qa(p) of degree [S/2] in cox, io2

cox=x\ + x\ co2=x\ + x2. (1.0.16)

and

Pa(p)(0) l+p„, Qo(p)(0) xa(p). (1.0.17)

v) 9:(x,p)+±(iP(p)(x),p) (1.0.18)

satisfies

0eC*-s(Fx7s). (1.0.19)

1.1 Introduction of complex coordinates

The theorem suggests the introduction of the complex coordinates:

ux= xx+ ix2 vx=xx — ix2

u2 x3 + ix4 v2 x3 — ix4. (1-1.1)

0(/x) is only defined on real points which correspond to complex coordinates satisfying

v„ û-a. (1.1.2)
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<p(p) is real, i.e. it transforms real points into real points. The expansion (1.0.9)
now takes the form

K - Aa«„ + *2 Pf 0*)(«. v) + 9K (1.1.3)
k-2

4 Kva+ 2 Pf(rA(v,ü)+6K,
k-2

with 6K only defined on real points and p(ak)(p) a homogeneous polynomial of degree k in
(u, v) with coefficients from CK~k (I). Correspondingly we write

9(p) A(p) + K2vm(p) + eK, (1.1.4)
k-2

pm (p) : C4 -> C4 is defined by («, v) h-> («', v')

«4 "=/>«r° (/*)(«>»)

v'a py{p)(v,ü) (1.1.5)

and is itself a re#/ mapping.

1.2. TAe coordinate transformations
We admit coordinate transformations T(p) : U, V) h-> (m, «) which are generated by

i) â(p.):u0 ra(p)Ua

Va ra(p)Va, (1.2.1)

where tct e C*"5 (7), rff : 7 -> C\{0}.

ii) £s(/i), 2<S<_f?

^=^a+^S)(M)(^.^)
w„ V„ + ?«>0*)(FfC7) (1.2.2)

with a homogeneous polynomial g^.S) (/_.) of degree S and coefficients in CK~S (I).
In analogy to (1.1.5) we write

Es(p) l + q™(p) (1.2.3)

All these transformations admit local inverses and are real, i.e. satisfy (U,U) h-> (u, Ü).
The same is true for arbitrary products. These also satisfy i), ii), iii) of Theorem 1.

1.3. The lattice

Let s e Z2, (s,x(p)) s, a, (p) + s2x2(p), and ||s|| as in (1.0.11). The lattice Q(p) is
defined by

Ç}(p,)={s\(s,x(p.))m0(2n)}. (1.3.1)

We write

9 9(0). (1.3.2)
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For S 6 N0 let

ïs {s| ||s||<S + l}. (1-3.3)

The assumption of Theorem 1 states

gnïs {0}. (1.3.4)

Define 7S in Theorem 1 by

Is {p\peI,Q(p)Ctis {0}}. (1.3.5)

7S is open and 0 6 7S.

The following Lemma 1 is trivial

Lemma 1. Let m e Z2, « e Z2, ||m|| + ||«|| < S, pe Is then

X™(p)XjpJ» Xa(H-) (1.3.6)

implies

ma na + 1 and ma, =na, for a' ^ a. (1.3.7)

Corollary: (1.3.6) is possible only if \\m\\ + \\n\\ 1 (2).

1.4. The operator SCS (p)

TakeA(p) from (1.1.3) and (1.1.4) and define in analogy to(l. 1.5) q'-S):(u,v)\-^-(u',v')

u'a qaS)(u,v)

v'a q^(v,ü), (1.4.1)

with homogeneous polynomials qC^> of degree S > 2.

