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On the Uniqueness of the Energy Density

in the Infinite Volume Limit for Quantum Field Models

by K. Osterwalder1) and
R. Schrader2)

Lyman Laboratory of Physics, Harvard University, Cambridge, Mass. 02138, USA

(25. II. 72)

A bstract. We isolate two properties of the vacuum energy Ev (for volume V) that are sufficient
to ensure the existence and uniqueness of lim EV\V. The first property has been recently verified

V-*co

by Glimm and Jaffe for the P(<p)2 quantum field model. The second property is shown to hold in a
simplified P(<p)2 model where the free field energy H0 is replaced by the number operator N.

The construction of quantum field models has progressed rapidly in the last few
years [3]. Such models are obtained by starting from cut-off Hamiltonians H(g) with
a space cut-off g, and by taking the infinite volume limit, i.e. the limit g -> 1.

A function g is called a space cut-off if g 6 L2(U), 0 < g(x) < 1 for x e R, and g is
of compact support. (Sometimes one requires additional smoothness properties for g.)
We note thatga(-) =g(- —a) is also a space cut-off for all aeR. The operators H(g)
are given by

H(g) =H0 + XHt(g) + counterterms, (1)

where H0 is the free Hamiltonian and H,(g) is the interaction. The parameter A is the
coupling constant and is supposed to be positive. In the P(cp)2 models H(g) is given by

Ri(g) — f : P(cp(x)) : g(x)dx, counterterms 0, (T)

where P(£) is a polynomial of even degree with real coefficients, the coefficient of the
leading term is one. The symbol : : denotes Wick ordering with respect to the free
vacuum. In this case the operators H(g) are known to be self-adjoint, semi-bounded
linear operators in the Fock space UF of a free boson field cp(x) of mass m > 0.

Although a great deal is known about the theory in the infinite volume limit
[1, 2], nothing is known about uniqueness. The simplest object to study is the ground
state energy E(g), the minimum eigenvalue of H(g). Our purpose is to study its behavior
when g tends to 1. (The convergence of E(g)/vol. supp. g should yield convergence of
cog as g ->-1.) The following theorem is general and model independent.
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We introduce some notation. For a given space cut-off g let Vg support of g,
\Vg\ measure of V„, and

V'g {x 6 R; g(x) 1}, Va= {x 6 R; 0<g(x) < 1}.

Also for a given sequence {g„}neZ+ of space cut-offs, we write Vn Vt, etc. Let <6

denote the convex set of all space cut-off functions and let E(-) he any real valued
function on <ê which is translation invariant, i.e. E(ga) E(g) for all a e R and g e <€.

Definition: Property P. We say E(-) has property P if there exists c> 0 such that
for all g,he<tf with g + heW

\E(g + h)-E(h)\<c(\Vg\ + l).

Note that (P) implies the linear bound on |£(g)|, namely

\E(g)\<c(\Vg\ + l). (2)

Definition : Property S. We say that E(-) has property S if there exists A0 > 0 and a

monotonically decreasing function p:[A0, oo) ->- R+, with lim p(x) 0 such that

2E(gi)<Ehgt) + p(A)(2\Vi\ + l),
lei \isl I \iel /

for all finite families {gt}ieI in <€ with 2ui gt€^ where each Vt is an interval and
A inf dist (V„ Vf) > A0.

Remarks. If E(g) is the ground state energy for the P(cp)2 Hamiltonian H(g),
given by (1) and (1') then property P is known to hold, see Glimm and Jaffe [2]. Property
S has not yet been established in that case. However, we will show below that S holds
for the ground state energy of a modified Hamiltonian

H(g) =N + XJ: P(cp(x)) : dx, (3)

where N is the number operator. We note that in this case E(g) is a simple eigenvalue
of H(g), satisfying the estimate (2) for some c> 0. More generally E(g) has property
P[2].

For the discussion of the infinite volume limit we now make precise the way we
will let the space cut-off g tend to 1.

Definition. A sequence {g„}neZ+ of space cut-offs tends to 1 if
a) V'n is an interval [ocn,ßn]for all n e Z+, and

b) \V„\ -+ <x> and [V^-IV^'1 ^0 as n -+ œ.

Condition a) may be weakened, but for simplicity we will work with this definition.
The main result of this paper is the
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Theorem. Let E(-) be any translation invariant real valued function on the set <£

of all cut-offs g which has properties P and S. Then for any sequence {g„}„eZ+ in <€, tending
to 1, the limit

e limE(gn)\VH\-*
rt-»co

exists and is independent of the special choice of the sequence.

If E(g) is the ground state energy for a Hamiltonian H(g), then the theorem gives
sufficient conditions for the uniqueness of the energy density in the infinite volume
limit. In particular e is unique if H(g) is given by (3).

