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Transformation Properties of Observables

by H. Neumann

Institute for Theoretical Physics, University of Marburg, Germany

(27. III. 72)

Abstract. It is well known that the position observable considered as a projection-valued
measure (decision observable) is uniquely determined by its transformation properties within an
irreducible representation (m=£0) of the Poincaré [1] and the Galilei group [2]. The notion of an
observable, however, has been generalized by several authors considering positive-operator-valued
measures (POV measures) [3] or corresponding subsets of the lattice of projections [4]. Using a
theorem of Neumark [5, 6] we prove a theorem, which allows the construction of all such generalized
observables with the desired transformation properties. As an example we discuss position observables

in an irreducible representation of the Galilei group. It is shown that every position observable
is the convolution of the usual position observable and a suitable measure in the spin Hilbert space
and thus the generalized position observable is by no means unique.

In Reference [17] we discussed the notion of an observable in a quantum mechanical

system described by a dual pair of Banach spaces B, B'. In this paper we shall
continue the discussion assuming that B is the space of Hermitean trace class operators
and B' is the space of Hermitean bounded operators in a separable Hilbert space H.
K {V e B j V > 0, tr V 1} denotes the ensembles and î {F e B' j 0 < F < 1}
denotes the effects, i.e. the yes-no experiments of the quantum mechanical system [3].
tr (VF) is the probability for measuring the effect of F in the ensemble V.

Following References [3, 7] an observable (Q, F(q)) is a Boolean algebra Q and an
effective I-valued measure F(q) (a mapping F:Q -> L such that F(qx v q2) F(qx) +
F(q2) if ?iA?2 0, ?i,?2e<3 and F(q)=0 implies £ 0) such that F(l) 1 and
Q is «^-complete and «^-separable.

uK is the uniform structure on Q, a base of which is given by the sets:

{(Çi,Ç2)eQxQjqx + q2eUVi ^J
Qi+q2 (?i A q2) V (q* A q2) being the symmetric difference in Q and UYli...vn,e
being the neighbourhoods of 0 e Q :

UVl v„,e={qeQltv(VlF(q))<e, V,eK, i l,...,n}
This uniform structure has a distinct physical meaning discussed in Reference [7].

(Q, F(q)) is called a decision observable if F(q) is a projection operator for all q e Q.
In Reference [7] the mapping F:Q -> I was proved to be uniformly continuous

if Q is equipped with uK and L is equipped with the uniform structure induced by the
a(B', B) topology.

Q is a Boolean a-algebra and mv(q) tx(VF(q)) is a a-additive measure on Q
for all V e K.



812 H. Neumann H. P. A.

An î-valued measure on a Boolean o--algebra Q is called a-additive (POV-measure
in the terminology of Ref. [4]) if

holds in the strong operator topology for q, a qk 0, i # k.

1. Lemma. An effective I valued measure on a Boolean algebra Q with F(l) 1

is an observable if and only if Q is a Boolean o--algebra generated by a countable
Boolean algebra QCCQ and F(q) is cr-additive.

Proof. Suppose (Q, F(q)) is an observable. There is a countable subset and thus a
countable Boolean subalgebra (not necessarily a a-algebra) Qc c Q, which is %-dense
inÇ. We consider a base {çjjj,!, ini/andA; >0 such that JTjli A, 1. F0 Ju-i-P^
Pc,, being the projection onto 9,, is an effective ensemble (tr(V0F) 0 implies F 0)
and mVo (q) is an effective a-additive scalar measure on Q. Thus 8(qx,q2) mVo (qx + q2)

is a metric on Q generating the uniform structure uK [7].
For every q e Q there is a sequence qt e Qc such that mVa(q + q,) ->- 0. This implies

o-limg-, A V qt X V qt -? ([8], II, 2.4)
m=l t=m m=l l=m

and therefore Q is generated by Qc. In order to prove the cr-additivity of F(q) assume
qt e Q with qt a qk 0 for i # k. Since »%(£) is o--additive for all V e K, F„ 2"_i F(^()
converges to F0 F(vfrLx qt) with respect to the a(B', B) topology, which is equivalent
to the weak operator topology on Î. As 0 < F0 — Fn < 1 we have (F0 — FA2 < F0 — Fn
and therefore ||(F0 — FA <p||2 < <<p|(F0 — Fn) cpy for all cp e H and Pn converges to FQ

with respect to the strong operator topology.
Now suppose that Q is a Boolean a-algebra generated by a countable Boolean

algebra Qc and F(q) is a countably additive î-valued measure on Q with F(l) 1.