{q(S)} Q(S) is in a natural way a finite dimensional vector space over C. The linear
mapping SCS (p) :2<S) -> 2<s> is defined by

Sfs (p) : q<s> h+ q<« A(p) o q<s> - q<*> o A(p). (1.4.2)

Sfs(p) induces a mapping on the homogeneous vector valued polynomials qiS) of
degree S. Let

q™(u,v)= I ba,mnWv\ (1.4.3)
Il m 11 + Il n II -S

then

SCs(p):q^y->qCsy

qiaSy(u,v)= 2 (Xa(p)-X(p)mX(p:r)ba<mnu-"V. (1.4.4)
«mll+llnll -S

From this formula and Lemma 1 we read off

Lemma 2. Under the assumptions of Theorem 1, pe Is:
i) kernel SCS (0) 0 e £.<« for S 0(2) (1.4.5)

ii) S =1(2)
kernel^ (0) ={?<«|?</> 2 ba<(tR(ux v1)'(u2v2)ßu<J} (1.4.6)

2(a+ß,-S-l
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iii) kernel Sfs (p.) cz kernel Sfs (0) (1-4.7)

iv) kernel^(0)4-range =Sfs(0)=a(S) (1.4.8)

v) (Sfs (p))'1: range Sfs (0) -> range J?s (0) is injective

The coefficients of (SCs(p))-1 qs, qs e rangeSCS(0) are CK~S (Is).

1.5. S-normal forms

Definition:

9(p) A(p) + K2 Ptt) (p) + 6K (1.5.1)
*-2

is an S-normal form if
X)w (p) e kernel J5ffc(0), k<S<K.

for p e Is.

In any case (1.1.4) is a 1-normal form. The existence of S-normal forms, S <K
follows from

Lemma 3. Let S <Kand<p(p) an (S — 1) normal form. A coordinate-transformation
Es(p) (1.2.3) exists such that Es(p)~1 o <p(p) o Es(p) is an S-normal form.

Proof: ip(p) Es(p)~1 o cp(p) o Es(p) is defined by

Es(p)o9(p)=9(p)oEs(p). (1-5-2)

Substitution of (1.5.1) and (1.2.3) yields

iP(p)=A(p)+2 pm(p)
k-2

+ p<s> 0*) 4- (A(p) o qcs, {Ll) __ q(S, w 0 A(lL)) + 6s+i

A(ji) + 2 Pm 0») + (P(S) 0*) + &S (H-WS) (/*)) + 98+l (1-5-3)
t-2

According to Lemma 2 (iv) for p e 7S uniquely

P(S)W=p(,S)M+p(2S)(/x) (1.5.4)

p(!S) (/t) e kernel SCS (0), p2S) (/x) e range ^?s (0) and from Lemma 2 (v)

q<s>W=-(^s(/,))-1p2s>(/,). (1.5.5)

Es(p) is a coordinate-transformation from 1.2 and the polynomial defining p\S)(p.) has
coefficients from CK~S(IS). ¦



264 R. Jost and E. Zehnder H. P. A.

Now we use Lemma 2i) and ii) to obtain

Lemma 4. Under the assumptions of theorem 1 with the definition (1.3.5) of Is there
exists T(p) satisfying i), ii), iii) of theorem 1 such that T(p)~l o cp(p) o T(p) ip(p) :

(u,v) t—> (u',v') is of the form
u'0 P^(p)(co)ua + es,x (1.5.6)

Va PaSHp-mva + es+x,

co (co,,co2), coa u„va, (1.5.7)

PoS) (/"¦) a polynomial of degree [Sj2] in co satisfying

Pf> (p) (0) Xa(p) (l+ pa)e>«°W. (1.5.8)

1.6. Proof of Theorem 1

All we have to do to arrive from Lemma 4 to Theorem 1 is to pass to real coordinates
by (1.1.1), whereby cu,, co2 (1.5.7) take the form (1.0.16), and in expressing Pl(p) by

P^(p) P^(p)e^'^ + ds+x

with real polynomials PaS) (p), Q(aS) (p) in cox,co2 of degree [S/2], satisfying (1.0.17). This
is clearly possible perhaps by suitable restriction of U to U' cz U.

1.7. Remark about uniqueness

The local group of S-normal-forms is not commutative, the normal forms are
therefore not unique. It is easily seen, that if T is a diffeomorphism and 9x and 02 two
S-normal-forms with T o 0, o T_1 02, then T must also be a S-normal-form.