Corollary. Let e e(X) denote the infinite volume energy density for the ground state
obtained from a P(cp)2 Hamiltonian or from a Hamiltonian given by (3), and assume
uniqueness. Then e(X) is a convex function of the coupling constant for non-negative
values of X.

The corollary implies that e(X) is continuous in A. It would be interesting to know
for the P(cp)2 model, where e(X) < 0, whether e(X) < 0. At least we may conclude that
if e(X) < 0 for some A0 > 0, then e(X) < 0 for all A > A0.

To prove the corollary it is of course sufficient to show that E(g) E(X,g) is a
convex function of A for any space cut-off g. However, this follows from

E(etXi + (l-ct)X2,g)
(Q(etXi + (1 - et) X2,g), {etH(Xx,g) + (1 - et) H(X2,g)}Q(etXi + (1 - et) A2,g))

>etE(X>1,g) + (l-et)E(X2,g),

where Q(ocXx + (1 — a) A2,g) is the ground state of the Hamiltonian

H(ocXi + (l-et) X2,g) =H0+ (etXi + (1 - et) X2) H,(g), or

H(etXx + (l-et) X2,g) =N+ (etXi + (1 - et) X2)H,(g) ; 0 < et < 1.

Proof of the theorem: We use arguments familiar from discussions of the
thermodynamic limit of the free energy density of continuous systems. In statistical mechanics
the perturbation property P is replaced by a monotonicity property, and the sub-
additivity property S follows from a temperedness condition on the potential, see

e.g. [4], chapter III and literature quoted there.
We start from a special sequence of space cut-offs. Denote by $t(x) the characteristic

function of the interval [—4, +i] ,ieZ+. Then the linear bound (2) gives the existence
of a subsequence £,, 1 <,ik<ik+x, such that lim E(£, (2ik)~1 e for some e e[—c,c].
Let us denote £ijt by yt and [—ik,ik] by Wk. For any e > 0 there is a K(e), such that for
all k > K(e), c, Ac, and p(x) as in (P) and (S),

\E(Xk)\Wk\-l-e\<e, 2c)Wk\-"2<e,

M\WkP2)<e, \Wkp2>A0. (5)

We abbreviate Xkm an(i WK(€) by yf and Wf respectively. Now we take any sequence
of space cut-offs gn(-) which tends to 1. We assert that

E(g„)\Vn\-1-^e as«->». (6)
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This of course implies the theorem. The proof of (6) involves two steps. The first step
is to bound E(gA | F„|_1 from below by

E(gn)\Vnr-e>-7€. (7)

First choose N(e) so large that for all n > N(e)

\V:\>\We\,2c(\V:\ + l)\V„\-i<e, 2c\W(\\Vn\-l<e. (8)

Such an A(e) always exists since gn tends to 1. Now we fill V'n with translates W[ of Wf
such that they are at a mutual distance of at least |We\m. More precisely we set

f;=(h^)u(h4)uä" (9)

where J' is the interval separating W'e from W\+l(i =1,2, ...r —1) and is supposed
to be of length | W{|1/2. 2?i is the 'remainder' and with a suitable choice of r we obtain

0<\Ri\<\W€\ + \W,p2. (10)

Corresponding to (9) there is a decomposition of g„

gn(x)= 2 xi(«)+*(*).
i-l

where vj is the characteristic function of W[ and h(x) =g(x) on (\JlZ\ A'A U Ri U V%

and zero otherwise. Note that due to the definition of Ae and due to (10), the measure
of the support of h is smaller than r \ Wf 11/2+ \W€\ + \V%\. Thus we get using property P

E(gn)\Vn\-^>E{2x\\\Vn\-1-c(r\W(P2+\W€\ + \V"n\ + l)\Vn\~l

>£(ivi)w^i)-i-|£(i^)|[H^i)-i-i^ri]
-c(r\W(P2 + | W,| + \V:\ + l)\Vn\-V (11)

Furthermore, using property P together with (5), (8) and (9) we get

k(ix^|wWE|-1-|F„|-1]<2Cr|We|(|Fn|-,|^|)(r|We||F„|)-1

<2C(r|Wf|1/2+|W€| + |F:|)|F„|-1

< 3e. (12)

Inserting (12) into (11) and using property S, (5) and the translation invariance E(-)
we get

E(gn)\Vnr>E(Xe)\Wf\-i-Ge>e-7e,
which implies (7).

