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On the Decay of an Unstable Particle1)

by Kalyan Sinha

Department of Theoretical Physics, University of Geneva

(22. XII. 71)

Abstract. It is shown that the absence of regeneration of the unstable particle from the decay
products is inconsistent with a Hamiltonian bounded below. Consequences of some decay laws are
also derived.

1. Introduction

In this paper, we study the problem of decay of an unstable particle in the usual
quantum mechanical formalism, following the works of Williams [1] and Horwitz et al.
[2]. There have been many investigations of the problem (Refs. [3]-[7]) prior to those of
the above-mentioned authors, but they initiated a mathematically rigorous formulation

of the problem. This study is essentially a continuation of their investigations.
Here we do not attempt to give a physically acceptable detailed model of an 'unstable
particle', but we start from an essentially model-independent set-up and derive some
consequences a decaying system forces on the theory. For an interesting discussion of
various models and their relative merits, the reader is referred to the above mentioned
authors.

We shall start by assuming that an unstable particle can be described by vectors
in a Hilbert space jtfu. We shall also assume that 2fCu can be embedded in a larger Hilbert
space #e such that 2tf #?u © jfD where JtD is the Hilbert space of the decay products.
The last assumption is natural to interpret the decay of unstable particle vectors in 2rfu,
as being due to a loss probability from 3Ï?U into the Hilbert space of decay products,

Let V(t) he the unitary evolution of the total system (i.e. unstable particle and the
decay products), generated by a self-adjoint Hamiltonian H in Jrf. It is natural to
assume the unitarity of the evolution operator because once we have included all the
decay products in the system, the total system is isolated from the rest of the Universe
as far as the decay phenomenon is concerned. Then the probability that a particle in
the initial state W e jfu remain in the same state after time t > 0 is given by

Ptl>(t) \(V,V(t)V)\2.

This quantity pr(f) is expected to converge to zero as t -> oo for every We Jfu, if it
were to describe a decay. Exact decay law, i.e. the rate of convergence oipy(t) to zero,
has a striking influence on the theory, as we shall see in the sequel. Most experiments
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tend to show a very rapid rate of decay, viz. the exponential one. It is convenient to
introduce an operator Z(t), called contracted evolution defined for t > 0 as follows

Z(t) PV(t) P, where Pjf jfu.

Z(t) is essentially a collection of all matrix elements of the type (0, V(f)W) ,0,We Jfu.
So it describes the decay law of any vector in Jf„ into other. As a natural generalization
of exponential decay law for one dimension, one is tempted to think in terms of a
semigroup law for Z(t) for positive times. In fact, this is what was done in [1] and [2]. We
shall discuss this more fully, give simpler derivation of similar results and also show that
a relaxation of semigroup law for Z(t) does not alter the conclusions.

2. Semigroup Law for Z(t) and Regeneration

We assume here that Zlt) PV(t) P obeys a semigroup law for positive time, i.e.

Z(tx)Z(t2) Z(tx+t2); tx,t2>0. (1)

We write (1) more explicitly, viz.

PV(tx) PV(t2) P PV(tx + t2) P.

Denoting by P, the projection onto the subspace orthogonal to Jfu, the subspace of
decay products, we obtain

PV(tx) PV(t2) P PV(t2) PV(tx) P 0

ioralltx,t2>0.
This equation means that there is no regeneration of the vectors in Jfu, in subsequent

evolution from the vectors in MD. In other words, a semigroup law for the contracted
evolution Z(t) for positive times implies that the decay products at any positive time
cannot regenerate the unstable particle. This point has been emphasized by Fonda
and Ghirardi [8].

As a next step towards generalization, one can assume that regeneration is not
absent for all positive times but rather it continues for an arbitrary finite time Tr,
called the regeneration time. Mathematically, this is symbolized by

PV(tx) PV(t2) P 0

for all t2 > 0 and for tx > Tr > 0. This implies what we term an 'approximate semigroup
law' for the contracted evolution Z(t), viz.

Z(t.) Z(t2) Z(tx +12) ; tx > Tr > 0, t2 > 0. (2)

Now we will study the consequences of (1) and (2). Case (1) has been studied in
detail by the authors in [1] and [2]. We give simpler proofs and apply the same technique
to the treatment of (2).

Theorem 2.1. Assume (1). Then H, the generator of V(f), has the whole real line as its
spectrum.

The proof is essentially that of Williams [1].