2. The Qualitative Behaviour of the Truncated Normal Forms

If in the normal form (1.0.15) we omit 0S+X we obtain the truncated diffeomorphism
0. This truncated diffeomorphism decomposes naturally into an isometric part and a
dissipative part. The dissipative part defines in many cases invariant and attractive
submanifolds. We are interested in these submanifolds and shall prove in section 3 that
they persist under a 0S+X-perturbation of the truncated diffeomorphism. The restriction
of 0 to an invariant manifold will not be discussed. It is presumably involved, since the
corresponding restriction of 0 is not structurally stable.

2.1. The special case S 3

Introducing polar coordinates T2 x 7?2 ->- i?4\{0} :

xx ± ix2 rx e±i2,"Pi

x3 + ix4 r2e±l27"f2, (2.1.1)

ra e R+, 9a (mod 1), we obtain, according to Theorem 1 for

fatA : (>"i, <p,, r2, <p2) i-^ (A,<p'ur2,92.)

^ (1 + ^0+ 2 Uaa- Wl\ ra + 04

2

faa <Pa + «.(ft) + 2 dao. (p)r2 + 03 (2.1.2)
o'-l
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We merely look at the generic case aaa (0) ^0, a 1,2. Until now we have never used
the transformations (1.2.1). Now we use (1.2.1) with t„ eC2(I), however, in order to
transform aoa (p.) to the values ±1. This leaves us with the following 4 types (±1, ±1) :

r'x (1 4-px ±r\ + arj)rx + 04

r2=(l+p2 + br2±r2)r2 + 04, (2.1.3)

00 as above; a,b e C2 (I). Additionally, by means of a transformation E3 (p) according
to (1.2.3) we get for a and b in (2.1.3) :

a(p) â(px)

b(p)=b(p2). (2.1.4)

An elementary discussion proves that in the normal form (2.1.3) these functions are
invariants of the family of diffeomorphisms in question. In the following, we merely
investigate families (cp(p)) of the (—1,-1) type. We begin with a discussion of the
truncated part fap) defined by

r,' (1 4- /__! - r\ + arl)rx

r2=(l+p2 + br2-r2)r2 (2.1.5)

fap):
2

cp'o^VaV *a (p) + 2 dao- (p)r2i

2.2. Hopf bifurcation

Let px > 0, then {rx \/pTx,r2 0} defines a manifold Sß invariant under 9(p).
We introduce the submanifold coordinates for Sß :

r2 P-l+xU |^i | < iU.1

x2 + ix3 r2e±l27"P2. (2.2.1)

Then (2.1.5) defines a diffeomorphism S1 x Uß ->Sl x R3; U^ <= R3 is an open
neighbourhood of 0 e 7?3. Let 77, and 7r2 be the projections from S1 x R3 ontoS1 andT?3. Using
the notation

TTXofap)=fl:S1xU^^Sl

tt2 o 0(/x) =f2:Sl x U„ -> R3, (2.2.2)

there follows for (2.1.5):

h(y,x) Tx(p)(y)+0(x)

f2(y,x) T2(p)x + 02(x), (2.2.3)

T, (/j,) being the translation

yv^y + cxx(p)+pxdxx(p)I (2.2.4)
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and T2(p) eSC(R3) given by

(1
- 2px 0

0 pcoso-

0

0

—p sin a (2.2.5)

p sin a p cos a

p (1 4- p2 + bpx), a (S2 (p) + pxd2X (p)). The manifoldS^, invariant under (2.2.3), is
the graph (i) cS1 x Uu of the map

:Sl-+R3, i(y)=0eR3. (2.2.6)

This circle is attractive under (2.2.3) if and only if the spectrum a(T2 (p)) is contained in
{z e C| \z\ < 1}. This is the case according to (2.2.5) iff the following holds true:

i) px > 0,

ii) p2 + bp.x < 0. (2.2.7)

Two cases can be distinguished :

I. b > 0. In this case p2 < 0 and px < b~i\p2\ follows because of ii). This case corre¬
sponds to the Hopf bifurcation.

II. b < 0. In this case, one also gets an attractive circle for p2 > 0, if only

pc2<\b\px. (2.2.8)

Analogously for p2 > 0{/2 0,r2 y/p~2} defines another circle Si2> invariant under
9(p) and attractive iff
iii) p2 > 0

iv) p,x + ap2 < 0. (2.2.9)

If a < 0, b < 0 and ab > 1, there exist two attractive circles Si}), SJ,2> for p. e G <zz R2 ;

G {p\0 < px < \a\p2 <abpx}. (2.2.10)

Hence we are left with the following representation for the attractive circles of fap) in
the (/x,,ja2)-plane:

S."US

si21

Figure 1

Appearance of attractive circles in the (px, p2)-\jla.ne.
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The fixed point of 9(p) is attractive for pa < 0, elliptic for pa 0 and expansive for
pa>0,ae{l,2}.

