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Absorption and Light Scattering in Insulators1)

by J.-A. Deverin2) and C. Mavroyannis

Division of Chemistry, National Research Council of Canada,
Ottawa, Ontario K1A OR6, Canada

(5. VI. 72)

Abstract. The interaction between electromagnetic radiation, lattice vibrations and excitons
in insulating crystals has been studied by means of the Green's function technique. The spectral
functions for the three fields have been derived and are found to be made, in the presence of an-
harmonic interactions, of the superposition of a Lorentzian line and an asymmetric band. Asymmetry

is present even if the frequency dependence of the damping function is ignored. The scattering
probability is examined for various kinds of coupling functions and it is found that no divergence
occurs under resonance conditions.

I. Introduction

The aim of the present study is the theoretical investigation of the absorption and
scattering of light in insulating crystals, with emphasis on the line-shape of the absorption

bands and on the Raman effect under resonance conditions. Raman scattering
experiments with the exciting frequency in a resonance region have been reported for
large-gap semiconductors, mostly II-VI and III-V compounds [1], where the incident
laser light approaches the absorption edge.

A theoretical treatment of the first- and second-order Raman effects in insulating
solids has been presented by Loudon [2], which is based on a time-dependent Rayleigh-
Schrödinger perturbation theory. Loudon has shown that the dominant contribution
to the Raman effect arises from a process in which an electron-hole pair is excited by
the incident photon ; then the electron-lattice interaction leads to the scattering of the
electron and hole by photons and the pair finally recombine to give the outgoing
photon. Loudon [2] has not discussed explicitly the effect of Coulomb interaction
between the excited electron and hole on the frequency dependence of the scattering
efficiency 5. He found that, when this last interaction is ignored, the scattering efficiency
S does not diverge when the excitation energy hco is equal to the energy gap Eg, even
though the energy denominators coming from perturbation theory vanish, because
the density of excited states vanishes as hco approaches Eg.

Birman and Ganguly [3] have argued that the Coulomb interaction has to be
considered in order to discuss the frequency dependence of S in resonant conditions.
This interaction gives rise to the formation of excitons, the excitation energy of which
is smaller than Eg. When excitons are included as intermediate states in Loudon's

') Issued as NRC No. 12745.
2) N.R.C.C. post-doctoral fellow 1969-71. Present address: SSIH Management Services, Re¬

cherche Horlogère Electronique, 2500 Bienne, Switzerland.
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expression, one gets a sum over discrete exciton bound states ; the energy denominators
in this sum vanish as hco approaches an excitonic level and thus, Birman and Ganguly
[3] have claimed that the excitonic part of the scattering efficiency diverges under
resonance conditions. Like Loudon [2], Birman and Ganguly [3] have considered the
Raman effect as arising from the absorption of the incident photon with the creation
of an exciton, scattering of the exciton by phonons and recombination of the pair
with emission of the outgoing photon, with different time ordering of these events.
The interaction between the electrons and the electromagnetic radiation has again
been treated through perturbation theory, which does not cover the resonance
conditions.

Mills and Burstein [4] have pointed out that the electromagnetic radiation can be

coupled strongly to the electric-dipole excitations in the crystal. When the photon
frequency is close to a resonance in the dielectric constant, a large fraction of the energy
of the propagating wave is contained in the dipolar excitations that dress the photon.
These mixed modes made of an electromagnetic wave clothed by dipolar excitations
are called polaritons. Mills and Burstein [4] have considered the Raman effect as the
inelastic scattering of a propagating polariton by the lattice vibrations of the crystal,
which is of particular importance under resonance conditions. They have shown that
the divergent denominators, which appear in Birman and Ganguly's results [3], are
replaced by the difference between polariton energies associated with different branches
which never cross, so that S does not diverge. In a similar fashion, one can say that as
the excitation frequency hco approaches an exciton energy EXiX, the kA-exciton
content of the polariton increases until the mode is a pure kA-exciton for hco E^,
without participation from the other exciton states or from the photon field; this is

equivalent to say that the first-order exciton-photon interaction vanishes. Thus, while
the energy difference in the denominator goes to zero, the corresponding oscillator
strength in the numerator also vanishes leading to a finite, non-divergent result.

In fact, not only the electromagnetic and exciton fields can interact strongly but
also the exciton-phonon interaction may become substantial, especially in the
presence of polar longitudinal optical (LO) phonons in a non-centrosymmetric crystal.
Hence, the polariton-phonon system, which has been treated within the framework of
perturbation theory in the above-mentioned studies, can be formulated in such a way
that the three fields, electromagnetic, exciton and phonon, are treated on the same
footing. The propagating mode is then a dressed polariton consisting of an admixture of
the three interacting fields and the Raman effect is considered as the dressed polariton-
polariton inelastic scattering process.

Our approach to the problem starts from the same model Hamiltonian as that used

by Ganguly and Birman [3], to which anharmonic terms have been added, describing
photon-phonon and exciton-phonon interactions and is presented in Section II.
Expressions for the Green functions of the coupled exciton, photon and phonon fields
are derived in Section III through Dyson's equation. In Section IV, the excitation
spectrum of the system is analysed in successive approximations. When all anharmonic
effects are discarded the excitation spectrum is considered in the static approximation.
In this approximation, the spectrum consists of dressed (by the phonon field) polariton
modes which propagate through the crystal independently. The exciton-phonon
interaction modifies the oscillator strength for the electronic transition in question
and shifts the dispersion energies determined by the solutions of the Maxwell equations.
In Section V, the dynamic corrections arising from anharmonicity are included and the
polarization operator is calculated in the representation which is correct in the static
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approximation. The spectral functions corresponding to the three fields are derived
and the absorption lines are found to consist of the superposition of Lorentzian lines
peaked at the roots of the particular secular equation and of asymmetric lines, which
describe the structure of the side bands. Asymmetric broadening of the main line may
also arise when the energy dependence of the damping function is considered. The
asymmetric broadening of the spectral lines is always present and is caused by
anharmonic polariton interactions.

In Section VI, an expression for the scattering probability is derived in the dressed

polariton representation. It is shown that no divergence appears under resonance
conditions and the exciton-phonon interaction brings in a shift in the resonance energy
as well as an additional contribution to the scattering amplitude. When this coupling
is ignored, the expression for the polariton-phonon scattering amplitude is found to be
in agreement with the results of Mills and Burstein [4]. The Raman scattering probability

is also considered when the three fields are independent of one another. Physical
processes that occur when either the three fields are coupled or the two fields are coupled
and the other is independent have been discussed in detail.

II. Form of the Hamiltonian

Let us consider an insulator or a large gap semiconductor containing two or more
atoms per unit cell. To study the behaviour of the system, where three fields: exciton,
phonon and photon interact, we take the model Hamiltonian H as [3]

H H° + H1+H2+H3, (2.1)

where H0 consists of the unperturbed Hamiltonians

H° mx+Hl + HR, (2.2a)

corresponding to the free exciton, phonon and photon fields respectively and given by

A£= 2EXiX(cv)ak\(cv)aXiX(cv) (2.2b)
kXcv

H°L 2^(b^bni+A) (2.2c)
nî

H° 2 coJAl A^+^+^y— Al AX€. (2.2d)
A t-ico

An exciton is defined as an electron-hole pair, where an electron in the conduction
band c and a hole in the valence band v are bound together through the Coulomb
interaction [5]. x^cv) and oc^cv) are the exciton creation and annihilation operators
with wave-vector k and internal quantum number A. big, b^ and Axe, A%e are the
creation and annihilation operators for the phonon and transverse photon fields with
wave-vectors t\ and •% and polarization £ and e respectively, and satisfy Bose statistics.
FnX(cv), c^ni and coX€ denote the energy for the exciton, phonon and photon fields
respectively. The last term in (2.2d) represents the static part of the electron-photon
interaction, which is proportional to the square of the vector potential [6] and cop is the
plasma frequency. Explicit expressions for E^cv) are given in Reference [3]. Following
Birman and Ganguly [3], we shall assume that the exciton operators satisfy Bose
commutation relations. The band indices c and v will be suppressed into the compound
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index A, for convenience, and the system of units, where h 1 will be used throughout.
In Equations (2.2) use has been made of the following notation :

A xe AX€ + A _xe, AX€ Axf — A _X€

bng=b^+blni, ~b^=bni-b\è
- t fakA=akA + «-kA, àkA= akA - a-kA-

The first-order Hamiltonian H1 can be written as

m=HlL+meR, (2.3a)

where the bilinear interaction terms are given by

HIl 2 &rf (kA) 8k,_„ «IÂI, (2.3b)
kA

HÎr 2/xe(kA) 8K_x<xixÄxe. (2.3c)
kA
x«

H\L and H\R represent physical processes, where either an exciton or a photon is created
or annihilated through the absorption or emission of a phonon respectively. The
coupling functions can be obtained by using Toyozawa's [7] procedure and are given
in Ganguly and Birman's paper [3].

Similarly, the cubic and quartic anharmonicities, H2 and H3, are given by :

H2 HjeL + H2LL+ H2eR + H2RL + H2RRL, (2.4a)

H3=H3eeLL + H3eRLL. (2.5a)

The specific form of the interaction terms is the following :

H2eeL= 2 MkA'k'A')Sk-k',-^kA«k-A-^, (2.4b)
kAk'A'

H2eLL 2 dnfrtibX) 8nw-*&lxbv&,e. (2-4c)
kA

vh'i'

HîeR= 2 [-Fxe(kA'k'A')Sk-k',-xakAak'A'
kAk'A'

+ F* (kA, k'A') 8k_k%xct^ett-x-] À„, (2.4d)

P2eRL= 2 9^(kX,Xe)8ktX+nSilxÀx€b^, (2.4e)
kAxe

if
H2RRL= 2 9^^-X^')8x-x;-nÂleÀx-£-Kr, (2.4f)

xexV
1?

H3eeLL= 2 ö^'f(kA'k'A')S't'-k,n+^'akA*k'A'&n|öii'f. (2-5b)
kAk'A'
nén'i'

H3eRLL= 2 6rlfrt'teKxe)8k,x+n+n-&htÂxebriib~ri-i-. (2.5c)
kAxe
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The expressions for H2eL, H2eR and H3eLL describe physical processes, where two excitons
scatter each other through the emission or absorption of one phonon, one photon and
two phonons respectively. Similarly, the expressions for HeLL, HeRL and HeRLL represent
processes, where an exciton is either created or annihilated with the emission or absorption

of two phonons, one photon and one phonon, and one photon and two phonons
respectively. Photon-photon scattering through the emission or absorption of a phonon
is described by the expression HRRL. All these anharmonic interactions will contribute
to the lifetime and broadening of the spectral lines. It is easily seen that the expressions

for H2eR, H2RL, HRRL and H]LLL describe direct photon scattering processes. The
various coupling functions in Equations (2.4) and (2.5) can be found in the works of
Ganguly and Birman [3] and Mavroyannis and Pathak[8]. It is pointed out that in addition

to the exciton-lattice interaction via the deformation potential [9], there is the
Fröhlich [10] interaction between excitons and LO phonons in polar crystals, which
contributes to H\L, HJeL, H2LL, H2RL and to the quartic anharmonic terms (2.5). This
contribution can be large and cannot be neglected particularly for polar crystals.