The second step is to bound E(g„) | VAv1 from above by

8e>E(gn)\Vn\-i-e. (13)
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Take any n>N(e) and keep it fixed. Then pick a k > K(e) (see (5)), such that

Wk=([JV^uÇuA^UR2, (14)

with l>2ce~l. V\ are intervals of length |F„|, F£ being separated from F^+1 by the
interval zl£ of length | Vn\1/2. The remainder i?2 is estimated by 0< \R2\ < \V„\ + \V„\1/2.
The decomposition (14) and the same sequence of arguements as above leads to the
following chain of inequalities (vj; denotes the characteristic function of V'„) :

£(x.)l^|-1>^(ixi)|W,|-1-2C(/|F„|1/2+|F„|)(/|F„|)-1

>£(ix^(^n|)-1-|£(|Y^|[(/|Fn|)-1-|W/t|-i]

-2c(l\V„P2+\Vn\)(l\Vn)-1

>E(x'n)\Vn\-l-6e

>E(gn)\vnr-c(\v:\ + i)-ee
>E(gn)\Vn\-i-7e,

and (13) follows after another application of (5).
Since e is arbitrary, inequalities (7) and (13) prove the relation (6) and hence

the theorem.
The remaining part of this work will be devoted to the proof that the ground state

energy for the Hamiltonian given by (3) satisfies property S. More precisely we have the

Proposition. The ground state energy E(g) for the Hamiltonian H(g) defined by (3)
satisfies S with A0 3 and

p(A)=cxexp(m
\

for some cx < oo, where m is the mass of the free boson.

For the proof we use certain localization projection operators in the one particle
space which have been introduced by B. Simon [5]. We recall the definition: Let the
one particle space be described by Jt L2(R). For any interval / [a,ß] of R with
—oo < a < j8 < oo, let Jtj he the closure of the linear subspace consisting of all/ g Sr°(U),
such that suppju.i/2/is a compact subset of/. The operator px12 is multiplication by
p1,2(p) (m2 + p2)114 in the Fourier transform space, i.e. pAjTf(p) p1/2(p)f(p), where
~ denotes the Fourier transform. Let Pj he the orthogonal projection onto Jt3 and
let Jtf he the orthogonal complement of Jt}. Denote by $F, 3F}, & J± the Fock spaces
built with the one particle spaces Jt, Jtj and Jtf respectively. Then #" êF} x SP'/x
and H,(g) Hj(g)\&j x 1 if suppgc/. Likewise dT(P])=N\SF] x 1, where dP(-)
denotes the second quantization of a one particle operator. Note that N dT(V).
We improve Theorem III.l in [5] to yield the
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Lemma. There exists c2 < oo such that for any finite set {Ji}teI of intervals with
A infdist (J,J,)> 3

m
H2Pj,||<l + c2exp --J

lei \ *

The proof of the proposition is now straightforward. Let {gi}lsI be as in (S) and set
Pt PVg. Then

E(gi) inf spec H(gt) < inf spec (dr(Pt) + XHj(gi)) < dT(Pt) + XH^gi).

Since biquantization preserves positivity, summing yields

S^g^^rhll+c.expl-^jjjj + AF^Ig^

In particular if we take the expectation values in the ground state Q 2 gi °i H(2ui gt),
then

(15)
gE(gt) <e(z g,) + c2exp(-^A)(QZ9i,NQTSi).

To estimate the error term in (15), we write [1]

(QTBl,NQTgi) (QTtt,2HC2gl)-H(22g,)üTg)

<*(2iig+i).
The last inequality follows from (2) and the prime on c' indicates that we have taken
(2) for the coupling constant A' 2A. This proves the proposition.

Proof of the lemma: For convenience we assume that / is the set {1, 2, \I\} and
that the interval Ji+X lies to the right of/;. We complete the set {J,}le, to an infinite
set of intervals {Ji}uz, such that we still have A inf dist (Ji,Jj) > 3. with Jt+1 to
the right of Jt. Then '^J

Aij dist(Ji,J})>\i-j\A.
It has been shown by B. Simon ([5], Theorem A.2) that if {Pt}tsZ is a family of projections

on a Hilbert space and if du ||.PjPJ is the matrix of a bounded operator D
on l2(Z), then ||2îH-B Pill < ll-^ll f°r a^ n,n'. We set Pt PJ{ and prove the lemma by
estimating first du= \\PtPj\\ and then ||D||. We assert that there is a constant c3,

independent of /, orjj, such that

dtJ ||P, P,|| < C3expl-j\i -j\a\. (16)
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Inequality (16) of course follows if we can prove that for all cp, i/i e ^(R)

(m \--\i-j\A\\\cp\\\m\. (17)