2.3. Explosion into a 2-dim. torus

Let fap):T2 x R2-+T2x R2 be according to (2.1.5). The torus T2 x (rx,r2),
r, e R+ is invariant under fap), if

r\ - ar\ px

-br\ + r2 p2. (2.3.1)

Define A(p) e Sf (R2)

A^-\-b 7/ (2-3-2)

We restrict A by

i) A (p) non singular

ii) A(p)-i:K+-^K+,K+=R2 (2.3.3)

or equivalent to i) and ii)

iii) «>0, è>0, ab<l. (2.3.4)

Then, for all ß e K+, the torus

f2 (ß) T2x 08) c T2 x R2, (2.3.5)

ß A(p)~*p, (2.3.6)

is invariant under fap). The mapping p \-» ß, defined by (2.3.6), is a C2-diffeomorphism
in an open neighbourhood of p 0. Therefore, the family (cp(p)) can be parametrised
by j8. In the submanifoldcoordinates :

r\ ßx+xx, \xx\<ßx

r\ ß2+x2, \x2\<ß2 (2.3.7)

the diffeomorphism 0(ß) :T2 x Uß^T2 x R2, Up cz R* an open neighbourhood of
0 e R2, is given by faß) (fx,f2):

f\(y,x)-Tx(ß)(y) + 0(x)

f2(y,x) T2(ß)x + 02(x). (2.3.8)

Tx(ß):T2 -> T2 being the translation

yav^y0 + xa (ß) + 2 daa- (ß) ¦ ßa, (2.3.9)
o'-l

and T2 (ß) e Sf(R2) given by

T2(ß) l • (2.3.10)

\ 2ß2b l-2ß2J
T2 -> T2 x (0) (2.3.11)
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is the embedding of the invariant torus Tß (2.3.5). These tori Tß are attractive for
faß) iff a(T2(ß)) <= {z e C| \z\ < 1}. From (2.3.10) we get

^(^2(j8)) (A„A2),

Ai.2= 1 - (ft + ß2) ± V(ßx-ß2)2 + Aßxß2ab. (2.3.12)

Hence Tl is attractive, iff

ab<l (2.3.13)

08, + ß2) < 2 - V(/8, - &)2 + 4/3, & ai
Under the assumption (2.3.4) we have therefore the following representation for the
attractive manifolds of 0Oli) in the (px,p2)-plane:

Figure 2

Appearance of an attractive circle of an attractive torus in the (p.,, /i2)-plane.

The attractive circles result from Hopf-bifurcation (cf. 2.2).

3. Perturbation of the Truncated Transformation
3.1. Statement of Theorem 2 and 3

Theorem 2. Let cp e CK (U x I) satisfy the hypotheses of theorem 1 with S 3. Let in
addition cp be of the (—1,— l)-type (2.1.3) and satisfy (2.1.4). We assume

a(0)>0, b(0)>0, a(0)-b(0)<l. (3.1.1)

The following statements now hold:

There exists an open set V cz I containing the set {p\p e R+ x R+, 0 < \p\ < p} for
some p > 0, such that for each p e V the diffeomorphism cp(p) has an invariant CK~4-
embedded torus T2(p). This torus T2(p) is attractive; i.e. there exists an open neighbourhood

U„ => T2(p) such that for p e £/„

9(pY(P)^t2(p), k-^cc.
In the coordinates T2 x R2 (2.3.7) these tori are given by

T2(p) graph (sJ,

R2, s eCK-4(T2,R2).