F(q) is countably additive with respect to the a(B',B) topology and mVo(q) tr(V0F(q))
is an effective a-additive scalar measure on Q,_V0 being an effective ensemble. Thus
Q is «^-complete ([8], II, 2.4). The uK closure Qc of Qc is also wK-complete and F(q) is

an effective I-valued measure on Qc. Hence Qc is a Boolean c-algebra [7] and our
assumptions imply Q =QC and the proof is complete.

Jauch and Piron, too, consider general yes-no experiments at the beginning of
their foundations of quantum mechanics [9]. But they introduce such a strong equivalence

relation between yes-no experiments that every equivalence class may be

represented by a projection operator in H. This equivalence relation applied to I reads

FX~V2 if (tr(VFx) l is equivalent to tr(FF2) l for VeK), i.e. FX~F2 if
Pi(Fi) Pi(F2), PX(F) denoting the projection onto the eigenspace of eigenvalue 1

of F. Thus in every equivalence class C of I lies one and only one projection operator
Px(F),FeC.

If F(q) is an I-valued measure with F(l) 1 on a Boolean algebra Q the
corresponding projections Px(F(q)) perform a generalized observable in the sense of Reference

[4] (compare also Reference [10] :

Px(F(0)) 0, Pi(F(l)) 1, Px(F(qx)) ¦ Pi(F(q2)) 0

if qi A q2 0 and

Pi(F(qi)) A Pi(F(q2)) Px(F(qx A q2)).
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Therefore every observable as defined above determines a generalized observable in
the sense of Reference [4].

In the sequel we consider an observable (Q,F(q)) and a topological group G

which acts as a continuous transformation group on Q and has a unitary continuous
representation g r-+UginH such that

U, F(q) U* F(g(q)) for all g e G, q e Q. (1)

As an application of Neumark's theorem [5, 6] we shall prove that there is a decision
observable (Q,E(q)) in an enlarged Hilbert space H such that F(q) is the restriction of
E(q) to the subspace H oi H and that there is a (up to unitary equivalence) unique
unitary representation of G in H which transforms (Q,E(q)) according to (1). The
detailed statements are as follows.

2. Theorem. Let (Q, F(q)) be an observable in a separable Hilbert space H. Vet
cp:G -*¦ Aut(Ç) be a homomorphism of a topological group (G,t) into the group of
automorphisms of Q such that the mapping <pq:G -+Q given by g i->g(q) 93(g)q is

t — «^-continuous for all q e Q. If g i->- Ug is a weakly continuous unitary representation
of G in H such that UgF(q) U* F(g(q)), the following statements are true:

i) There is a Hilbert space Ë containing H as a subspace and a projection-valued
(additive) measure E(q) on Q such that F(q) P0E(q) P0, where P0 denotes
the projection onto H. H is the closed linear hull of {E(q)cp j cpeH,qeQ}
(H an{E(q)cpjcpeH,qeQ}).

ii) (Q,E(q)) is a decision observable and H is separable.
iii) There is a weakly continuous unitary representation g h> Ug of G in H such that

ÜgE(q) Ö* E(g)q)) for all g e G, q e Q and Ug P0 ÜgP0. (g h> Ug is a sub-
representation Of g r-> Ug).

iv) This construction is unique in the following sense: If H, P0, E(q), Ug and H\
P', E'(q), Ug satisfy i) and iii) there exists an isometric mapping T oi H onto H'
with P0 T'1 P'0 T, E(q) T~l E'(q) T and Üg I"1 Ü'g T.

Proof. Statement i) (and partially ii) and iv)) was proved by Neumark [5]. We
shall verify that i) implies all the other statements.