III. Green's Functions Derivation

To study the system made of three coupled fields, we will use the Green's function
technique as described by Zubarev [11]. Let us introduce the following row operators

ßI=(atkA4e^a_kA) (3.1a)

ßI (<xlA^L^a-kA) (3-lb)

defined in terms of the exciton, photon and phonon operators. Using these operators
together with their complex conjugate-column operators, we define the two double-time
retarded Green's functions in matrix form

((Bk(t); Bl(t')yy -i9(t - t')([Bk(t), Bt(t')]_y (3.2a)

«ßk$ ; Bl(t')yy -i9(t - t')([Bk(f),Bt(t')]_y. (3.2b)

The angular brackets denote that the statistical average of the commutator is taken
over the canonical ensemble appropriate to the total Hamiltonian H ; 9(f) is the usual
Heavyside step function. The operators Bk(f), Bk(f) are in the Heisenberg representation

Bk(f) exp (iHf) Bk(o) exp (-iHf). (3.3)

The equations of motion for the Fourier transforms of the Green's functions (3.2) with
respect to the time argument t are given by [11]

co((Bk;Bkyy=±-([Bk, Bk]_yt_t, + (([Bk,H]-;Bl>y (3.4a)

™«Bk; Blyy -±-((Bk, !$_>,_, + (([ëk,HU ßkf». (3.4b)
LTT

When the commutator in the last two terms of Equations (3.4) is considered, the
equations of motion (3.4) are coupled. Therefore, it is convenient to write Equations
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(3.4) in the form of a linear combination, i.e.,

co[Q((Bk;Blyy+Qk((Bk;ëtyy]

1 [Q([Bk, Bk]_y,_,, + Qk([Bk, Bi]_yt.,.] (3.5)
JiTT

+ [Q(([Bk,H]_; Blyy + Qk(([Bk,H_]; Sj>>],

where the coefficients are given by :

'\ 0 0 0\ A 0 0 o\
o ^ o o\ /o^oo\Q=\ 2

w Qk=\ 2 (3.6)

^0 0 0 \) \0 0 0 i/
When the commutators in (3.5) are calculated by means of the Hamiltonian (2.1),
then the equation of motion (3.4a) takes the form of

D^(k,co)((Bk;Blyy =I + ((S(k);Bkyy, (3.7)

where I is the unit matrix. D00(k,co) is the unperturbed Green's function, which is
found to be :

2/kf(kA) -Zgke(kA) 0

r2 fc2 _ ,02
0 2/!ke(kA)

co — E

- 2/kVkA)
2ck \

'

Döo(k,o>) (27r)| co2-colc I <3-8)

-letf*) o — -?

2g:kf(kA)
A 2ojkf a

2/ke(kA) 2gkf(kA) -a, -^
In (3.7), S(k) is a column operator arising from anharmonic contributions and is

given by

27r[akA,Jr72 + #3]_

S(t)., ™ ^..^+«'].
Tr[bktH2 + H3]_ » (J-a)

Sex(k)

S.(k

SL(k

SJx(-k) r-^a^fP + Ä3].
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where the explicit expressions of its elements are :

9 fZ Gkr(kA,k'A')Sk,_k,kak,Ar+ 2 [iWfkA.k'A')
•^exW ^77"

1 k'A' k'A'

1011

k"f k"f"

+ Fk^(k'X',kX)] W,kak,A,ik-e- + 2 dktMT(kX) 8k,+k^_kbktbkT
vc
k'T

+ I 9kT(kX,k'e')8k.+k,MÀk,/bkT+ 2 DkTk.r(kA,k'A')
k'e' k'A'
kT kT,k-r
^k'-k"-k-,kak'A' Vf"K"C

- 2 0krkT(kX,k'€')8k,+k,+k.kAk^bkrbkT
k'e'

k-fk-r

(3.10a)

SR(k) 27T

'

2 i(F^e(k'X',k"X") + F:k€(k»A",k'A') 8k._k%_k(â{,x,âk,,x.+ &lx,&k,x,)
k'A'

.k'A"

+ 2 ökT(k'A',^ke)Sk,_k.;_ksk,AikT+ 2 [<AkT(k'6',-ke) + ^kT(ke,-k'e')]
k'A' k'e'
v(- vc

x V-k-.-A-A'f" + 2 9kTkT(k'X', -ke) Sk,_k„_k.;_k5k,A,ôkTîk.J (3.10b)
k'A' '

vcvc

SL(k) 2tt 2 iG_kf(k'A',k"A") Sk._k»,_k(Äk-A,<£k^+ &lx,&k,x„,
k'A'

U'A"

+ 2 [^^k.f-(k'A')+^^^(k'A')]Sk^_kàk,A,èkr
k'A'

vc
+ 2 ^(kV,kV)8k.^ikv;ikV

k'e'
k'e"

+ 2 i[o_kÉk.f.(k'A',k'A-) + Dk.f._kf(k'A',k'A')]Sk.^._irH[
k'A'k'A"

x (4'A"*k-A' + &t-x-&w\--) h-c + 2 [6_k$rtiy\',k"e")
k'A'k'e'
vc

+ ök-r-k«(k'A'-k"e")] Vk'-k-k4'A"4"e"Vrl- (3.10c)

The second term on the right-hand side of (3.7) is a mixed many-particle Green's
function, which can be written in a symmetric form by deriving its equation of motion
with respect to the time argument f, together with that of the function <<S(k) ; -Bk».
Through a calculation similar to that used to obtain (3.7), we can write :

<<S(k) ; Si» [<[S(k), Bt]_y„,+ «S(k);Sf(k)»] D00(k, w) (3.11)
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where the row vector appearing in the equal time commutator is defined as :

B t coÀl + ckA{e cobtç+colçbiç
akA — — ^^-«-kA

2c« 2tukt
(3.12)

and arises also from the linear combination of the two equations of motion for
«S(k);Bk»and«S(k);.Bk».

Upon inserting (3.11) into (3.7), we obtain

Död(k, oo)((Bl ; Btyy Deo (k, co) D(k, co)

1 + [<[S(k), Bk]_W+ «S(k) ;Sf(k)>>] D00(k, oi), (3.13a)

which is to be compared with the Dyson equation

Doo1 (k, oi) D(k, co) I + Tr(k, oj) D(k, co)

I + P(k,co)D00(k,co) (3.13b)

The polarization operator 7r(k,ai) is related to the scattering operator P(k,co) through

jr(k, co) P(k, co)[I + D00(k, co) P(k, oj)]"1

P(k, co)[I - D00(k, co) P(k, w)±...]. (3.14)

In the range of frequencies co far from the zeros of the denominator in (3.14), we
expand in power series and retain only the first term of the expansion. Using this
approximation, from (3.13) we have

D(k,œ)=[Dri0(k,œ)-([S(k),B{]_yt=t,-((S(k);S\k)yy]-1I, (3.15)

where thepolarization operator 7r(k,cu) has been approximated by the scattering
operator P(k,cu) <[S(k),ßk]_>I==(. + «S(k) ;Sf(k)». The equal time commutator
is the static part of the scattering operator and is a renormalization term. The Green
function P(k, co) «S(k) ;Sf (k)» is the dynamic component of P(k, cu) and represents
the effects of various scattering events among the particles arising from the anharmonic
interactions H2 + H3.

Taking the diagonal and non-diagonal elements of (3.15), we obtain the following
Green's functions for the exciton, photon and phonon fields :

Dex(k,oi)=«SkA;SkA»
'1\ [ÉkX+PXt(k,co)] [w2-c2k2-w2p-AckœkiP223(k,co)j(co2-co2i)]

tt) [co'-E^+P^k.co)]

DR(k,co)=((Akf;Alyy-

[1 - A(k, co)] [co2rj2(k, w) - c2 k2

ck

ttJ [co2r)2(k,co)-C2k2]

(3.16a)

(3.16b)

JkfDL(k,co) ((bkfbkiyy-

(w2 _ C2 k2 _ &2 _ 4c£) 2 |/ke(kA) |2 [ÈkX + pu(kw)]/[a>2 _É2^ + p^ (ka))]

co2-cö2H\

[1 - Ä(k, co)][co2 fj2(k, ch) - c2 k2]
(3.16c)
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where the frequency and wave-vector dependent index of refraction is given by

y Acklf^kX^Ë^+P.AKco)]
^co2[co2-Ë2kX + PUk,co)][l-A(k,co)]

AckcoHP223(k,co) ^ 8ckcoH[ÊkX+ P14(k, co)]

rj2(k,co) !-[-£

+
co2(co2 - co2kA[l - A(k, cu)] jrl, co2(co2 - co2kA[co2 - ZT^ + P14(k, co)]

7ke-(kA)g*k^(kA') P23(k,co) + gkf(kA)/*ke(kA') P*,(k,o>)"

l-Ä(k,co)
and the lattice response function, representing the polar field correction, is

1 -1(1::,) 1 y^l^kAil^+Pi^o,)]
^(c^-ä^-^+P^ko,)]

Use has been made of the following definitions

EkX= ËkX + — ((Sex(k); Sl(k)yy EkX + Plx(k,co),
2>7T

&l( Ke+— «si(k) : Sl(k)>> ib2 + P33(k,a,),

ck
œ2p co2,+ -((SR(k);SR(k)yy=co2, + P22(k,co),

TT

P14(k,a>) P*x(k,co) =— «Scx(k); Sex(-k)>>,

p23(k,co) p*2(k, co) =^-((SL(k);SfR(k)yy

2 lk|(kA) 2 gkf(kA) + —«Sex(k) -,sl(k)yy,
t t Z.TT

2/ke(kA) 2/ke(kA) +—((Sex(k);SR(k)yy,
e e 4TT

as well as for renormalized quantities

£kA £kA + <[S«(k), «Ld->_ ^kA + 2 Dw^.(kX,kX)(bkrtbt.i.y,
vc

ali wlt +
.V

SL(k),
2tukf

'\/~t.

c»lç + 2 4o>kf

t=t' k'A'

ökf,_k|(k'A',k'A')<ak,A,ak,A,>,

(3.17a)

(3.17b)

(3.18a)

(3.18b)

(3.18c)

(3.18d)

(3.18e)

(3.18f)

(3.18g)

(3.19a)

(3.19b)
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2/ke(kA) 2/k€(kA) + 2 OkT_k,e(kX,ke)(bk,ebt,ey. (3.19c)
e e k'C

The renormalized quantities (3.19) are corrected by the static component of the scattering

operator and are temperature dependent through the exciton and phonon occupation

numbers, whereas the quantities (3.18) contain both the static and dynamic
parts of the scattering operator. The latter contribution is made of a linear combination
of many-particle Green functions and is a complex quantity.

The square of the index of refraction, rj2(k,co), is a function of the frequency co

and wave-vector k and depends on temperature through the renormalized quantities
(3.19). It describes physical processes of the polariton-type excitations, arising from
the exciton-lattice and exciton-radiation interactions in a dielectric medium. The
first two terms in (3.17a) represent the usual high frequency index of refraction

a2
2 l P

CO*

where co2, is the square of the plasma frequency corrected by the component P22(k,co)
of the scattering operator, which takes into account direct photon scattering arising
from the anharmonic interactions contained in H2 + H3. The third term in (3.17a)
represents coupled excitations of the polariton type in the optical region of the spectrum,
including anharmonic interactions through the scattering components Pxx(k,w) and
P14(k,co). Its importance depends mostly on the exciton-photon coupling constant
fk€(kX), given by (3.18g) and the anharmonic correction «Sex(k);S£(k)>> will be

neglected from now on, being of second order. The temperature dependence of the term
in question arises through the renormalization parts of the oscillator strength |/k€(kA) |2

and of the excitonic energy E^ ; the magnitude of the thermal effects depends on the
strength of the quartic anharmonic coupling functions appearing in HeeLL and HeRLL.
The usual expression for the polarizability in (3.17a) is modified by the lattice response
function 1 — A(k,co), the importance of which is given by the magnitude of the exciton-
lattice coupling function gi^kA) ; this modification can be substantial in polar crystals,
where the Fröhlich interaction is usually important. It results in an indirect lattice-
radiation coupling via exciton states.