(3.1.2)

(3.1.3)

v^2
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Theorem 3. Let <p(p) satisfy the hypotheses of theorem 1 with S 3 and be of the

(—l,—l)-type and satisfy (2.1.4). Let a be arbitrary and restrict 6(0) by

6(0) <0. (3.1.4)

Then there exists a set Ve,e2 cz 7, given by

V€,€2 ={p.\ |/i2|<«i. 0<px<e2, p2<\b\px}, (3.1.5)

such that for each p e Ve,(2 the diffeomorphism cp(p) has an attractive invariant CK~4-
embedded circle.

An analogous statement holds true for b arbitrary and a(0) < 0. If then in addition
(3.1.4) holds and if a(0)b(0) > 1, then the diffeomorphism <p(p) has two attractive
invariant circles for p in a certain region G as indicated in figure 1. The idea of the
proof is the following. We study the diffeomorphism 0Oix) in a neighbourhood of the
invariant attractive manifolds of the normal form fap) and consider cp(p) a perturbation

of fap). The perturbed invariant manifold is then constructed by means of a
transversal vector field of the unperturbed invariant manifold using the contracting
map principle.

3.2. Preliminaries to the proof of Theorem 2

In what follows we will use ß (2.3.6) instead of p for parameters of the
diffeomorphisms. We use the coordinates (2.3.7) and write <p(ß) (77, o cp(ß), tt2 o <p(ß)

(fuh):T2xUß^T2x R2. According to theorem 1 (S 3):

/1 (y,x) T, (y) + 0(|*|) + (|/3| + *, + x2)3'29xß (y,x) (3.2.1)

h(y,x) T2(x)+02(\x\) + (\ß\+xx+x2y>292ß(y,x),
\ß\=ß,+ß2, (3.2.2)

y (mod 1); Tx (ß) and T2(ß) are defined by (2.3.10) and (2.3.11). 0, and 02 are CK~4.

(3.2.1) interpreted as a mapping R2 xUß-> R2 x R2 satisfies

fu(yj + Vx)=fx,(yJ,x)+8,J (3.2.3)

/2(y. + l,x)=/2(v,*). (3.2.4)

In 7?2 we use the following norm

|*| =max(|*,|, |*2|), x (xx,x2) e R2. (3.2.5)

Remark: In the norm | • |g defined by

|*|j3 max(-V/è|*1|,V/â|*2|) (3.2.6)

we have for T2(ß) eSf(R2) according to (2.3.11)

\\T2(ß)\\ß= SUP \T2(ß)x\ß
W0-1

max (1 - 2/3, [1 - k], 1 - 2ß2 [1 - k]), (3.2.7)

k2 ab < 1. Hence in this norm T2(ß) is contractive for 0 < ß, < \. Instead of
using the norm (3.2.7) we can introduce new coordinates

*, Väix, x2 Vb{2, (3.2.8)
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and get

\\f2 (]8)|| sup | f2 (ß)$\ \\T2 (ß)\\ß. (3.2.9)
m-1

From now on we refer to these coordinates, without however changing the original
notation of (3.2.1).

Let e e (0,i) and define K€ cz R2

K( {ß\ßx > eß2, ß2 > eßx, ß, e (0,|)}. (3.2.10)

For 8 e (0,1) define U's cz T2 x R2 x R2

U's=T2x {(*,ß)\ |*| < \ß\8, ßeKA. (3.2.11)

We consider 9(ß) in the neighbourhood Ug H (ß) of T2(ß), the invariant torus for 9(ß).
With L(f) we denote the Lipschitz constant of a Lipschitz map/:M -> N between
metric spaces. If g is a function of two variables we denote by gx the function
y\-*g(x,y).

Lemma 1. <p(ß) satisfies the following propositions in <7j (1 (ß):

i) l/i (yu*i) -A (y2,x2)\ < (i + W2C,)\yx -y2\ +C2\xx -*2|.
Ü) \f2(yuxi) -f2(y2,x2)\ < L(/2»)bi -yi\ + L(f2v)\xx -*2|,

i(/2x)<|y3|5/2-c3

£(£,)< ll^2 03)|| + |/5|S-C4.

iii) |ACv.o)| <|i8|5'2C5.

iv) L(/2,-r2(/S))<|/3|SC4.