Proof. Under (1) we have already noted that

PV(tx) PV(t2) P 0 ioralltx,t2>0.
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Let us consider the following expression

(PV(-t.)P)* V(t2)(PV(-tx)P) with t.,t2 > 0

PV(tx) PV(t2) PV(-tx) P

PV(tx) PV(t2) V(-t.) P - PV(tx) PV(t2) PV(-tx) P,

where we have used the fact that P I — P. The second term in the above is zero
because of (1) and the expression reduces to

PV(tx)PV(t2-tx)P 0,

if we choose t2 > tx > 0. Similarly,

(PV(-tx)P)*V(-t2)(PV(-tx)P) ; tx,t2 > 0

PV(tx) PV(-t2) PV(-t.) P

PV(tx) V(-t2) PV(-tx) P - PV(tx) PV(-t2) PV(-tx) P

(PV(tx) PV(t2 - tx)P)* - PV(tx) (PV(tx) PV(t2)P)*
0

by the same choice t2 > tx > 0. Thus for any vector W e Jf,

(PV(-tx) PW, V(f) PV(-tx)PW) 0 if |*| > tx > 0.

In terms of the spectral family {Ex} of H, the generator of the unitary group V(t),
the above can be written as

J el,xd\\Ex PV(-tx)PW\\2 0 for |;| > tx > 0.

Then, by Lemma 6 of Appendix, the spectral measure has the whole real line for its
support and we have the desired result.

Remark. In the literature, there is a lot of confusion about the statement and
application of Paley and Wiener's theorem [9]. It is worth mentioning that this theorem
relates to the Fourier transform of L2-functions and hence not immediately applicable
to the problem at hand.

Theorem 2.2. Assume (II). Then spectrum of H is the whole real line.

Proof. Since in this case

PV(tx) PV(t2)P 0 for t2 > 0 and tx > Tr > 0

we can follow the identical construction as in Theorem 2.1 and conclude that for any
vector W e JV,

(PV(-tx)PW, V(t)PV(-tx)PW) 0 if |*| > *, > Tr > 0.

Hence similar argument as in previous theorem leads to the stated conclusion.
Thus we observe that any absence of regeneration even after a finite but arbitrary

time leads to a Hamiltonian necessarily having unphysical spectrum, viz. it is not
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bounded below. In order to avoid this, one must allow regeneration to continue for all
positive times, i.e. one must have

PV(tx)PV(t2)P # 0 for all *, >0,t2> 0.

3. Sz. Nagy's Theorem on Extension and its Consequences

We state Sz. Nagy's theorem here without proof. For the proof, the reader is
referred to Reference [10].

Theorem 3.1.

Let G be a *semigroup and let {Z(g)} be a family of bounded linear operators in Ç£',

satisfying the following:

(i)Z(e)=I, Z(g*) Z(g)*

n

(H) 2 (*j.z(gtgj) ®j) > ° forfinite set W <*nd{j}

(iii) 2 (0t, z(g* h* hgj)0j) < ch 2 (0t, z(gtgj)0i)
l.j us

with a constant Ch>0, where the same set of{i) and {j} are chosen as in (ii).

Then 3 a triple {zf,S(g),Q} such that

Z(g)=QS(g)QVgeG

<£ qjt
and the Hilbert space Jf" is minimum in the sense that

(js(g)Qjr jf
i.e. JS? is generating under the action of S(g), the unitary representation of G in Jf.
Also the structure {ztf,S(g),Q} is unique up to an isomorphism of the structure.

It is easy to check that with G R1, the additive group on the reals ; Z(t) PV(t)P
in J5f Pjtf for * > 0 and the additional identification that

Z(-t) PV(-f)P Z(t)* for * > 0,

Z(t) satisfies all the hypotheses of Sz. Nagy's Theorem. Then there exists ztf 2 Pjf,
a projector Q in jf and a unitary representation of R1 in jf,S(t) such that

Qtf P3€,

Z(t)=QS(t)Q

and Jf is minimal, i.e.

Jf= U S(t)Qjf
r«D8>
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Notice that Jt, a priori need not be minimal with respect to V(f) and P. But then we can
work with the structure {Jt,S(t),Q} which is by Sz. Nagy's theorem structurally
isomorphic to all other minimal structures. Also, it seems that minimal structure is
the only one which has any right to describe the process under consideration.

Otherwise, there will be vectors in the Hilbert space which are not obtainable from
the unstable particle states by the given evolution and hence cannot describe decay
product states either. Henceforth by {jt, V(t), P} we shall mean the minimal structure
implying

U V(t) Pjf jttens1

4. Decay Laws and the Spectrum of H
The probability amplitude that the unstable particle with an initial state 0 e PJt

will be in a state W after time * > 0 is given by (W, V(f)0). In a decay process that we
attempt to describe here, one expects this quantity or rather its modulus square
\(W, V(f)0)\2 to decay to zero as * -»¦ oo. This is achieved economically by asking for
weak convergence of Z(f) to zero as * ->- oo.