The fourth term in (3.17a) is a lattice contribution representing polariton-like
excitations, in which the second-order oscillator strength |P23(k,to)|2 arises from
anharmonic interactions between the radiation and the lattice; it contributes to
7J2(k,co) only in the infrared region and it will be discarded from now on. The last
contribution in (3.17a) is a higher order correction, which will be also neglected; it
represents anharmonic couplings between the exciton, phonon and photon fields and
it can be split into two corrections to the third and fourth terms of rj2(k,co).

The Green functions (3.16) describe the behaviour of the coupled system, which
consists of the exciton, photon and phonon fields. These fields are coupled through
the H1 interactions and the Green functions have, therefore, the same poles or
singularities located at the energies cop(k), which are solutions of the secular equation

oi2Re^2(k,oj)-c2F 0. (3.20)

For a given wavevector k, these roots cop(k) give the renormalized polariton energies of
excitation with branch index p. The excitation spectrum will be examined in the
following section in successive approximations. But, before that, we will consider
three limiting cases, which will be needed later.
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Limiting cases

a) In the range of wave-vectors where dispersion can be ignored, we can let
|/ke(kA) |2 vanish and then from (3.16), we have

D*x(k,a>) -

Dl(k,co) [-
iTT

DR(k,co)

EkX + Pu(k,co

l-A(k,co)<o*-Etx + PtAk,co)

l-A(k,co

ck

2 U2c2k

(3.21a)

(3.21b)

(3.21c)

In this case the exciton and the phonon fields are coupled, while the photon field is

independent. DR(k,w) is the bare photon Green's function corrected for direct photon
scattering effects through cop. The excitation spectrum for the photon field is determined
by the roots of the equation

j2 - c2 k2 - col - Re P22(k, co) 0, (3.22a)

while ImP22(k,üi) describes various photon decay mechanisms. The excitation
spectrum of the coupled exciton-phonon fields is determined by the roots of the following
equation, which is obtained by equating to zero the real part of the denominator of
(3.21a) or (3.21b), i.e.,

Reco2H)[co2 - Re£2A + ReP14(k,oj)] - lm£2f [IrnE2^ - Im P24(k,o.)]

- 2 Acokè\gki(kX)\2Re[EkX+ P14(k,a>)] 0,

whereas its imaginary part, T (k,co), given by

(3.22b)

- (co2 - ReÔ>2k|)[ImË2X - ImP24(k,co)] - Imto2H[co2 -ReÊ2kX+ ReP14(k,to)]

- 2 AcoH\gki(kX)\2Im[£kA + P14(k,cü)] rb(k,co)
Air

(3.22c)

represents the lifetime broadening arising from the various scattering events leading
to the decay of the incoming particle. The results obtained in this case are similar to
those achieved in the lowest order when the exciton-photon interaction HeR is treated
within the framework of perturbation theory.

b) The specific case, where the exciton and the photon fields are coupled, while
the phonon field is independent, occurs when the exciton-lattice interaction is vanish-
ingly small. Taking the limit |gke(kA)|2 0 in (3.16) leads to

D:x(k,to) i-

D"R(k,co)

EkA+P^k.co)
¦Efa+PUKto)

ck

[co2rj2u(k,co)-c2k2]

[co2 - c2 k2 - Sil]

[co2fu(k,co)-c2k2]
(3.23a)

(3.23b)



1016

D"L(k,a,) \- M

rj2u(k,co) l--

co2 - 5>2f
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(3.23c)

4^|/ke(kA)|2[EkA + P14(k,a>)]

'4< [oo2-E2+P24(k,<o)]
(3.23d)

The excitation spectrum of the mechanical phonon field is given by the roots of the
equation

,.,2 Reco2ki 0, (3.24a)

while the energies of excitation corresponding to the bare polariton spectrum are
determined by the solutions of the equation

co2 Re r)2Ak, co) -c2k2 0. (3.24b)

Both spectra include corrections arising from anharmonic interactions. The Green
functions (3.23) give the same results when the bare polariton-photon interaction is
treated by means of perturbation theory, as it has been done by Bendow and Birman
[12].

c) Finally in the case when the three fields are independent of one another, then
from (3.16) we have

(3.25a)

(3.25b)

(3.25c)

The Green functions Dfx(k,cu), DR(k,co) and Df(k,cu) describe physical processes,
where free excitons, free photons and free phonons are scattered independently by
their own anharmonic fields respectively. The excitation spectrum of each field is
described by the poles of the corresponding Green function.

Dfx(k,o>) (;) ^KA+^k.co)
_ai2-^+P24(k,co)

DFR(k,co) 8 ck

CO2 - c2 k2 - cu2

DFL(k,co) @ °>ki

.o2-àlc

IV. Excitation Spectrum
We shall discuss the excitation spectrum for the three coupled fields described by

the Green functions (3.15) or (3.16). In this section, only the static approximation will
be considered, while dynamic effects will be discussed in the next section. In the static
approximation, the Green function D(k,co) is given by the first two terms in the
expression (3.15). Since two terms are involved in the expression (3.15), the excitation
spectrum will be considered in two successive approximations.

a) Zero-order approximation
In the zero-order approximation, all anharmonic interactions are ignored and the

scattering operator is, therefore, set equal to zero; i.e., only the first term in (3.15) is
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retained and it will be denoted by the subscript (00). Then, from (3.16) or (3.7) and (3.8),
the Green functions can be written as

Dex(00)(k, Co)

DR(oo)(k, co)

ö£(oo)(k, co)

1

77

1

77

/ EA \ (co2-c2k2-co2) 1

(4.1a)

(4-lb)

E2k>)

loi2 - E2J [a,2 ^(k, co) - c2 k2] [1 - Am(k, co)]

ck

[co2V2^(k,co)-c2k2]

1
cokf \^2-c^2-a>2-4^2l/k,(kA)|2JEkA/(a,2-

\ a;2 - co2f / [co2 ^(k, co) - c2 k2][l - A (00)(k, co)]

(4.1c)

where the square of the index of refraction and the lattice response function are given
by:

2 iu \ z a v^kAl/k^kA)!2 1

Vcm (k, co) Va> - Ack > • (4.2a)

^ co2(co2 - £2A) [1 - A(00)(k, co)]

^=1 ;• (4.2b)
CO

^ K-^)^2-w2kP
In (4.2a), the e-summation runs over the two transverse polarizations of the photon
and the A-summation is extended over all the indexes and quantum numbers which
characterize the exciton. The latter is also applied to the exciton index A, which appears
in the lattice response function, where the £-sum runs over all the phonon branches ;

this restriction to the A-sum in the lattice response function is denoted by the parentheses

affecting the exciton index (A) in (4.2c).
The square of the index of refraction t?(200) (k, co) is a well-behaved function of the

wave-vector and the frequency. Its first term n2-,, given in (4.2b), is the usual high
frequency dielectric function, which is obtained when the limit of large to is taken.
Its second term represents coupled excitations of the dressed polariton type, the
dressing being represented by the lattice response function defined in (4.2c). It can be
rewritten in terms of the usual excitonic polarizability a(0(r)(k,co) which represents
the dispersion effects contained in H\R.

•£J/fa(kA)l 2

„ /t x v nkA\Jkey^>\ „a"vr,(k, co) y —j T~ ' '"(00)V

\e £kA-

2 -,
Ack amm(k,co)

¦n2mQL, co) r,l+—• (07
;

• (4.3b)
w2 - ^(oo)(k. co)

It can be seen that the exciton-phonon interaction H\L results in a modification of the
usual polarizability contribution by the lattice response function—or lattice
polarizability—which represents the polar field correction. Its importance depends on the
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magnitude of the exciton-phonon coupling constant gkç(kX), which can be large in
polar crystals, where the Fröhlich mechanism exists. This interaction induces an
indirect photon-phonon coupling via exciton states, which shifts the dispersion frequency
EkX of the polarizability term to higher energies and introduces a new dispersion
frequency in the neighbourhood of phonon energies. If the present model is applied to
the case of CdS, as has been done by other authors [3], [4], [12], we find, using the data
of Rode [13], that the coupling via Fröhlich interaction alone between the ls exciton
of the A series and the LO phonon shifts the zeros of the denominator in (4.2a) by
7 meV towards higher energy.

The expression (4.2a) for the index of refraction can be compared with the
expression of Bendow et al. [12], [14]. If we consider, as they did, that the mechanical
oscillators—excitons and phonons—are weakly interacting, then we can take in the
lattice response function the limit of small |gk|(kA) |2 and expand [1 — /l(0o) (k, co)]-1 in
power series of /l(00) (k, co). Then, retaining only the first term, we recover Bendow's
expression for the dielectric function.

The behaviour of the system of dressed polaritons in the absence of any anharmonic
interaction is described by the functions (4.1). Their common poles, located at the
energies toP(oo) (k), are solutions of the secular equation

co2r1(200)(k,co)-c2k2 0. (4.4)

The energies of excitation co^oo) (k) describe the dressed (by the phonon field) polariton
modes with band index p and wave-vector k. The number of branches is, of course,
equal to the total number of modes and, hence, no analytical expression for coP(oo) (k)
as a function of the wave-vector will be given. The excitation spectrum has to be

computed numerically for actual crystals with appropriate values for the bare modes

energy and coupling functions. If we consider the simple case of a crystal with a single
exciton level coupled to a single phonon branch, it can be said that, for a wave-vector
such that ck is in the excitonic region, the two branches in the high energy part of the
spectrum are mostly polaritons with a small phonon content, while the low energy
branch is mostly phonon with a small polariton contribution. The degree of mixing
depends, of course, on the strength of both first-order coupling functions.

The dressed polariton excitation spectrum is also obtained through a complete
diagonalization of the first-order Hamiltonian H° + H1, which can be written as

*m £(oo) + 2 «y<x»(k) y^oo)(k) yP«x»(k)- (4.5)
kP

In this expression, £(00) is the average energy of the dressed polariton field, cop(oo) (k)
is the energy of excitation of the (pk) dressed polariton and y^(00)(k), yp(oo)(k) are the
dressed polariton (pk) creation and annihilation operators, in the zero-order approximation

respectively. These dressed polariton operators are made of the admixture of
exciton, photon and phonon operators given by

«kA 2 [<>(k) ypm(k) + v™\k) y;(00)(-k)],
P

Kg 2 [«r« Wk) + CW r-W-k)]. (4-6)
p

Ake 2 [«C« yp(oo)(k) + Ck) ^oo) HOL
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together with the complex conjugate relations for the creation operators. The amplitude

M(y"0) (k) and vjp (k),j X, Ç, e, of the Bogoliubov's canonical transformation (4.6),
which brings the Hamiltonian H° + H1 into the diagonal form (4.5), can be obtained
by performing the canonical transformation and using the appropriate commutation
relations. It is a rather lengthy and tedious procedure and they are more easily obtained
using that fact [15] that the w's and v's are equal to the distribution functions taken in
the limit of zero temperature. Bendow's [14] coefficients <h and y can be recovered from
ours if the first-order exciton lattice coupling is ignored by setting |gk^(kA) |2 0 and
taking co2 0. This leads to the limiting case b) of the preceding section, where polaritons

interact anharmonically with bare phonons.
It is known that the dielectric function is proportional to the exciton Green

function [11], [6] so that the absorption line shape is given by the exciton spectral
function/ex(00) (k,co). Since all quantities in (4.1) and (4.2) are real, the exciton Green
function is real. Hence, the spectral function and, therefore, the absorption coefficient
consists of S-shaped lines, peaked at the poles cop(oo)(k)

/ex(00)(k. *») («*" - l)'li]^lDexm(k, co - %€) - Dex(00)(k, co + te)]

Xfßo) IW/ 2£kA \ (o>2-c2k2-<o2p) A(00)(kp)rs/
2 (e - 1) —; r l° cd - CO (00)(k))
P W-E2J [l-Am(k,co)] cop(00)(k)

p(

-«(w + c^fk))], (4.7)

where ß (kBT)~l with kBbeing the Boltzmann constant and T the absolute temperature.