Proof: The statements are consequences of (3.2.1), (3.2.11) and the mean value
theorem. ¦According to (3.2.8) and (3.2.10) we have for ß e K(

||r2 (J8)|| <(l-|/3|y)<l, (3.2.14)

y e inf (1 — k) > 0.
ß

Lemma 2. There exist cr, > 0 and 8 > 0, such that

faUJ cz Us,

Us=U'sD{ß\\ß\<ax}.

Proof: From Lemma 1

|/2(y,*)| < \x\(\\T2(ß)\\ + \ß\8C4) + |/3|5'2C5,

hence with (3.2.14)

<|/3|S(l-|J8|[y-âC4-|/3|1'2S-1C5]).
Choose first

8<yC4l (3.2.16)
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and afterwards

|0|1« <i8(y-8C4)Cy o\>2.

We then have for |/3| < a,

max \f2ß(y,x)\<\ß\8(l-\ß\C6) (3.2.17)

U

3.3. The graph transform

To prove Theorem 2 and 3 we use the methods of M. W. Hirsch and C. C. Pugh [1].
Accordingly we prove first the existence of a Lipschitzian manifold, which is invariant
under 0(/3). In a further step the differentiability is proved with the help of the fiber
contraction theorem.

Let B be the Banach space of the continuous functions h:T2 -* R2

B {h\heCn(R2,R2); Ao0z A, zeZ2} (3.3.1)

whereby z\-^-9ze Difï (7?2) is the action of Z2 : 9z (y) (yx + zx,y2 + z2).
We write also B C°(T2, R2). The Banach spaces CK(T2, R2) are to be understood

correspondingly.
We shall now define a map -T^g, : B -> B, the so called graph transform of 0(j8),

for which the following holds true :

* - J*ß> (g) => faß)(graph (g)) graph (h). (3.3.2)

Because of

9(ß)(graph(g))={(n.o9(ß)o(l,g)(y),Tr2o9(ß)o(l,g)(y))\yeT2}, (3.3.3)

we have :

h:rrx o 0(/3) o (l,g)(y) h* tt2 o 0(/3) o (l,g)(y) (3.3.4)

or

rm(g)ofxo(l,g)=f2o(l,g). (3.3.5)

If/, o (l,g) :T2 -+T2 is bijective this means

r«ß,(g) =/2 o (l,g) o [/, o (l,g)]-K (3.3.6)

(3.3.6) is the defining formula for r<t,,ßy

Let ß and 8 he according to Lemma 2, we then define the closed subset Bß of
Lipschitz functions

Bp {g 6 B\ \g\ < |/3|S, 1(g) < |/3|5'4}. (3.3.7)

Lemma 3. There exists a2< ax, such that we have for \ß\ < a2

i) Bß cz D(r+m).
Ü) P*iß)(Bß)^Bß.

Proof: Define

0ß(£)=/>o(l,g):r2^r2 (3.3.8)

<Pß(g)=j2o(l,g):T2^R2. (3.3.9)
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Let g e Bß, then (3.2.1) implies

L(9ß(g)-Tx)<\ß\y4C1. (3.3.10)

Since L(Txl)~l L we have for l^5'4 < (2C^~l

L(9ß(g)-Tx)<L(Txi)-K (3.3.11)

Thus 00 (g) is injective, and

L(9ß (g)"1) < (L(Tr')-1 - L(9ß (g) - TA)-1. (3.3.12)

Because Tx is a Lipschitz homöomorphism, it follows from (3.3.11) that ipß (g) is also a

Lipschitz homöomorphism[l], and F^a^g) is therefore well defined. We still have to
show:

L(P*iß,(g))<WIA- (3-3.13)

From

P^ß,(g)=n^)o9ß(g)'1 (3.3.14)

we have

L(Pm, (g)) < L(cpß (g)) ¦ L(9ß (g)"1). (3.3.15)

From (3.3.10) and (3.3.12) we have:

L(9ß(g)-l)<(l-W4C1)-K (3.3.16)

Lemma 1 ii implies for g e Bß

L(9ß(g)) < \ß\5/4(\\T2(ß)\\ + \ß\8C4+ \ß\5l4C3). (3.3.17)

There exists, therefore, according to (3.3.15-17), a2 > 0, such that

L(Pw,(g))<m5,4(l-tf\Cs), (3-3.18)

if \ß\ < a2. The result follows. ¦
Lemma 4. There exists a a3 < o2, such that the graph transform r,j,,ß^ '.Bß -> Bß is a

contraction for \ß\ < a3:

L(rm)=xß<(i-\ß\c9)<i.
Proof: Take g,, g2e Bß and estimate

1-TfcP) (gl) - ^(ß)(g2)| < l^ß (gl) O djß (g,)"1 - cpß(gx) O 0ß (gz)"1!