If E(q) is countably additive with respect to the strong or equivalently the weak
operator topology (Q,E(q)) is a decision observable according to Lemma 1. Since

E(q) is linear, \\E(q)\\ < 1 for all q e Q and H lin{E(q) cp j qeQ,cpeH}the o--additivity
is proved by

2<E(q)cp\E(qi)E(q)cpy 2<9\PoE(q A qt) P0cpy

2 <<p\F(q A qt) cpy (cp\F(q a (V q,)) cpy

<E(q)cp\E(yqi)E(q)cpy.

H is separable: Q is «^-separable with K {V e B(H) j V >0, trF=l} (compare
Lemma 1). Hence there is a countable subalgebra Qc <=¦ Q which is wg-dense in Q.
Moreover there is a countable subset Sc<zzH dense in H. Since (Q, E(q)) is an observable
the mapping q \->E(q) is continuous, Q equipped with the wg-topology and B(H)
equipped with the weak operator topology. It is verified by an easy estimation that
{E(q)cp j q e Qc, cp eSc} is dense in {E(q)cp j qeQ.cpe H}.
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We shall now construct the representation g i-> Ug in H : Since

n n

112 E(qi)cPi\\2= 2 <<pt\E(qti\qk)cpk>
i-l l,k-l

2 <9t\F(qi*qk)<Pk>
t,k=l

f <U„<pl\F(g(qt)Ag(qk))Ugcpky
i,k~l

II 2 E(g(qt)) Ug9l\\2 for all 9t e H, q, e Q (2)

i-i
an operator Ug is well defined on lin{E(q) cp j q eQ, cp e H}hy

Ùg(2E(qt)cp)=2E(g(ql))Ugcpi.

Ug is obviously linear and is isometric by Equation (2).
Thus U9 has a unique linear isometric extension onto

H^îîn{E(q)cplcpeH,qeQ}.
As P0, Ug, Üg, F(q), E(q) are all bounded linear operators it is sufficient to verify

operator identities in the sequel on vectors of the form E(q)cp, q eQ, cpeH.
The representation property of g h-> Ug is proved by

Ügi ÜgE(q) cp ÜgE(g2(q)) U92cp E(gxg2(q)) V.U^<p Ü.^E® cp.

Moreover this equation shows that the operators U9 are unitary (Ue 1).
P0 Ug PQ Ug is verified by

Ügcp=ÜgE(l)cp E(g(l))Ugcp=Ugcp for all <p eü
ÜgE(q') Ü* E(g(q')) is verified by

ÜgE(q') Ü*g E(q) cp UgE(q') E(rHq)) U*g cp

ÜgE(q'rsg-i(q))T7*gop

E(g(q') i\q)cp E(g(q')) E(q) cp.

It remains to prove the weak continuity of the representation g h-> Ug. Since \\Ug\\ 1

for all g e G and Ug is linear it is sufficient to check the continuity for all vectors of the
formE(q)cp,qeQ,cpeH, \\cp\\ 1 :

\<[E(q)cp\(Üg-l)E(q)cPy\ \(cp\(E(q a g(q)) Ug-E(q))cpy\

< \<<p\E(qi\g(q)) (Ug-l)cpy\ + \<cp\(E(qAg(q))-E(q))cpy\

<\\(Ug-l)cp\\ + (cp\E(qrsg(q*))cpy

<\\(Ug-l)cp\\ + <:cp\F(q + g(q))cpy.

The first term of the estimation tends to 0 ifg converges to the unit element e of the group
since g h> Ug is assumed to be a continuous representation of G. The second term
tends to 0 for g -+ e since q r-> g(q) is assumed to be «^-continuous and the mapping
q i-> F(q) is continuous according to the remark before Lemma 1.
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To complete the proof assume H, P0, E(q), U. and H', P0, E'(q), U'g to satisfy i)
and iii). We may identify the subspaces of H and H' which are isometric to H.