We have used the screening factor A(00)(kp) defined as

ï tus ldo>2V2oo)(k,co)\-1
A(oo)(kp) j—2 (4.8)

This factor represents the effect of the polarization of the medium and is closely related
to the energy transport velocity [4], [16]. Far from the dispersion region or if the
dispersion is weak, the screening factor reduces to

A(oo)(kp) ^(w)(k- cop(00)).

As has been said earlier, the distribution function obtained from (4.7) obeys the
relation [11]

+ 00

i™<&kX&lx>coo, lim / /ex(oo)(k. co) dco 2 |«£°(k) - v%\k) \2.
r-o P

b) Zero-order renormalized approximation
In this approximation, we take into account the static part of the scattering

operator <[S(k),#£]_>,_,-, the second term in (3.15), while the dynamic component is
ignored. To calculate the matrix elements of this correction, we will assume that all
the average values of single operators as well as those of products of operators
corresponding to particles of different kind represent second-order contributions, which can
be neglected. The remaining contributions are given by the last terms in (3.19) arising
from quartic anharmonicity.
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The thermal distribution functions, which appear in the last terms of (3.19) are
calculated in the zero-order approximation, using the Green functions (4.1). They are
given by

/ t x at-COow V A(oo)(kp) ckcim(kp)
<«kA«kA> ^A (k) - 2, -—TT •

n _„ -
p

Ek\ - mp(oo)(k)

"Voo)(k) t1 - ^(oo)(kp)]2 L £kA + %(oo)(k)

_L coth tm y i„(oo)(k) ,2 coth /H™, (4.9a)
^kA

/î ü x iTr(o<»/i\ V A(oo)(M 4cÄ«(00)(kp)/l(00)(kp)

P
oJp(oo)(k) [1 - Am(kP)]2

'M r.^1, ^00' _ v („WW/tx ^ „OW/irtia ^i, ^V01»,
coth- 2 |«™(k) + irg»(k) |2 coth '—^2 (4.9b)

[<-^p(oo)(k)] 2 7' '" " 6" 2

For a vanishing first-order interaction H1, (4.9a) and (4.9b) are reduced to the well-
known distribution functions for the free exciton and phonon fields respectively, i.e.,

<akAakA>(oo) °
a

<kfbU\oo) coth —^ 1 + 2Nf°\k). (4.10)

Since the exciton energy is much larger than the thermal energy, the exciton distribution

function is very small and can be neglected. Hence, the only non-negligible
contributions are those proportional to the phonon occupation numbers. The excitonic
energy is corrected through the second term in (3.19a), which amounts to

Zl£kA(T) 2 Dk*-k-C(U.kA) ^(00>(k') • (4-1 la)
k-c

and represents the energy shift arising from the scattering of the (kA) exciton into
itself with simultaneous emission and absorption of (k'£') phonon. The exciton-photon
coupling parameter/k6(kA) is renormalized by

AfkJkX, T) - 2 0kT_kT(kA,ke)iVfV), (4.11b)
k-c

s

the interpretation of which is similar to that of AE^T).
Both quantities in (4.11) are functions of temperature through the phonon

distribution function. At high temperature, they are linearly increasing functions of T, and
independent of temperature for kBT < cop(oo) (k). Both contributions arise from quartic
anharmonic interactions among the dressed polaritons and, therefore, do not vanish
in the absence of first-order coupling H1.

Upon replacing the exciton energy and the oscillator strength by their renormalized
values Ëiù and |/ke(kA)|2in (4.1) and (4.2), we obtain the zero order renormalized Green
functions and the corresponding secular equation. From the latter, we can derive the
renormalized excitation spectrum cop(o)(k), which is temperature dependent and slightly
shifted with respect to cop(00)(k). Since both renormalizing terms (4.11) are real, the new
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Green functions are still real and the renormalized spectrum is also made of S-shaped
line peaked at the energies cop(o)(k). The significance of the temperature dependence of
the excitation spectrum and the magnitude of the energy shift cop(0)(k) — cop(oo)(k)
depend on the importance of the renormalization terms, hence on the strength of the
anharmonic interactions H3eeLL and H3eRLL. In (4.11), the summation is extended to all
phonon branches f ' and wave-vectors k'. It is possible that, in polar crystals, where the
Fröhlich interaction exists, renormalization may be of some importance. Thus, the
inclusion of the static part of the polarization operator results only in a temperature
dependent shift of the excitation spectrum.

V. Line Shape of Absorption Bands

To study the dynamic effects, which govern the shape of the absorption bands,
we have to use the complete expression for the Green function (3.15) or its components
given by (3.16)-(3.19). The dynamic part of the polarization operator is described by
the function P(k,co) «S(k);ST(k)>>, which is, in general, a complex quantity and
represents various scattering processes caused by the anharmonic parts of the Hamiltonian

H2 + H3. Taking the imaginary parts of the expressions for the Green functions
(3.16), we find

(1) N /1\ / 0(k,co) \ f(k,co) - [to2Re772(k,co) - c2k2] p(k,co)j9(k,co)
Im£>£(k,co)

tt) \co2 - E^J [co2 Re fj2(k, co) - c2 k2]2 + [P(k, co)]2

(5.1a)

Im Dg\k, co) l±) n^)-^2Ref(k,co)-c2k2]y(k,co)t
\l) [co2Re772(k,co)-c2£2]2 + [f(k,co)]2

Im D«(k co)
KA/ff(k.")\ Âk, co) - [co2 Re if (k, co) - c2 k2] g(k, co) jß(k, co)

L 'W
\ TT )\co2 - colçj [co2ReT)2(k,C0)-C2k2]2 + [f(k,C0)]2

(5.1c)

Use has been made of the following notation :

EkX ËkX+RePxl(k,co), E2kX É2kX + 2EkXReP,x(k,co) (5.2a)

cok|=cokf+ReP33(k,co), (5.2b)

co2p =co2 +ReP22(k,co), (5.2c)

[Ê^ + ReP^k.co)]
9(k, co L-J* „14V n

(co2 - c2k2 - co2), (5.3a)
[l-ReA(k,co)]

V

(w2 - c2k2 - CO2)

A(k, co)
y "'
[l-ReA(k,co)]

Im(Pu + P1A-(EkX + ReP1A

ImP33 ImP2
(co2 - toy

(5.3b)
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y(k, co)
-1 2£kAImP11 ImP3

+ ¦

[l-ReA(k,co)] O2-^) (co2-co2f)

4cQkdgkg(kA)[2Im(P11 + P14)

2'A/ (co2-£2u) (c"2-cô2f)
(5.3c)

ß(k,co)

§(k,co)=-

[l-ReA(k,co)]

(co2 - c2 k2 - CO2]

[l-ReA(k,co)]

'¦k2-col-

2£kAImPn

4C*|/ke(kA)|2

-Ei,)

2 (w?._£2

ImP2
-c2k2

(E^ + RePu)
kA)

(5.3d)

4cfel/ke(kA)j2Im(P11 + P14)

^
(co2-£2A)(co2-C2Ä2-co2)

(5.3e)

The real parts of the square of the index of refraction and of the lattice response function
are given by

p ~2,u v 2
ReP22 4cÄV l/keWCEkA + RePi.)

Re7?2(k,co)=-ry2 ; ~2^-co2 co2 ^ (co2 - £k2A)[l - Re^(k, co)]

l-Re/ï(k,co) l-4 y
Af

cOkèëk^mÊ^ + RePu)
(co2-Ê2x)(co2-cô2A

(5.4a)

(5.4b)

The damping function, jT(k,co), describes lifetime effects arising from the anharmonic
interactions and has the form

F(k, co) - Im P2

Im?,
(co2-cô^)[l-Reyl(k,co)]

2ËuXlmPn

(co2-Ê2))[l-ReA(k,co)]

'2
Af

gkAl/ke(kA)l2

(^kA-c^2)

Im(Pn + P11 — •* M Ack
[l-ReA(k,co)]

+ (co2 - c2k2 - cof,)^

l/ke(kA)l2

Ae(-2-^
4cok^kf(kA)i2

v
(co2-Ê2,) (co2-cô2kf) J

(5.4c)

In deriving the spectral functions (5.1), only linear terms in P(k, to) have been retained.
In the expressions (5.2), the renormalized energies in the zero-approximation are
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corrected by additional self-energy terms. The excitonic energy E^ is modified by the
self-energy RePn(k, co), originating from the various anharmonic processes leading
to the scattering of the exciton mode. Writing P11(k,co) explicitly in terms of Sex(k,co),
it can be shown that all the cubic and quartic components of the Hamiltonian, except
HRRL, contribute to the expression for RePn(k,co). There is also an off-diagonal
contribution, ReP14(k,co), which appears in (5.3) and (5.4). Similarly, in (5.2b) and
(5.2c) the phonon and plasma frequencies are corrected by the self-energy terms,
ReP33(k,co) and ReP22(k,co), arising from direct^ phonon and photon scattering
processes respectively. The functions, ö(k,to)/(co2 — iskA) and ß(k,co)l(w2 — colA, where
9(co) and ß(co) are given by (5.3a) and (5.3d) respectively, are the exciton and phonon
correlation functions, respectively, with anharmonic effects being included.

The square of the index of refraction is defined in (5.4a). The lattice response
function (5.4b) contains anharmonic effects with both exciton and phonon energies
being renormalized; the exciton-lattice coupling function |gkf(kA)|2, (3.18f), takes
into account anharmonically induced interactions, which bring in the non-diagonal
interaction term, |«SM(k) ;S2(k)»[2, even in the absence of HleL. In (5.4a), the second
term is a new contribution arising solely from anharmonicity, which describes the effect
of direct photon scattering processes. The third term in (5.4a) is the usual contribution
from the excitonic polarizability, modified by the lattice response function, and
describes dressed (by the phonon field) polariton type excitations. The oscillator
strength |/ke(kA)|2, (3.18g), includes a non-diagonal coupling function due to
anharmonicity. Hence, it can be seen that in the case where direct first-order coupling H\R
does not exist, the three fields are still coupled weakly through anharmonic interactions
with induced non-diagonal coupling functions of the form |«5ex(k);S^(k)»|2 and
|«Sex(k);S£(k)»|2, respectively. The index of refraction Re^2(k,co) given by (5.4)
can be compared with the dielectric function of Bendow and Birman [17], whose
Hamiltonian is similar to ours. They have treated the exciton-lattice interaction H\L
perturbatively and hence do not obtain its influence on the polarizability represented
by the lattice response function. We can recover their results from (3.17a) by
incorporating the effect of HleL into Pn(k,co), in which only H2eL anharmonic interaction is
retained, dropping the renormalization terms and neglecting the imaginary parts of
the numerator of the third term in (3.17a). Their functions [17] A(kE) and T then
correspond to those of Re Pn and Im Pu respectively. Therefore, Bendow and Birman's
[17] expression for the dielectric constant does not include all the anharmonic effects
arising from their F(3) + F(4) and it can be viewed as a linearized form of r)(k,co) with
the direct photon scattering processes discarded.

The damping function P(k,co) is given by (5.4c). The importance of the damping
function depends entirely on the strength of the anharmonic interactions. In P(k,co),
(5.4c), the first term describes the lifetime of the photon part of the polariton.
Considering that P22(k,co) <<5R(k) ;S|(k)>> and the definition of SR(k) given by (3.10b),
then the expression for ImP22(k,co) describes direct photon scattering processes,
which is present even in the absence of dispersion. The second term in (5.4c) describes
the decay of the phonon part of the mode, whereas the last two terms represent the
exciton contribution to r(k,co). Thus, the damping function consists of a linear
combination of various decay processes arising from the interaction of the mode in question
with the anharmonic parts of the three fields respectively.