By a decay law, we mean finding a positive function <p(f) such that for every pair
of vectors

\(W,Z(t)0)\=O(cp(t))

(W,Z(t)0)
or, equivalently, < a constant, for large * > 0. In this definition, the function

#)
<f>(t) can in general depend on the vectors 0 and W.

Remark. From the definition Z(-f) Z(f)* it is clear that there is complete
symmetry between positive and negative times as far as the decay law is concerned.

Theorem 4.1. Let Z(t) converge weakly to zero as t -s- oo. Then the spectrum of H is

continuous.

Proof of this theorem has been given by Horwitz et al. [1]. We give a simpler proof
using the theorem on means given in Appendix.

Proof.

(W, Z(t)W) j eitÄ d\\Ex PW\\2

converges to zero as * -j- oo, then by Lemma 1 of the Appendix, the spectral measure

\\ExPW\\2 is continuous and hence Pjt Jtc, where by Jtc, we denote the continuous

subspace with respect to H, as in Kato [11]. Since the structure {Jt, V(f),P} is assumed

to be minimal,

Jt= (J V(t) Pjt Jtcç Jt
tftV

and thus Jt Jtc, proving the theorem.
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Theorem 4.2 Let

j \(W,Z(t)W)\dt < 00

for every W e Jt. Then Z(t) converges weakly to zero as t -> oo and the spectrum of H is
absolutely continuous.

Proof.

(W,Z(f)W) j eiad\\Ex PW\\2.

From Lemma 4 in the Appendix we conclude that (W, Z(f)W) converges to zero as * -> oo

for every W e Jt and hence by polarisation identity Z(f) converges weakly. By the same
Lemma, we conclude that the spectral measure \\EXPW[2 is absolutely continuous and
as before, using the minimality of the structure {Jt, V(f),P} we arrive at the result that
Jt ^a.c the absolutely continuous subspace with respect to H.

Corollary. If the decay law is given by d>(f) l/tl+f for e > 0, then the spectrum of H
is absolutely continuous.

Proof. The result follows immediately on application of the Corollary to Lemma 4

in the Appendix.

Theorem 4.3. Let the decay law be exponential, viz. <j>(t) =e~P|f'; ß>0. Then the

spectrum of H is the whole real line and is absolutely continuous.

Proof. Let W he any vector in Jt. Then

(W, Z(t)W) J" e"* d\\Ex PW\\2

and hence, by Lemma 5 in Appendix, the spectral measure \\EX PW\\ 2must have whole
real line as its support and is an absolutely continuous function. This means that
Pjt £ Jta.c-. Since the structure {Jt, V(t),P} is assumed to be minimal, as before

Jt= U V(t) Pjt S Jt.... £ Jt
teU1

and thus Jt Jt^., showing absolute continuity of the whole spectrum of H.

Appendix

Here we prove a few useful results regarding the Fourier transforms of a Stieltjes
measure. Let a(X) he a Stieltjes measure on Rl (—oo < A < oo) and /(*) be its Fourier
transform, i.e.

f(f)=je"Àda(X); — 00 < * < 00.

It is clear that /(*) is a bounded continuous function on IR1. For the properties of such
measures and their Fourier transforms, the reader is referred to Bochner [12].



Vol. 45, 1972 On the Decay of an Unstable Particle 625

We state two theorems on the inverse Fourier transform whose proofs can be found
in Ref. [12].

Theorem 1. Let a(X) and /(*) be as stated before, then

1 C e~ltX-l
o-(A) - o-(O) lim — /(*) — dt.

U>^C°2-TT J —it
-tx)

We define the mean value m oi a continuous bounded function on IR1 as follows:

T

«{/(()} limi f(t)dt.
r^oo 2T J

-T

Note that for such functions the mean value always exists, i.e. m{f(t)} < co.

Theorem 2. Let /(*) be the Fourier transform of a Stieltjes measure cr(X). Then the

following relation holds for all X(—oo < A < oo) :

m{f(t) e~itÄ} a(X + 0) - ff (A - 0).

The right-hand side expression is sometimes called the 'jump' of the function a at
the point A.

Now we prove a few lemmas which have been used in this investigation.

Lemma 1. Let /(*) converge to zero as t -> oo. Then a(X) is continuous in A, i.e. it has

no 'jumps'.

Proof. Since /(*) converges to zero as * -> oo, so does /(*) e~"A for all real A, uniformly
in A; i.e.

\f(t)e-^\ \f(t)\<€, when \t\ >T0(e)
T To T -T0

j f(t)e-"*dt < j \f(t)\dt+ j \f(f)\dt+ J* \f(t)\dt
T -T0 T0 -T

ü2C(T0)Tn + 2e(T-TQ).
Then

~jf(t)e«*c <C(T0)^ + Jl-^
-T

Letting T ->• oo with e fixed, we obtain

m{f(t) e~itÄ} < e.