+ \<Pß (gi) ° ¦A/s U2)"1 - ç>/3 (#2) o 0ß (g.,)-1!

< L(<P/i (g,)) 10,3 (gi)"1 - ipß (g2)~l I + \<Pß (gl) - <Pß (gl) I

< L(cpß (g.)) ¦ L(9ß (gx)-{)\9ß (gi) - ipß («2)| + |ty (g,) - cpß (g2)\

< (L(<Pß(gi))-L(fa(giV1)-L(fa) + L(cpß))\gl -g2\.
Therefore, from Lemma 1, (3.3.17) and (3.3.16) the result follows. ¦
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Clearly Bß is complete. Hence r^tß-, has a unique fixed point Sße Bß-.

A(ß)(sß)=s(3- (3-3-20)

if g e Bß, then

lim r;w(«) sß. (3.3.21)
n ->co

This fixed point sß for the graph transform yields a Lipschitzian manifold T2 (ß)

graph (Sß) cz T2 x R2, which is invariant under <p(ß) :

0(/3) (graph (sß)) graph (sj, (3.3.22)

and which is homöomorph to a torus T2. By construction this torus T2 (ß) is attractive.

3.4. The differentiability

Next we investigate the differentiability of Sß given by (3.3.20). Let

g.e^nC1^2,^2).
Define

agi (gi.ög.) eBßf) C°(T2,Sf(R2, R2)). (3.4.1)

If£l= ^V/3)(g).wenave

à (rm (g)) (rm (g), Drm (g)), (3.4.2)

with

Dr^ß, (g)(y) ^/2 (I) o (1, Dg(ix)) o [£>/, ($) o (1, DgOr«, (3.4.3)

£ (*,.&) - (fi.stfi)). ^.=0ßte)-1W. (3.4.4)

Let <?fJ be the Banach space

^'={4e C° (T2,Se(R2, R2)} (3.4.5)

with norm

|A|=max||A(v)||.

Define the closed subset Xß c jf «

Xß {heXl\\h\<\ß\s'4}. (3.4.6)

For I/31 < o-2 define the mapping

P^tfiißi '¦ Bß x ^ß "*¦ Bß x «^1

(«?.*) r->(rW)(g),Â), (3.4.7)

AM ß/2 (fl o (1, A(f,)) o [D/, (ß o (1, Â(li))]-1.

with I and £, according to (3.4.4). Â is well defined. Observe that

à(rm(g) ràm,(âg), (3.4.8)

for

geBßC)C1(T2,^(R2,R2)).
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Lemma 5. There exists a4 > 0, such that for the map

rMiß)(g,-):3fß^^ »Kirjor^p, (3.4.9)

g e Bß with \ß\ < o-4, the following holds:

i) Tûm(g,-)(X\)^X\. (3.4.10)

ii) L(r^ß)(g,-))<Xß<l. ^3.4.11)

Proof: It corresponds to the proofs of Lemma 3 and 4, but is simpler. ¦
The following Lemma is an extension of the contracting map principle. The proof

is elementary (cf. [1]).

Lemma 6. Fiber contraction theorem (topological).

Let X be a space and f: X -> X a map having an attractive fixed point p e X
lim /"(*) p for all x e X). Let Y be a metric space and (gx) xeX a family of maps
n—wx>

such that the formula F(x,y) (f(x),gx(y)) defines a continuous map F:X x Y —>

X x Y. Let q e Y be a fixed point for gp. Then (p,q) e X x Y is an attractive fixed point
for F provided

L(gx)<X<l
for all x e X.