We will proceed now with the evaluation of the two- and three-particle Green
functions, which appear in the components Pu(k,co). A rigorous calculation of these
Green functions can be done only through the use of the total Hamiltonian H, which is
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rather an impossible task. For our problem it will be sufficient to calculate the Green
functions appearing in the expression for Pjj(k, co) in the first approximation by means
of the zero-order renormalized Hamiltonian

M\t E(0) + 2 œm(k) yt<0)(k) yp(0)(k). (5.5)
kP

In this approximation, the two- and three-particle Green functions are transformed
into the new representation of dressed polariton modes and then the two- and three-
dressed polariton Green functions are calculated by means of the Hamiltonian (5.5).
Owing to the diagonal form of the Hamiltonian (5.5), mixed type Green functions
consisting of an odd number of operators do not contribute. In this approximation,
the imaginary parts of the two- and three-dressed polariton Green function have
delta-function distributions respectively.

The canonical transformation which diagonalizes the Hamiltonian H° + H1 into
the dressed polariton form (5.5) is defined in (4.6), but its coefficients u®p(k) and vfp(k),

j A, e, f, are now calculated in the next approximation, i.e. using the zero-order
renormalized Green functions. The only difference between these coefficients and those
of the transformation (4.6) lies in the fact that the ufp (k) and vfj (k) contain renormalized

expressions for the exciton energy and the oscillator strength.
The two- and three-dressed polariton Green functions have been calculated in the

Appendix by means of the Hamiltonian (5.5) and are given by (A.3) and (A.6) respectively.

It is shown that they have poles at the energies

co, ±cop,(0)(k') ± cop.(0)(k"),

"2 ±cV(0)(k") ± cv(0)(k") ± cop.m(k"), (5.6)

respectively, co. and co2 are the resonance frequencies corresponding to the first- and
second-order scattering mechanisms and Equations (5.6) express the appropriate
energy conservation conditions. In this same Appendix, a general form of the matrix
element PtJ(k,co) is derived. Upon expressing its coefficients rkoc(k'p',...) in terms of
the anharmonic coupling functions, one can see that the latter are screened by the field
of the outgoing modes through the coefficients ufp (k) and vfp (k). This results in a reduction

of the bare scattering amplitudes, the magnitude of which depends on the first-
order coupling functions. The expression (A.8) shows further that Pjj(k, co) is a function
of the occupation numbers «P(k) of the outgoing modes and hence, is temperature
dependent. Notice that in (A.8), the cubic and quartic anharmonic terms are linear
and quadratic with respect to the occupation numbers respectively.

In the expressions (5.1), only the diagonal elements of PtJ(k,co) as well as the
off-diagonal element P14(k, co) remain as important contributions. They describe
physical processes where the incoming particle (photon, or bare or dressed polariton)
decays into two and three frequency modes. The scattered (or outgoing) modes can be
either bare or dressed depending on the strength of the first-order interactions in the
range of frequencies of the outgoing waves. Considering that when a frequency mode
is dressed then its anharmonic coupling function is screened and its magnitude is

reduced, therefore the decay of dressed polaritons into bare modes is more likely to
occur.

The behaviour of the dressed polariton system is described by the shape functions
(5.1). The exciton spectral function ImDä'(kco) is proportional to the absorption
coefficient in the electronic part of the spectrum, whereas in the infrared region, the
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latter is proportional to the phonon spectral function Im D^/f (k, co). This last function
is only an approximation to the true lattice absorption since our model does not contain
the lattice anharmonicity. Finally, the phonon shape function ImD^(k,w) is
proportional to the scattering probability for the electro-optic effect [18].

The functions (5.1) describing the system of three coupled fields have all the same
first-order excitation spectrum with energies cop(i)(k) given by the roots of the secular
equation

co2 Re rj2(k, to)-c2k2 0 (5.7a)

The first-order dressed polariton excitation spectrum cop(i) (k) differs from the zero-order
renormalized spectrum because it contains now self-energy effects due to anharmonicity.

The latter does not induce new roots of the Maxwell equation (5.7a). In the vicinity
of the dressed polariton energies cop(i)(k), the equation (5.7a) can be expanded in power
series and retaining the first non-vanishing term, we have

2 A^(kp)(co2 - co2 (k) 0, (5.7b)
p

where we have introduced the screening factor

(dco2Reri2(k,co)\
AÖ)M TT Aü <k>"Vn(k))- <5-8>

Then, the exciton spectral function (5.1a) can be rewritten as

Imj?(l) ly fl.(k,o.) A(k, co) - [co2 - co2(1)(k)] ps(k, co)j9s(k, co)

" TT^^-Ê2,)" [co2-C02(1)(k)]2 + [fs(k,C0)]2
(59)

This expression is valid only in the neighbourhood of the excitation energies cop(i)(k).
In (5.9), the subscript s affecting any function /(k, co) means that this function is
screened by the polarization of the medium according to the definition

/s(k,co)=A(k,p)/(k,co). (5.10a)

If, furthermore, the functions .Ts(k,co), 0s(k,co) vary slowly with co for co close to
cop(i)(k), then they can be replaced by their values .Ts(k,p), 0s(k,p) at co cop(i>(k).

Then, for frequencies co close to the energies of excitation copo)(k), the absorption
spectrum is approximately described by the expression (5.9), whereas the shape function

(5.1a) is valid throughout the entire frequency range.
The expression (5.9) consists of two terms. The first one describes a Lorentzian line

/1\ 0s(k,co) Â(k,
- ImD^>(k,co)=\-\ .' • '-. (5.10b)

W(«2-EÊ0 [cü2~co2(1)(k)]2+[rs(k,co)]2

If the frequency dependence of rs(k,co) can be ignored, the line is symmetrically
broadened and peaked at the renormalized polariton energy coP(i)(k). Its spectral
width is of the order of .Ts(k,p) in energy units, provided the energy cop(i)(k) satisfies
one of the arguments of the S-functions appearing in the damping function ; this means
that cop(D (k) must satisfy at least one of the relations (5.6). If the frequency dependence
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of the damping function cannot be neglected, then the broadening of the line is
asymmetric and the maximum of absorption is reached for some energy close to cop(i>(k).
The smooth variation of the function co2Re7ji2(k,co) in the absorption region results
in a large screening of the damping function which is superimposed to the screening
by the fields of the outgoing modes. In the limit when the damping function vanishes,
which is the case when copo)(k) does not satisfy any of the conditions (5.6), then Equation

(5.10b) has a delta function distribution, i.e.,

ImZ/ex(k,co)
9s(k,to)

Etx
8(co2-co2(k)), iorrs(k,co)-+0. (5.11)

For frequencies, which are not solutions of the secular equation, but close to
cop(i)(k), the second term of (5.9) must be considered. This term, which vanishes
identically at the renormalized polariton energies cop(i)(k), contributes to the line
shape for to # copd)(k) and results in an asymmetric broadening of the absorption band,
provided that co satisfies at least one of the arguments of the 8-functions contained in
p(k, co) given by (5.3b). It is an anharmonic induced contribution to the exciton spectral
function, linear with respect to the components of ImPi;(k,co). The function p.(k,co)
describes the interference arising from the simultaneous presence of the three interacting
fields and it will cause some asymmetry to the absorption band in the neighbourhood
of frequencies cop(i)(k). It is also possible to produce side bands at the band edges of the
main line at cop(i)(k). To investigate this possibility, we consider the solutions of the
equation

d

dco2

r(k, co) - (co2 Re-îf(k, co) - c2 k2) p(k, co)j9(k, co)

(co2Rei)2(k,co) - c2 k2)2 + (r(k,co))2
0. (5.12a)

If vM(k) are^the solutions of Equations (5.12a), we assume that near these energies the
functions P(k,vp) /"and p(k,vIJ,)l9(k,vIJ,) M may be considered as constants, then
(5.12a) gives:

v2,Reîj2(k,vA-c2k2=-0- (1+ Vl + M2).
M

(5.12b)

The energies vM(k) correspond to the excitation spectrum of the side bands, and the
exciton spectral function at co v^(k) v^ is

-lmD%(k,Vp)=-
0(k,V)

'kA.

M2

T (l + VT+M2)
(5.12c)

The spectral widths of the side bands are of the order of (fjM2)(l + *Jl + M2). The
existence of such side bands depends entirely on the value of M. The present analysis
indicates that asymmetric broadening of the absorption bands does not depend only
on the to dependence of Re rj2 (k, co) and jT(k, co), but also on the strength of the function
p(k,co)l9(k,co).

Thus, the exciton shape function (5.1a) describes the absorption spectrum in the
presence of anharmonicity, when the propagating mode is scattered into two or three
outgoing particles. These scattering events lead to the decay of the renormalized



Vol. 45, 1972 Absorption and Light Scattering in Insulators 1027

polariton cop(i>(k) and are described by the damping function. .T(k,co) represents the
decay rate of lifetime of the renormalized polariton and is a function of the various
scattering probabilities.

The photon and phonon spectral functions can be discussed in a similar fashion.
Inspection of Equations (5.1) indicates that the first term is common for the three
fields and, therefore, describes the same excitation spectrum. Differences occur only
in the amplitudes of the corresponding spectral functions, because of the different
correlation functions : 9(k, co) jco2 — ÊkAfor the exciton, ck for the photon and cokçß(k, co) /
co2 — cok£ for the phonon. Quantitative differences arise when the second terms are
considered; the structure of the side bands is different for the three fields (5.1). This
is due to the fact that the damping functions p(k,co), y(k,co) and S(k,co) given by
(5.3b), (5.3c) and (5.3e) respectively, consist of different scattering contributions.
However, the behaviour of the photon and phonon spectral functions is similar to that
of Im Z>eX (k, co) and they shall not be discussed any further.

We consider now what happens when the first-order exciton-lattice interaction
H\L vanishes. This corresponds to the limiting case b) considered in Section III. In this
case the exciton and the photon fields are coupled, while the phonon field is independent.
The corresponding Green functions are given by the expressions (3.23a)-(3.23c). The
renormalized phonon energies are determined by the roots of Equations (3.24a), while
the expression for Im P33(k, co) describes various decay processes due to exciton-phonon
and photon-phonon interactions. The behaviour of the coupled exciton-photon fields
is described by the exciton and photon Green functions (2.33a) and (3.23b) respectively.
Taking the imaginary part of the expression (3.23a), we have

ImDe"x(k,co) -
0„(k,

'kAl

r„(k, co) - [co2 Re r,2u(k, co) - c2 k2] pu(k, co)j9u(k, co)

[co2Rerj2u(k,co)-C2k2]2+[fu(k,co)]2

where

9u(k, co) (Ew + Re P14) (co2 - c2 k2 - A2),

pu(k, cu) (co2 - c2 k2 - co2) Im(Pn + P14) - (Ê^ + Re P14) Im P22,

I^ImP^lr„(k.co)=-ImP22- -EkA

(co2 - c2 k2 - co2)

¦^yj¥^-siMPii+PiA,
Êhù

* -211t n
*> 4cävl/k€(kA)|2

Rev2(k,co) l-—---y — —-(E^ + ReP.A.
co2 co2 ^i (co2 - E2^

(5.13)

(5.14a)

(5.14b)

(5.14c)

(5.14d)

The polariton excitation spectrum is given by the roots copo) (k) of the secular equation

co2Re?72(k,co)-c2£2 0. (5.15)

In this case, the polariton and phonon fields are independent of one another and,
therefore, the truncated Hamiltonian (5.5) becomes

^(0) E(0) + 2 co;(0)(k) y£0)(k) y^(0)(k) + 2 ^(b^ + *).
kP kf

(5.16)
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This Hamiltonian can be used to calculate the two- and three-particle Green functions
contained in the expressions for Pu(k,co) in a similar fashion to that used previously.
The polariton operators yp(o)(k) and y^^k) consist of an admixture of exciton and
photon operators only.