Since

|| I E(qt) cp,\\2 2 i9l\F(qt a qk) cpky \\ 2 E'(q,) cpt\\2 (3)
i-l i,*=l i-l

for all qi eQ^.eH.a mapping T of lin {E(q) cp j q eQ, cp e H} onto lin {E'(q) cp j q eQ,
cp e H} is well defined by

T(2E(q,)cp\= 2E'(qt)cpt.
\t-i / i-i

T is obviously linear and is isometric by (3). Thus T has a unique linear isomeric
extension to a mapping of H onto H'.

The identities P0=T-1P'T, E(q) T~1E'(q)T and Üg=T~1UgT are easily
verified.

In the next lemma we discuss the continuity assumption of Theorem 2 concerning
the transformation of Q by G. This lemma provides a possibility to check the continuity
assumption in concrete examples. Moreover, statement ii) of the lemma shows the
necessity of this assumption in Theorem 2.

3. Lemma. Let (Q,F(q)) he an observable in H, (G,r) a topological group and
cp:G -> Aut(<2) a homomorphism, cpq:G -+Q the mapping given by g i->g(?) cp(g)q.

If g h> Ug is a continuous representation of G such that UgF(q) U* F(g(q)) we have

i) If cpq is r — wK-continuous at the unit element eeG then cpq is continuous on G.

ii) If (Q, F(q)) is a decision observable then cpq is continuous on G for all q e Q.

iii) epq is continuous on G for all q eQ, if there is a subset S <= Q which generates Q
such that cpq is continuous for all qeS.

Proof. The first statement is a consequence of

*(VF(g0(q)+g(q))

tv(VUgoF(q + ^g(q))U:o)
tT((U:oVUgo)F(q + g-0ig(q)))

To prove the second statement consider the equation

F(q + g(q)) F(q* a g(q)) + F(q a g(q*))

F(q*) Ug F(q) XJ* + F(q) Ug F(q*) 17*. (4)

Since g !->¦ 17g is a weakly continuous representation both terms of (4) are continuous
functions of g with respect to the weak operator topology and thus are a(B',B)-
continuous functions of g.

To prove iii) we shall show that the set Qcon {q e Q j cpq is continuous} is a a-
subalgebra of Q. Çcon is a subalgebra of Q since the algebraic operations in Q are uK-
continuous [7] and the following identities hold

cPi.nAg) =g(qi A q2) =g(qi) A g(q2) cptl(g) A cpt2(g)

cpAg) Mi))*-
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To see that Çcon is a o--subalgebra consider a sequence qt e Qcon with qt+1 < qt. If
CO

q A qi.qt converges to q with respect to the w^-topology. The estimation

F(q+g(q)) < F(q + q.) + F(qt + g(qt)) + F(g(qt + q))

2F(q + q.) + F(qt + g(qt)) + (F(g(qt + q)) - F(q, + q))

proves the continuity of cpq. The first term tends to 0 because q, ->¦ q, the second because
of the continuity of cpqi and the third because of the continuity of the transformation
U9F(qt + q)U*.

As an application of Theorem 2 we consider an elementary quantum mechanical
system with mass m and spin s which is described by a continuous irreducible
representation up to a factor (m ^ 0) g i-> Ug of the Galilei group G in a separable Hilbert
space H. To simplify the notation we choose m h=l.

Vet Z he the Boolean cr-algebra of Lebesgue measurable sets of the 3-dimensional
Euclidean space R3. If J0 is the ideal of sets of Lebesgue measure zero, denote by
Q ZjJ0 the quotient algebra on which the Lebesgue measure is effective and denote
by y the canonical surjection y :Z -+Q. If g eG,g= (R,a,v,r), R e SO (3) is the rotation,
a is the space-, v velocity-, and t time-translation.

g(x) =Rx + a + vt, xe R3, geG (5)

defines a homeomorphism of R3 for fixed real parameters t.

g(a) {y e R3jy g(x), x e a}

defines an automorphism of Z which leaves JQ invariant and thus g(x(cr)) =x(ë(a))
is an automorphism of Q for all g e G (6). We have gt (g2 (q) (gx g2) (q), and the mapping
cp:G -> Aut(Ç) defined by (6) is a homomorphism. An observable (Q,F(q)) which is
transformed in the Schrödinger picture according to