But since e was arbitrary to start with,

m{f(t) e~i,x} 0 for all A,

thus giving the required result by virtue of Theorem 2.

A weak converse of the above can be proven.
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Lemma 2. Let a(X) be continuous in X, then there exists at least one sequence {tj}
tending to infinity such that f(tf) converges to zero.

For the proof of this result, the reader is referred to Lax and Phillips [13].
The following Lemma is the Riemann-Lebesgue Lemma which we produce for

the sake of completeness. The proof of this can be found in most text books, in particular
(12).

Lemma 3. Let a(X) be an absolutely continuous function. Then /(*) converges to zero
as |*| -> oo.

Remark. For definition of absolutely continuous functions and its relation to the
absolute continuity of the measure generated by it, the reader is referred to Rudin
[14].

It is to be noted that the Riemann-Lebesgue Lemma does not give any idea of the
rate of decay of /(*) as * -> oo. The next Lemma is essentially the converse of Riemann-
Lebesgue Lemma, but we need some restriction on the decay rate.

Lemma 4. Let /(*) be the Fourier transform of a positive Stieltjes measure a(X)
and let /(*) be absolutely integrable in IR1. Then a(X) is an absolutely continuous function
and hence the Stieltjes measure associated to it is absolutely continuous with respect to the

Lebesgue measure on IR1.

Proof. By Theorem 1,

1 p e - 1

a(X) - o-(O) lim — /(*) — dt.
u)^2tt J -it

-U)

Since /(*) is continuous, bounded and also integrable in R1 and (e~itX — l)j(—it) is
continuous, bounded everywhere, the limit exists as a Lebesgue integral, i.e.

1 r e-itX-i
o-(A)-ff(0)=— /(*) — dt.

2tt J —it

Now we compute the derivation of the continuous function o-(A).

ff(A) - o-(A')

A-A'

The function

e-it(n-Ä') _ 1

-it(X-X')

Ifm-^v-^dt,
-co

A-A' 2tt J JK> -it(X - X'

ff(A) - ff(A') e-lHn-A') _ I

-it(X-X')
~ dt.
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goes to zero for fixed * pointwise in A as A' -> A and also

; Constant for|A - A'| small.
-it(X - A')

Hence by Lebesgue dominated convergence theorem, we have that the continuous
Stieltjes function o-(A) is differentiable everywhere in —oo < A < oo and the derivative
being,

da(X)

dX

00

2tt J
f(t)e-"Ädt

the right-hand side making sense because /(*) e Ll. It is easy to see that the real function
da(X)jdX is locally integrable and one verifies that

CO

-itp
f(t)e-—-—dt

—dt

c daW dm.

J dp
p

Hence by a theorem of Dieudonné [15], the Stieltjes (positive) measure pa associated
with the function a by the rule pa(a,b) a(b) — o(a), is absolutely continuous with
respect to Lebesgue measure in R1.

Remark. Since the measure generated by a is finite, the derivative da(X)jdX is not
only locally integrable, but also integrable. Therefore, by Riemann-Lebesgue Lemma,
it follows that /(*) ->- 0 as * -? oo. In other words, the above Lemma actually proves also
the following: if a function /(*) is of positive type in the sense of Bochner [12] and is
absolutely integrable, then /(*) ->- 0 as * -*- oo. Note that positivity of the measure is
used though it is not essential. Since we have in mind the spectral measure of a self-
adjoint operator in Hilbert space, this is enough for our applications.

Corollary. Let /(*) be a Fourier transform of a positive Stieltjes measure a(X), and let

1

*'/W-ofe ;->o.

Then a is absolutely continuous.

Proof.

f(t) -•M
implies that /(*) is integrable in R1 and also clearly /(*) ->- 0 as * -> oo. By the above
Lemma then the result follows.
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Lemma 5. Let /(*) 0(e~& '' '). Then a is absolutely continuous and has whole R1 as its
support.

Proof. Since /(*) 0 (e-^1'1) for |*| ->oo,/eI' and hence, by our previous result,
o- is absolutely continuous. Using the inversion formula, viz.

r(A)-ff(0) (277)-' f/(*)- '-
A, -it

-dt

we notice that this can be extended to a function of complex variable z X + ip by the
relation

a(z) - a(0) (ihr)-1 (/(*) —
J. —it

dt.
it

The above integral is well defined for z in the open strip —ß < p < ß and defines a function
a(z) analytic in the strip whose boundary value for p -> 0 is the original Stieltjes
measure o-(A). Hence the support of o-(A) has to be the whole real line.

Lemma 6. Let /(*) =0 for \t\ > B. Then a is absolutely continuous and has whole
R1 as its support.

Proof. Defining a(z) as above, we conclude that cr(z) is an entire function whose
boundary value for p -> 0 is ct(A) and hence the result.
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