Since the expression (5.13) can be derived from (5.1a) when the limit gkj(kA) ->¦ 0
is taken, both expressions describe similar excitation spectra. The difference is that
the function (5.1a) is more appropriate to describe the spectrum of polar crystals than
the expression (5.13). Therefore, the previous analysis for the dressed polariton
spectrum is applicable here for the bare polariton with the understanding of gk^(kA) ->¦ 0.
The poles of all matrix elements Pj^kco) in the representation of (5.16) are located
at the energies :

coio=±co"p.(0)(k')±co"p,(0)(k"),

"lb =±<-(0)(k')±cokr, (5.17)

Mlc =±«Vf ±cokT,
(corresponding to polariton-polariton, polariton-phonon and phonon-phonon decay
mechanisms respectively) for the first-order scattering, and four similar combinations
of three energies for the second-order scattering (three-particle decay processes). The
energy conservation conditions (5.17) indicate that the incoming polariton may decay
into two polaritons, one polariton and one phonon or two phonons respectively.

Let us consider now the case where the electromagnetic field suffers no dispersion,
i.e., |/kc(kA) | 0, while the exciton and the phonon fields are coupled and the
corresponding Green functions are given by (3.21). The spectral functions for the bare photon
and dressed exciton fields are found to be

t n»nr ï (*\ ^6(k,W)
- Im Dex(k, co) -tt/ W-E2-,

rb(k, co) - [1 - Re Ä(k, co)] pb(k, co)j9b(k, co)

[(1 - Re/T(k, to)]2 + [fb(k, co)]2
(5.18a)

-lmDl(k,co)=(^\ ^^-L1-*6^»^. (5.18b)
[l-Re/l(k,co)]2 + [r*(k,co)]2

V'n s
Ck\ Im^22

-ImD"(k,co)= — • (5.18c)
\tt) (co2-c2k2-co2p)2 + (lmP22)2

Use has been made of the notation :

9b(k, co)=ÊkX+ Re P14, (5.19a)

pb(k, co) lm(Plx + P14) - (Ê^ + Re P14) - f " - (5.19b)
(co2-co^)

ImPu
EkA' co

8b(k,co) 2EkXlTr2 -, (5.19c)
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r"(k co) 2É lmP") _ / ImP33\
_ y4cok^(kA)|2Im(Pn + P14)

^-co2) ico2-cô2J ^ (co2 -Ê& (co2 -côyf (5.19d)

and the expression for l-Reyl(k,co) is given by (5.4b). The expression (5.18a) represents
the coupled exciton and phonon fields and is appropriate to describe the excitation
spectrum of polar crystals, when the oscillator strength for the corresponding optical
transition is extremely small.

The photon shape function (5.18c) is a Lorentzian line centred around the photon
excitation energy (c2k2 + coffi coR(k) and having an energy width of the order of
Im P22. The damping function Im P22 describes various scattering events leading to
the decay of the incoming photon. On the other hand, both the exciton and phonon
spectral functions are made of the superposition of two terms. The first term describes
Lorentzian lines peaked at or near the dressed exciton energies cop(1)(k), which are
determined by the roots of the equation l-ReA(k, co) 0. The broadening of the main
line is governed by the dressed exciton damping function r*(k,co). The second term
vanishes identically at the dressed exciton energies cop(u(k), but causes an asymmetric
broadening for frequencies co different than copd)(k). In general, broadening of the
absorption spectrum occurs provided that the following energy conservation
conditions are obeyed

"ia=±"P\o)(k')±<(0)(k''),
co,b=±to»m(k')±coR(k"), (5.20)

colc ±coR(k') ± coR(k")

(corresponding to dressed exciton-exciton, dressed exciton-photon and photon-photon
scattering processes respectively). Similar relations hold for the three-particle scattering
processes. The conditions (5.20) are also valid for Im P22 and they indicate that the
incoming photon or the dressed exciton may decay into various combinations of photon
and dressed exciton modes. In the expression for Im P22, the condition coxb is associated
with the Raman scattering of photons by dressed excitons.

Finally, when the three fields are independent of each other, i.e., |gkf(kA)|2
|/ke(kA) |2 0, the spectral function for the photon field remains the same (5.18c), while
those of the exciton and phonon fields are decoupled and given by

i nFiir s. ll\ (4a + Re Pi*) 2£kA Im Plt + (co2 - gfr) Im(Pu + P14)
— Im Dex(k, co) — • ¦

W (co2-E^x)2 + (2EkXlmPll)2 (518a)

- Im DFL(k, co) 1^1 ^—^ (5.18b)
[tt J (co2-cô2A2 + (lmP33)2

In the infrared region of the spectrum, the absorption coefficient is proportional to
Im L\(k,co), which consists of Lorentzian lines located around the frequencies cok£.
In the visible region of frequencies, the spectrum is governed by Im Z)fx(k,co), which
consists of the superposition of Lorentzian lines peaked at or nearÊ^ and of asymmetric
broad bands, provided the appropriate energy conservation conditions are satisfied.
The latter are now made of all possible combinations of two and three bare exciton,
phonon and photon energies. The components of P0(k,co) may be calculated now by
means of the unperturbed Hamiltonian H° (2.2a).



1030 J.-A. Deverin and C. Mavroyannis H.P.A.

In considering the specific physical processes, where the exciton photon and
phonon fields are decoupled, we have made the assumption that the anharmonically
induced contributions given by the last term of Equations (3.18f) and (3.18g) respectively

are negligibly small. These terms may be of some importance in the absence of
first-order interactions between the fields. They consist of the non-diagonal matrix
elements of P0-(k,to), i.e.,

and

P12(k,co) ^«Sex(k);Sl(k)>>,

P13(k,co) ^j«Scx(k);5l(k)»

P23(k,co) (i-j«SJ!(k);Si(k)».

However, when the Green functions that appear in these expressions are evaluated,
say, through H°, the derived non-vanishing expressions are extremely small. Therefore,
they should be considered only whenever they make substantial contributions, which
may be the case when the first-order interactions vanish (from symmetry considerations)

in the presence of strong anharmonicity.

VI. Raman Scattering
As has been shown in the preceding section, the damping function jT(k,co), (5.4c),

describes the broadening of the absorption band arising from physical processes, where
the dressed polariton decays into two and three particles. Therefore, it represents the
decay rate of the particular mode and is a function of the various scattering probabilities
due to anharmonicity. Using the expression (5.4c) we rewrite the decay rate in the form

-T(k,co)=-
Ack Re S(k, co) I 2Eus \

ImP22(k,co)+ -—^— ImPn(k,co)
[l-ReA(k,co)]2\E^-co2J

4c£ReS(k,co) lm[Plx(k,co) + P14(k,co)]

+

[l-ReA(k,co)2] £kA

4c£Rea(k,co)Re/f(k,co) ImP33(k,co)

[l-ReA(k,co)]2 (cô^-co2)

where (k, co) refers to the incoming particle and use has been made of the notation :

l/kf(kA)r(ÊkA + ReP14)

(6.1)

Re ä(k, co) V -

Ae
(4Y

The expression (6.1) is a linear combination of the damping functions ImPjj., the
components of which represent the anharmonic parts of the three fields that interact
with the frequency mode in question. The coefficients of the linear combination in
(6.1) connecting the various scattering probabilities can be expressed in terms of
amplitudes ujp (k) and v[jp (k) of the canonical transformation, which diagonalize the
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Hamiltonian into the dressed polariton representation. The decay rate can be, therefore,
written in the form

f(kp)=-co-<11)(k)Af;I1)(kp) !<>) + •«« |2^ + \ufp(k) + vfpik) |2^r ck 'r COkf

+ lMy(k)-^(k)l2L %2 -ImPu-lMfflk)-^(k)l2- g "' ImP14
-kA £kA

where p is the branch index of the dressed polariton and the screening factor

,_!., /ico2Rei72(k,co;
A(i)(kp)

cu-«)p(1)(k)

represents the polarization of the medium. Considering that in the spectral function
(5.9), which is valid in the vicinity of the polariton energy, the damping function is
screened and, hence, the factor X,7,] (kp) that appears in (6.2) cancels out. In the last
term of (6.2), the small off-diagonal component ImP14 is multiplied by a small coefficient

so that its contribution can be considered as negligible.
A general expression for P(j(k, co) is given in the Appendix, calculated in the

harmonic approximation for dressed polaritons. In (A.8), the first sum represents the
decay into two outgoing modes and its imaginary part gives the first-order scattering
probabilities. The first term in (A.8) is multiplied by the factor (1 + np-(k') + np-(k")),
where np-(k') and np-(k") are the average values of the occupation numbers of the
outgoing particles and represents the Stokes component, whereas the anti-Stokes part is

multiplied by the difference between the occupation numbers. The latter is a thermal
effect which vanishes in the limit of zero temperature. The second and third sum in (A.8)
represent the decay into three outgoing modes and give the second-order scattering
amplitudes. The last term is a contribution to the second-order scattering, where two
of the outgoing polaritons having the same band index p and wave-vectors k, but
opposite energies cancel one another. It is a small static self-energy correction arising
from quartic anharmonicity and will be discarded. The second-order scattering
contribution can be divided into two parts, which behave differently as functions of
the temperature. The first one is multiplied by the factor

[1 + np-(k')][l + V(k") + np.(k'")] + V(k") np.(k")

and is the second order analogous of the Stokes component, which does not vanish
in the limit of zero temperature. The second contribution is made of three terms which
are multiplied by np-(k')[l + np-(k") + np-(km)] — np--(k") «p-(k"') and which clearly represent

thermal effects like the anti-Stokes component.
In the expression for ImPu(k,co), and hence in (6.2), the summations run all over

the wave-vectors of the outgoing modes and branch indices to give the total decay
rate of the incoming polariton. From this, we obtain the probability for the processes
where the incoming mode decays into two or three outgoing polaritons (k'p'), (k"p")
and (k^p"), which is proportional to the first- or second-order scattering cross section.

(a) First-order scattering

Using (A.8) and (6.2) together with the definitions of the components P(j(k,co)
and taking the expression for the u's and v's for the incoming polariton in the zero-order
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renormalized approximation, for the sake of consistency, we write then the probability
for the Stokes process where the polariton (kp) decays into (k'p') and (k"p") as

Wskp(k'P',k"p") cop(0)(k) A0Mkp)[ \ufp\k) + v%\k)\2 Rke(k'p', k"P")

+ \ufp\k)+vfp\k)\2Rki(k'p',k"P")

+ l«A>) - ^A>)l2'RkA(k'p',k"p")] x [1 + V(k')

+ np„(k")] 8k,_k%k8(com(k') - cop-m(k')- oy(0)(k")), (6.3)

where we have made the following definitions :

Rkc(k'p',k"p") | 2[uf?p,(k') v%,(k") + vfp,(k') uf),(k")] x [F_kc(k'X'XX")
a'a"

+ F*ke(k"X",k'X')] + 2 [u%(k') + v%(k')][ufp,(k")
e'C

+ t$.(k')][^(kV,-ke) + 9kT(ke,-k'e)] + 2 [U(^(k")
e'C

+ vfp.(k")][uf^(k') + vfp.(k')][9kT(k"e",-k,) + 9k,e(ke,-k"e")]\2

+ \ 2 [<P-(k') - v%(k')][ufp,(k") + vfp,(k")] 9k.e(k'X',-ke)

+ 2 [uf)p„(k") - v%,(k")][ufp,(k') + vfp,(k')] 6?k,f,(k"A",-k€)|2,

n (6.4a)

RH(k'p',k"P") | 2 [«(A°P'(k') vfp.{k") + uf)p,(k") v™,(k')] x [G_k,(k'X',k"X")
À A

+ G*k^(k"A",k'A')] + 2J^-(k') +vfp,(k')][ufp,(k")

+ vfpAk")][ch^(k'e',k"e") + 9ikf(k"e",k'e')]\2

+\2 K>') - vfp.(k')][ufp.(k") + vfp„(k")][dkT^(k'X')

+ d_kikT(k'X')] + interch. + 2 [<>') - v^(k')][u(^(k")

+ vf)p.(k")] cLkf (k'A', k"e") + interch. |2, (6.4b)

VP'> k>") 12 ufp,(k')[ufpAk") + vfp„(k")] GkT(kX,k'A') + interch.