F(g(q)) U, F(q) U* with t 0 in (5) (7)

will be called position observable. The transformation property of Ft(q) in the Heisenberg

picture is determined by the transformation property of F0(q), i.e. by (7), since

U9 Ft(q) U* U~F0(q) f/| with g=(R,a + vt, v.r + t) (8)

If we consider the description of a particle in an external field there is a representation
of the Galilei group without time-translation G0 in H. In this case (7) remains

valid, only (8) has to be changed.
In the sequel we shall determine all possible realization of (7) by means of Theorem

2. First we shall check the continuity of the mapping cpq:G -^-Q defined by g r^g(q)
by the help of iii) of Lemma 3 :

Consider a sequence g„eG converging to e. If cr is an open subset of R3 there is a
neighbourhood U(e) in G for every xe a such that g~l(x) e a for all g e 17(e). (This is
a consequence of the continuity of the representation of G in R3.) This implies

GO QO

V A (g» a a) o-
fc=l n-k

hence

V A (x(g„(ff) ao-)=x(o-)
fc=l n=k
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Since mv(q) tr (VF(q)) is a o--additive measure on Q for all V e K we have

Hmmv(A x(gn(cr) A a)) mY(x(a))
n-*co n=k

hence

limmv(x(g„(a) A a))=mY(x(a))
n-»oo

and

limmr(x(gn(cr*) Ao-))=0. (9)
n-»oo

S {qeQ j q x(a), cr a bounded open sphere in R3} generates Q. If a is a bounded
open sphere in R3 the boundary of a is of Lebesgue measure zero and thus

X(o*°)=x(o)* q*,

where o-*° denotes the inner of the complement of a and q y(o-).
Equation (9) implies

lim (mv(gn(q*) a q) + mv(gn(q) a q*))
n-*oo

limmv(gn(q)+q)=0
n-»oo

Thus gn(q) converges to q with respect to the «^-topology and cp9 is continuous for all
q eS, hence for all q eQ.

The Galilei group G, the position observable (Q, F(q)) and the representation up to
a factor g h> Ug satisfy the assumptions of Theorem 2. (It is well known that the
representation up to a factor of G is a representation of a central extension of G.)
We may conclude that there is a separable Hilbert space H containing if as a subspace,
a decision observable (Q,E(q)) in H and an extension g h-> Ug of the representation of
G with all the properties described in Theorem 2.

Let us discuss the form of the extended representation of G. We shall write Ujf,
instead of Ug if g=(R,0,0,0) and analogously Üa, Uv. The operators Ua and Uv
provide a continuous representation of the Weyl commutation relations in the separable
Hilbert space H. H may be decomposed into a direct product H H' x H" such that
Ua U'a x 1 and Uv U'v x 1 and U'a and U'v form an irreducible representation of the
Weyl commutation relations in H' [11]. If R i-> U'R is the usual representation of
SO (3) given in an irreducible representation of the Weyl commutation relations we have

(U'R xl-Üt) U'a x 1(UR x VÜ*)* Ui x 1

(UR xl-U*R)U^x 1(U'R x 1-171)* Ui x 1

It follows U'R x 1 • ÜR 1 x U"R, hence ÜR=URx U"R, wherei? h» Ur is a representation
of S0(3) in Ä".
In this decomposition of H the subspace H is of the form H H' x Hs, the spin

space Hs being a (2s + l)-dimensional subspace of H" in which UR acts as an irreducible
representation of SO(3) of weight s.

According to Theorem 2 the transformation property (7) of (Q, F(q)) is equivalent
to

ÜgE(q)Ü* E(g(q)) qeQ.geG. (10)
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E(x(cr)) in short E(a) is a cr-additive projection-valued measure on R3 and we can define

Sv J exp (i(vx)) dE(x),

where (vx) denotes the inner product of x, v e R3. v t-> S„ is a weakly continuous
representation of the translation group 1(3) and (10) implies the following commutation
relations

ÜaSvÜ* exp(-i(av))Sv

ÖV,SVÖ*=SV (11)

clrSv Ur SRv.