Lemma 7. Let |/3| < 0-4, sß according to (3.3.18), then

sßeCl(T2,R2).

Proof: Because of Lemma 6 and 7 there exists a unique fixed point

(sß, hp) e BßxXß for rA4>iß} and

lim (r^(ß,)"(g>h) (Sß, hp), (3.4.12)
n -ä» oo

for all (g,h) e Bß xX1.. Choose (g,h) (0,0) =_dg, and there follows from (3.4.12)

lim (rj+,p)n(Ag) (sß,hß). (3.4.13)
n -» 00

But

(r*m)n(Ag)=A(r},ß)(g)), (3.4.14)

because of (3.4.8), such that Dsß exists and equals hß:

(sß, hß) (sß, Dsß) Asß. (3.4.15)

¦
Letge_BßnC"(r2,|R2).Put

àng (g,jng) (g,Dg,...,D"g), D'geC^.SCKR2^2)). (3.4.16)

Let

àn (rm (g)) (rm) (g), e(j»g,jnfuinf2)). (3-4.17)
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Define the Banach space X*
Xn Xlp x X2 x - • • x Xn, (3.4.18)

X, e C° (T2,Sf\ (R2, R2)), (3.4.19)

and define the map r^^p-, : 73^ x X" -> 73^ x X" :

*>«/»> (g, A) (/V» (g),e(h,?fx,?f2)). (3.4.20)

Considering the definitions we have

^(/3)(^"c?)=^"(rW)(g)). (3.4.21)

As can be easily verified by induction, we have

D" (**„> (g))(y) (£>/2 (ß 4- D(r^ (g))(y)o 7)/, (fl)(0, £>»g (f ,)|j8(y),..., j8(y)])

+ e'(f-lg,ffu?f2), (3-4.22)

whereby £, £,, j/ according to (3.4.4) and

ß(y) [ö/i (fl 0(1, Dg tf,))]-«. (3.4.23)

If we define the map ^ß(An_,) : ^fn -+Xn:

h^*n<K-uh,jnfx,jnf2), (3-4.24)

hn_xeXlßx ••• xjr,_„
there follows from (3.4.22)

M? (*.-.)(*) - ^ (Â„_,)(Â)| < A ¦ \ß(y)\» \h - h\, (3.4.25)

whereby

A < (1 - WC,) (3.4.26)

I0OOI"<(1-|.9|S/4C7)-. (3.4.27)

There exists, therefore, for all «, 1 < « < 7£, a t„ > 0, t. < t,- for * >/, such that for
l)8|<r.

L(Aß(hn_x))<Xß<l, (3.4.28)

h„_x e Xi x • • ¦ x Jf„_,. Using again Lemma 6 and (3.4.28) we reach the following
result by induction :

Lemma 8. There exists (t„), 1 < « < 7£ — 4, 0<r, <r} for i >j, such that

speC-(T2,R2),

if\ß\<rn.
From Lemma 8 and (3.3.22) Theorem 2 follows.

Remark: Let 0 e C°°, then we have from (3.4.28) t„ -> 0, « -> 00. Even for small
|)31 we cannot expect the tori T2 (ß) to be C°°.
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The proof of Theorem 3 follows the lines of the proof of Theorem 2, starting from
the corresponding truncated normal form in S1 x Uß -*¦ S1 x Uß. Vo prove the contraction

of the graph transform in question, we use the inequality

lir, mi < (i-«,,*,)</.(r,)« i
where Tx(p), T2(p) are defined by (2.2.4) and (2.2.5).

For the generalisation of the Hopf bifurcation for dimension 2« > 4 we only have
to discuss the matrix (atJ(p)) at p 0 in the dissipative part of the related truncated
normal form 0

r,\-> U + P, + 2<*ij(p)r2y

1 < i < «. We do not wish to carry out this discussion. However, one can get under
generic assumptions bifurcation of attractive tori Tm(p), 1 < m < «. The restrictions
of 0 onto these invariant tori are translations. As these translations are not structurally
stable, we cannot from here gain any insight into the qualitative behaviour of the
restrictions of 0(/x) onto their invariant tori. For « > 3 so called strange attractors on
T3 (p) might be expected [2].
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