+ 2 <°p.(k')[^'(k") + ^(k")][FkV,(kA,k'A' + FkV(k'A',kA)]
À'e"

+ interch. + 2[u™,(k') + vfp,(k')Jufp„(k")

+ vfp~(k")][dk,ekT(kX) + dkTkT(kX)] + 2 [ufp,(k')

+ vfp,(k')][u%(k") + v%.(k")] 9kT(kX,k"e") + interch. |2, (6.4c)

«P(k)=<y;(k)yp(k)>. (6.5)
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The coefficients of the canonical transformation are given by

ck'
,,"p,(k')+v™,(k')\ —| A0(k'p'),

V(o)(k)y
A,

\u^.(k')+v^,(k')
Xo(k'p')\* I cokT Y [Ack'a0(k'p')A0(k'p')]i
V(0)(k')j KT-co2,(0)(k')j [l-A(k'p')]

/o) (k, i i j Ao(ky)y/ Êk.x, y [4Cfe'a0(k'p')]* /cop-(0)(k')
+1V 2 '

-V(o)(k')/ \E2vX - -P'(o)(k')j [1 - 4,(k'p')] \ £ka-

rtM-i(Wl\% *** y^^l^l-iy (,6)A>'V 2\cop,(0)(k')/\£2,A,-co2(0)(k')j [1-A(k>')]\ Ëk-X

The dressed polariton scattering probability (6.3) is expressed in terms of the
functions (6.4a), (6.4b) and (6.4c), which represent contributions to the total
probability arising from the cubic anharmonic parts of the photon, phonon and exciton
fields respectively. Owing to the symmetry of the dressed polariton representation,
the amplitudes (6.3) and (6.4) are fully symmetric with respect to the interchange of
the outgoing modes. The interchange between the two modes has been considered
explicitly in amplitude (6.4a), while it is indicated by 'interch. ' in the expressions (6.4b)
and (6.4c) for the sake of convenience.

In the expression (6.3), Sk'_k«jk indicates the usual wave-vector conservation
condition, whereas the delta function 8(cop(0)(k) — cop-(0,(k') — cop»(0)(k")) expresses the
well-known energy conservation condition. The latter arises from the fact that the
two-particle Green functions have been calculated using the truncated dressed polariton
Hamiltonian (5.5), which physically indicates that the scattered modes are independent
of one another. This approximation is sufficient provided that there are no divergent
terms in the expression (6.3). If the scattered modes interact or interfere with each
other, then the approximation (6.3) is not adequate. In such a case, one has to use the
complete Hamiltonian for the evaluation of the Green functions that appear in the
expression for PfJ.(k,co). Such a procedure will result in replacing the delta function in
(6.3) by a shape function, which will describe the interaction between the scattered
modes. We shall limit ourselves here to the approximation (6.3). The total amplitude
Wkp(k' p',k"p") is temperature dependent through the occupation numbers and the
expressions for the m(0)'s and v(0)'s. In the expression (6.3) the bare anharmonic coupling
functions are screened by the field of the outgoing modes and, in the vicinity of the
excitation energy, by that of the incoming mode.

Upon introducing the phase velocity

*Wkf>) k_1 cop(0)(k), (6.7a)

and the relation between the energy transport velocity [16] %(0)(kp) and the screening
factor Aö1(kp)

/^co27?2(k,co)\ c2

X-Qi(kp) ^ !-\ (6.7b)
\ doj2 /co-«,,«»« vm(kP) vm(kp)
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the partial amplitudes in (6.4) can be rewritten and the factor

ck'Xn(k'p') ck"Xn(k"p") ^(0)(k'p>£(0)(k"p")
CO'P-(0)(k') «y(0)(k")

(6.7c)

can be brought in front of the amplitudes (6.4). Hence, Wk (k'p',k"p") is proportional
to the energy transport velocities of both outgoing dressed polaritons and to a combination

of anharmonic coupling constants, the coefficients of which are related to the
exciton strength parameters introduced by Mills and Burstein [4]. They can be called
generalized strength parameters, which include the exciton-phonon first-order
interaction. The proportionality between Wkp(k' p',k" p") and the energy transport velocities
is in agreement with the results of Mills and Burstein [4]. Their outgoing modes consist
of a bare phonon and a bare polariton and, therefore, only %(kp) for the polariton mode

appears in their results. It should be mentioned that far from the absorption region :

*V«»(kp) ^(0)(kp) cV(kp)
and, hence, the amplitude (6.3) is also in general agreement with Ovander's results [19]
for energies far from an absorption band and in the absence of spatial dispersion.

The total amplitude (6.3) is a well-behaved function of the incoming and outgoing
frequencies. There are two critical regions in the spectrum where its behaviour must
be examined more closely, namely when either the incoming energy or an outgoing
frequency approaches an excitonic level Ë^ or a phonon energy cökf. No divergence
appears in (6.3) in these two regions of the spectrum, contrary to the contentions of
Loudon [2] and Birman and Ganguly [3]. They correspond to the resonance conditions
of the Raman effect studied by many experimental [1] and theoretical [3], [4], [12] [14]
workers. It can be seen that all the 'resonating' terms are contained in the coefficients
(6.6) of the canonical transformation which have extremum values zero and unity.
We will examine therefore the behaviour of these coefficients.

We consider first the specific case when the energy coP(o>(k) of the dressed polariton
(kp) is in the vicinity of the excitonic level Ë^. The screening factor can be approximated

by

^) * J£|tt,4fL ^ + ^kA- «Wk)]2 "> 0 (6.8a)
c^kA2l/kf(kA)|2

where Akx=J,^2wkAgk^kX)\2l(co^(k) - cokA is the energy shift arising from the
exciton-lattice coupling H\L already mentioned in Section IV. Using the limit (6.8a)
and taking the proper limit in (6.6), we find that

<(k) + «$M I -> 0 and \v$> (k) | -> 0,

while

|«$(k)| -* 1 and \ufp\k) + vfp\k)\ -* [4cok^(kA)|2]*.
Thus, as cop(0) (k) -> Ey^ + A^, the photon content of the dressed polariton is decreasing
while the (kp) mode becomes increasingly exciton-like with a small phonon part. At
exact resonance conditions, the (kp) mode consists only of the (kA) exciton with a slight
phonon admixture, as if the photon field had been decoupled and will be called dressed
exciton. The energy shift is seen to be directly proportional to the exciton-phonon
coupling fnnction.
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Consider now the case when ay0)(k) is in the neighbourhood of the phonon energy
cok| Retaining the leading term again, the screening factor can be approximated by

K^+ Kf)2
A°(k/>) ^ ö,- * i, s [<v+ s*rœ^{k)]2 -+ (6-8b)

2c£cokfSkf<x0(kp)

where

Sk| -(cok|/cök|) 2 ÊJfk^kA) \2j(Ë2ù,- co2(0)(k))
A

is the temperature dependent shift arising in the low energy part of the spectrum from
HlL. Using (6.8b) and taking again the proper limit in (6.6), we find that

\u% (k) + if$ (k) | -> 0 and \ufp (k) + vfp (k) | -? (co^jco^) * 1,

while the exciton coefficients remain finite, though small. Then, for cop(o) (k) -> côk| + Skf,
the photon content of the dressed polariton (kp) is decreasing, while its phonon content
increases. At resonance, the (kp) mode is a dressed phonon made of the (k£) phonon
with a slight exciton admixture, but without photon contribution, like in the case of
the exciton resonance.

Hence no divergence occurs in either resonance conditions. It is easy now to see

how the scattering amplitudes behave in a case of outgoing or incoming mode resonance.

Let us suppose that the incoming energy cop(0) (k) is in the vicinity of the exciton
level Ë^. Then the scattering amplitude (6.3) is reduced to

Wkp(k'p',k"P") (^4 4J[1 + np,(k') + n^lR^fk'p'.k'p")
+ l4>) + vfp\k)\2Rk^k'p',k"p")] Sv^S^ + A^

-cop,m)(k')-copm(k")), (6.9)

which describes the probability for the process where a dressed exciton decays into
two dressed polaritons. The last term in (6.9) is the phonon scattering amplitude (6.4b),
which is proportional to the exciton-phonon coupling constant and is, therefore, very
small. If we further assume that at the same time there is a lattice resonance for one of
the outgoing modes, i.e. coP'(o)(k') -> cok-t- + 8k-ç-, then the total scattering amplitude
Wkp(k'p',k"p") is given again by (6.9), but the expressions for R^k'p',k"p") and
^kA(k'p'>k"p") become

ÄkA(k'p',k"p") =|2<^(k")Gk,f(kA,k"A") + 2ufp,(k') x [ufp,(k")
A" A'£"

+ vfp,(k")] Gkr(kX,k'X') + 2 ufp,(k')[ufp.(k") + vfp.(k")]
A'e"

x [P^(kA.k'A') + F*^(k'A',kA)] + 2 [uf/k") + vf)p.(k")]

x [dk,,,kT(kX) + dkTkT(kX)] + 2 [uf/k")
e"

+ v c(?^(k")] 9kt(kX, k"e") |2, (6.10a)
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RH(k'p',k"P")
I 2 [uf}(k') „©. (k") + uf?. (k") vf,(k')] x [G_kf (k'A',k"A")
'A'A"

+ G_.kç(k"X",k'A')]|2 + 12 [«Ay(k") - vfp-(k")] x [dk,^f(k"X")
A"

+ d^wi,(k"X")] + 2[u%,(k') - vfp,(k')] x [ufp,(k")
X'C

+ vfp,(k")][dkT^(k'X') + rf_kfkT(k'A')] + 2 [ufp.(k')
A t

- v$l,(k')][ufpAk') + vfp,(k")] Ö_kf(k'A',k"e")|2. (6.10b)

(6.10a) and (6.10b) describe the probability for the decay of a dressed exciton into the
dressed phonon (k'p') and the dressed polariton (k"p").

The scattering amplitude (6.9), describing the incoming mode exciton resonance,
consists of less terms than the full expression (6.3) which is valid far from resonance,
but it also contains different screening factors. The magnitude of the resonance scattering

probability (6.9) relative to (6.3) has to be computed for an actual crystal, in order
to determine if there is a resonance enhancement or not at the energy ËkX + A^ higher
than that of the free exciton. Similarly, when the outgoing (k'p') mode is in a lattice
resonance condition, the partial probabilities (6.10) are made of less terms than the
corresponding functions of (6.4), but, on the other hand, the screening factors
represented by uf) (k) and vfp (k) are quite different in magnitude. Therefore, quantitative
conclusions for the magnitude of the scattering probability (6.9) with and without
outgoing resonance can be derived only by computation for a real crystal.