As the measure E(a) is uniquely determined by the unitary operators Sv (theorem of
Bochner) the Equations (11) are even equivalent to (10). Considerations similar to
those concerning the representation of R -> UR of SO (3) show that

Sv Ui x U"v (12)

and v -> Ui is a weakly continuous unitary representation of T(3) in H". From (11)
follows

URU"VU"R* URv (13)

Thus (v, R) i-> U'„ U"R is a representation of the Euclidean group (the semidirect product
1(3) © SO(3)) in H". The equations (12) and (13) are equivalent to (11) hence to (10)
and (7). _The minimality property H lin{E(q)cp j qeQ, cpeH} of Theorem 2 can be

expressed by

H hn{Svcp j v e 77(3), cpeH}

or

H" h~n{U'icpjve 7/(3), cp e Hs}

This is the case if and only if there is no proper subspace of H" containing Hs which is
invariant under the representation of the Euclidean group in 77". (14)

Summarizing every position observable in an irreducible representation of the
Galilei group in H H' x Hs can be constructed in the following manner: In a
continuous unitary representation of the Euclidean group in a separable Hilbert space H"
we consider an irreducible subrepresentation of SO (3) of weight s in a^subspace Hs of
H". (We may confine ourselves to the case in which (14) holds.) In H H' x H" we
consider the projection-valued measure E(a), a e Z, generated by the representation
v \-> Ui x Ui of 7/(3). Ui is given by the Galilei-transformations in H' and U" by the
space-translations of the Euclidean group in H". The restriction F(a) P0E(a) P0 of
E(a) to the subspace H of H H' x H" is transformed by the representation of the
Galilei group according to (7). However, it remains to show that in every case F(a) is

an effective I-valued measure on Q Zjjc,, i.e. F (a) vanishes exactly on sets of
Lebesgue measure zero. If E'(a) denotes the usual position measure in H' defined by
the Galilei transformations U'v, F (a) is the convolution of E'(a) x ls and the measure
1 x F"(a) 1 x PsE"(o) Ps, Ps being the projection onto the subspace Hs of H" and
E"(a) being the projection-valued measure generated by the representation v -> U"v

of 1(3) in/7". If 7f ' x F"(p) (p Borel set in R6) denotes the product measure of E'(a) x ls
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and 1 x F"(a) and f:R6 -> R3 denotes the mapping defined by (x,y) \->x+y then
F (a) is obtained by F (a) E'* F"(a) =E'x F" (f-1 (a)). Since (f~1(a))y {xeR3 j
(x,y) ef~1(a)} a — y for y e R3, a e Z we have F (a) 0 if and only if E'(a — y) 0

for F"-almost all y e E3. As F"(E3) ^ 0 we have F (a) 0 if and only if E'(a) 0.

Thus F(q) F(x(a)) is an effective measure on Q Z/J0, hence a position observable.
Let us discuss briefly the special case of a spin-independent position observable

(Q,F(q)). The case s 0 is included in this discussion. The assumption
(cp x u\F(q)cp x uy (cp x u'\F(q)cp x w'>

for all«, u' eHs, cpeH', q e Q implies <w|ï/Jw> <«'|C7*m'> for all«, m' e77s, v e 1(3).
Hence F"(a) m(a) Ps, where m(cr) is a scalar a-additive measure on R3 which is rota-
tional invariant because of m(Rcr) Ps UR (m(a) Ps) UR* m(cr) Ps. A spin-independent
position observable is the convolution of the usual position observable E'(q) x ls and
a rotational invariant scalar measure m(a) on R3. We have E'(q) x ls E' * m(q) for all
q e Q if and only if m(a) is concentrated on the point 0 e 7?3. If m(a) is concentrated in a
ball centred by 0 e R3 the position observable E'(q) x ls is smeared by convolution
with m(a). If this ball is bounded Px (E' *m(q)) does not vanish for all bounded regions
q eQ (notation as in the beginning of this paper). But if E' * m(q) =t E'(q) x ls for
some q eQ there are regions q' eQ such that Pi(E' * m(q')) 0.

This last remark holds also for spin-dependent position observables.
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