In order to use the support properties of pxl2Ptcp, we pick CJ functions p, which are
equal to 1 on J,, 0 at points whose distance from /, is larger than 1 and 0 < pt(x) < 1

for all x e R. We denote the support of pt by _/,. Furthermore we require that p't(x) is
of the form £(—x + etj) — £(x — ß,) for all *', where a, and ßt are the endpoints of the
interval /, and £ e Co°([0,1]) is independent of i. Then there is a constant a, such that

sup|pf(x)|<o-,
X

where p* stands for pt, p[ or p"t. Note that x ejt, y ejj and i #y imply \x — y\ > 1,

by the assumption of the lemma.
Now we write

(Plcp,Pjlp) (p-^2pipi'2Picp, p-"2 Pjpx'2 Pjip) Ax+ A2 + A3 + A>,

A x (p3J2 p. p-3'2 Pt cp, ^/2 pi ^-3/2 Pj JJ,
_

A2 (p3J2 pip?'2 Ptcp, p-^lpj.pSp-^PjiP),

A3 (p-^pi.pHp^Picp, pl'2Pjpx3'2Pjtp),

A, (p-*1/2[pi, p2] pr3'2 P, cp, p-/'2[Pj, pi] p'3'2 Pj ip).

Note that the operator p, is multiplication by pt(x). Each of the four terms Ak will be
estimated separately

Mil<IIPi^^lllK3/2ll2IMIIW.

\a2\ < üPiP&j.pSp^npif'wum,

\A3\<\\Pjpx[pi,p2]px3p\\\p-x3,2\\\\cp\\\m,

\A*\< \\p-x3/2[pt, pi] p-Apj, PÏÎ p-x3l2\\ IMI M\- (18)

In order to establish (17) we have to estimate the operator norms occurring on the
right-hand side of the inequalities (18).

The operator pi is multiplication by pT (p) in Fourier transform space and therefore
convolution with pTx(x) J" eipxpr (p)dp in #-space. For t ^ even integer px(x) is a
smooth function for x # 0 which decreases exponentially at infinity. More precisely
for all real t, t/2 $ Z+, there is a constant yT such that for \x\ > 1, pTx(x) is C°° and

\pTx(x)\<yrexp[—-\x\\. (19)
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This follows easily from an integral representation of pTx(x) for t < 0 (see e.g. [6], p. 185)
and the relation

P2"+T(x) jp2r(x-y)pTx(y)dy

z\ p-U\-^2+m2\ pl(x). (20)

In (20) we have used the fact that p2 is the differential operator [—(d2jdx2) +m2].
This also makes it possible to compute the commutator of p\ and pt, namely

[p„ pi] Pi + 2p'( dx -p"t + 2dx pi, (21)

where dxp[ is the product of the operators dx djdx and p[.
Now we are prepared to estimate the operator norms occurring in (18). Obviously

||ju.7.3/2|| mr312. Denoting by ||*||HS the Hilbert Schmidt norm we get for p*=pj or
Pj or p"j, and t/2 £ Z+

,T„#||2 ^ ||„. „T„#||2Wpip-iPir <\\PiP-iPi\^%

\ \Pt(y) pA(y - x) p*(x) \2dxdy

<y2cr2 j exp(—m\x— y\)dxdy
yeJ,
xeJ)

< const, exp (—mAtj)

< const, exp (—m\i -j\A). (22)

Furthermore,

\\PiPÀPj,P-ï\vrx3l2\\ < \\ptpxp"jpx3'2\\ + 2\\PipxP'j dxp-x3'2\\

<tn-3'2\\PiPxp"j\\ + 2\\pipxp'j\\\\dxpx3i2\\

m \
< const, exp I 1»— j\A], (23)

where we have used (22). Note that dxp312 is a bounded operator because it is
multiplication by the bounded function ipp~3,2(p) in Fourier transform space. Finally

Wp-^lPt.pSpx'lPppDp-^W < m^Wp'lpSp-jW

+ 2m-3i2(\\p"lpxlp'j\\ + \\p',p-xlp"j\WxP--3l2\\

+ A\\p'ipïp'j\\\\dxp-3'2\\2

Im \
< const, exp I \i — j\A\. (24)
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Combining the estimates (22), (23) and (24) with (18) we prove (17) and hence (16).
Finally we have to estimate \\D\\. For r e Z let S<r) be the bounded operator on

l2(Z) which is given by the matrix

bptj
dtj if i—j r
0 otherwise.

Obviously

||P(r)|| < max \dt i_r\ < c3 exp
leZ (m

\
-2v\A,,

by (16) and

£<°> 1, since ||P2|| || P,|| 1.

On the other hand we have D Jr P(r). Hence

\\D\\ < 2 P(r)|| < 1 + 2c3 2 exp l~ rA
r r=l \ 2

m
< 1 4- c2 exp j — —¦ A

This proves the lemma.
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