The amplitudes (6.3) describe the first-order Stokes scattering process of dressed

polaritons. If the exciton-phonon coupling HleL is weak, the dressing of the polariton
by the phonon field is also weak, the energy shift dkA, and possibly SkA, is small and can
be neglected but not 8kç. Also, the function A0(kp) can be neglected in comparison to
unity in the denominators of (6.6) but not in the numerators. This corresponds to
neglecting most of the quantitative effects of H\L, while retaining the qualitative
consequence of dressing the polaritons. If we now consider that there is no exciton-
lattice coupling, i.e., taking in (6.6) the limit |gk^(kA) |2 0 or using the results of the
limiting case b), we obtain the (bare) polariton scattering probability

<;Vp',k"p") + w^k'p'.kT) + w$\kr,kr) co^wm
x {(1 + V(k') + V(k")][|*C(k) + ^"(k)|2R"k€(k'p',k"p") + \ufp»(k)

- vf"(k)\2 x R"kX(k'p',k"p")] S(aÄ(k) - co%Jk') - co%Ak"))

wk(;>(k'p',k"n + ws^(kT,kT) co(;('0)(k) AôMkp)

{(i + V(k') + V(k")][|*C(k) + ^«(k)|2 7?k€(k'p',k"p") +

- ^"(k)|2 x R"kX(k'p',k"p")] 8(co<$0)(k) - cof(0)(k') - «$0)(k
+ [1 + np,(k') + Nt(k")] x [|«W»(k) + v^"(k)\2R"k€(k'p',k"n

+ l<W - ^(k^-R^k'p'.kT)] x 8(co«(k) - o$0)(k')

- akT) +[1+ Ne(k') + Nt(k")]\ufp"(k) - vfp"(k)\2

x #k"A(k'f ,k"f) 3(co^(k) - cokt - cokT)}8k,_k%k,

')

(6.11)

where

Nê(k) (blibkiy(0

X0(kp)= lim A0(kp), (6.12)
lgk€(kA)|2-0

:^(0)
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and the partial scattering amplitudes are given by

P4(k'p',k-p") =|2[*C(k')^"„(k") + Äk")^>;(k')] x [F_ke(k'X',k"X")
'A'A"

|2
+ P*k€(k"A",k'A')] (6.13)

R^k'p',k"P") | 2 uf«(k')[u%»,(k") + vf«(k")] x [F+kV(kA,k'A')
A'e"

+ F*e„(k'A',kA)] + interch. f,

R^(k'p',kT) 12 [^P"(k') + vfpu(k')][9kr(k'e', -ke) + ^(kc, -kV)] |2

+1 2 [^(k') - ^(k')l ÖkT(k'A', -ke) |2, (6.14a)
A'

^(k'p'.kT) |2 «A°'P'(k') GkT(kA,k'A') + 2 [<-P"(k')
A' e'

+ ^(k')]0k„r(kA,k'A')|2, (6.14b)

2&(kr,kT) KW(kA) +^kTvf(kA)|2. (6.15)

The coefficients w^" (k) and 4P" (k) can be obtained from (6.6) after taking the limit
|gkf(kA)|2 0 and the bare polariton energy co*,"o)(k) is determined by the roots of the
secular equation (5.15).

The expression for the scattering amplitude (6.11) consists of three different terms.
The first term on the right-hand side of (6.11), which corresponds to Wkp (k'p',k"p"),
describes the decay into two polaritons. Such polariton-polariton scattering takes
place at the high energy region of the spectrum and arises from the HeeR anharmonic
part of the Hamiltonian. The last term in (6.11), which corresponds to Wsk(p\k'g',k"£"),
gives the probability for the decay of a polariton into phonons and arises from the
HeLL of the Hamiltonian (2.4a). The physical process in question takes place in the
infrared region of the spectrum.

In the optical region of frequencies, the second term in (6.11) is predominant and
describes the probability, Wkj? (k' p',k" g"), where the incoming polariton is scattered
into a polariton and a phonon. This process corresponds to the Raman effect studied
by Mills and Burstein [4]. The amplitude W^p\k'p',k"^") consists of contributions
arising from the exciton and photon scattering probabilities Rl\(k'p',k"£") and
i?ke(k'p',k"^") respectively, and is a function of the polariton and phonon occupation
numbers. Since the polariton energy is much larger than the thermal energy kB T for
normal temperatures, the polariton occupation number «p-(k') can be discarded. Thus,
the temperature dependence arises only from the phonon occupation number Nç~(k").
A weak temperature dependence may also arise through the expressions for the
coefficients u(fp)u (k) and vfj" (k) and the arguments of the delta function. The amplitude
Wkp\k'p',k"^") can be expressed as a function of the energy transport velocities of
both incoming and outgoing polaritons and of a two polariton-one phonon effective
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coupling constant, which originates from the HRRL, H2eRh and H2eL terms of the Hamiltonian.

The total amplitude, therefore, can be rewritten as

W™(k'p',k"£') <0)(k) A^(kp)[l + iV>(k")] vuE(kP) v"E(k'P')jc2

12 (0kr(k'e',-k6) + c£kr(ke,-kV))|2
e'

+ | 2 2a0(k'p')[Fk,A,/F2A, - cof^k')]* x 9kT(k'X', -ke |

*

A

+ 2a0(kp)[ËkXIË2kX - co^(k)] | 2 9vc(kA< k'e')

+ 2 4(k'p')[Ëk,x,jË2,x, - co^(k')]i[£k'A'
A

+ coW0)(k')]/£k,A,GkT(kA,k'A')|2l x 8(co%}(k) - copl}0)(k')

>VC>°k'-V,k: (6.16)

where the effective coupling constant is defined by the expressions in the square
brackets. The expression (6.16) can be compared with the matrix element Mxx of
Mills and Burstein, which is in turn proportional to the Raman tensor introduced by
Loudon [2]. Allowing for differences in notation, a connection can be established with
the results of Reference [4] if we retain in (6.16) only the H2eL interaction term with the
corresponding coupling constant Gk-^(kX, k' A') and discard all the remaining anharmonic

interactions. Then, their Jfn(<liX,,qsXs;Xp) corresponds to

KP,(q,) I • l<p>) I • l^/qA-qA) I2-

Hence, Ji,-, represents only one contribution of the polariton-phonon scattering
amplitude (6.16). In the latter, the effective coupling function can be further simplified
by assuming that cross products of different anharmonic coupling constants can be
neglected. Hence, (6.16) becomes

/s(«)/i
Wk(up>(k'p',k'T) o$»(k) XA(kP)[l + N(.(k")] vE(kP) vE(k'p')jc2

12 (<AkT(kV, -ke) + 9kT(ke, -k'e')) |2

+
E x \*ßk'A'2 2a„(k'p')

A \Ek-X--cop,,0)(k
-) x ökT(k'A',-ke

+ 2a0(kp) ¦
'kA

[^kA- Jk(0) (k)]
2ökT(kA,k'e')

+ 2a0(kp) — -kA

[E^-co^k)]
2 «u(k>')

Ek-x-

Ellr-Cof^k''k'A'

Ek-X'+<Uk'))
Ek-X'

GkT(kX,k'X') |2J S(co$,(k) - co$0)(k')

k'C) °k--k"-k • (6.17)
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The first term in the expression (6.17) arises from the anharmonic Hamiltonian HRRL,
which describes photon-photon scattering through the emission of a phonon. This
term is present even in the absence of dispersion since it is caused by the anharmonic
part of the electromagnetic field. The second and third terms in (6.17) originate from
HeRL and describe exciton-photon scattering processes with the emission of a phonon
and vanish in the absence of dispersion. The fourth term comes from the anharmonic
Hamiltonian H2eL and represents the process, where an exciton is scattered into another
exciton and a phonon. Retaining only the largest terms having small energy denominators

in

/1 \
^kA

<*o(kp)
[4V"P?o)(k)]

for both incoming and outgoing modes and ignoring the energy mode transport velocities,

we recover the perturbation theoretical results of Loudon [2] and Birman and
Ganguly [3], which are valid approximately far from resonance regions.

Resonance conditions can be met in the excitonic part of the spectrum only by both
oncoming and outgoing polaritons. If the incoming energy cop(0) (k) is in the vicinity of
the E^ exciton level, the probability (6.16) reduces to

/s(«)W^>(k'p', k'T) £^[1 + Nt(k")] v"E(k'p')jc 2 0kr(kA>kV)

ii+ 2 "o(k>')
Ek-x- \* [W >Vk')]

&X-<»?mmj Ek,x,

x Gkr(kA,k'A')|2] x 8(ËkX-co;,(0)(k') - côkT) 8kr_k,M,

(6.18a)

indicating that the bare (kA) exciton mode decays into the (k"|") phonon and the
(k'p') polariton. On the other hand, if the outgoing mode has an energy cop<(0)(k')
close to the excitonic (k'A') level, the expression (6.16) becomes

Wk(;\k'X',k"Ç'') =c^0)(k)[l +iV^(k")]^(kp)/C[|c?kT(k'A',-ke)|2

+ 2a0(kp) EkXu2 |Gkr(kA,k'A')|2]s(co;(0)(k)
L^kA-^p^k)] J

-Ek-x--ükT)8k,^tk, (6.18b)

and describes the decay of (kp) mode into the (k'A') exciton and the (k"£") phonon.
The relative importance of the expression (6.18) and (6.16) or (6.17) can be found

only by their computation for real crystals. The existence of resonance enhancement
in the scattering amplitude is difficult to ascertain analytically, since some contributions
to Wkp\k'p',k"£") vanish in the resonance regime, whereas the screening coefficients
ufp" (k) and vfj"(k) reach extremum values.

The specific case, where the three fields are independent of one another, is described
by the Green functions (3.25). The photon life time is given by the function ImP22(kco),
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from which we derive the following scattering amplitudes.

Wske(k'X',k"t") + W^k'e'.kT) 2c*[l + iVA,(k') + ^(k")]|ökr(k'A',-ke)|2
x Sk'-k",kS(co - Ëk,x,-œkr) + 2ck[l + AV(k')

+ Nt(k")] \9kT(k'e', -ke) + 9kr(ke, -k'e') |2

x âk._k^k8(co - (c2k'2 + co2)* - wkT), (6.19)

where both the exciton A7A(k) {aj^ai^o) and the photon N(k) (AkeAkeyto)
occupation numbers can be neglected. The first term in (6.19) gives the probability for
the process where an exciton and a phonon are created through the absorption of a

photon. The HeRL part of the Hamiltonian is responsible for the process in question,
which does not contribute to the first-order Raman effect. The second term in (6.19)
is the probability of direct Raman effect, where the incoming photon is scattered into
a photon and a phonon. Hence, the HRRL part of the Hamiltonian is the only anharmonic

interaction (for our model), which contributes to the Stokes component of
first-order Raman scattering, in the absence of dispersion. Furthermore, no resonance
occurs in the frequency dependence of the scattering amplitude.

b) Second-order scattering

We will now briefly examine the second-order Raman effect retaining only the
Stokes component. The scattering amplitude is given by

Wskp(k'p', k'p", k'V) co ^(k) A«1 (kp)[\ufp(k) + v%\k) 12R ke (k'p', k"p", k'"p'")
(0),+ K>) + ^(k)|2i^(ky,ky,kV) + K»

-^W^fky, k"p", k'"p'")] x[l + v(k')+v(k")
+ np.(k") + np,(k') np„(k") + np„(k") np.(k")

+ V(k") np,(k')] 8k,_k~_k.M x 8(wm(k) - oy(0)(k')

-cop,(0)(r)-cop.(0)(k")), (6.20)

where the partial probabilities are defined as

pk€(k'p',k"p",kV) „(0)2 [u\%-(k') - v^p,(k')] ¦ [u^p„(k") + v^p„(k")] x ry#.(k-
A'A'a"

i'cc
+ 4°;.(k-)HcVm.(k'A',ke) + ÖkTkT(k'A',ke)]

ÄkA(k'P',k"p",kV) i
+ interch. (6.21a)

2 [(«Ay(k')) -[«^(k'") + vfpAk")] x [ufp,(k")
A'A"A"

ecc
+ vfp.(k")]DkTkT(kX, k'A') + interch.] + 2 [[u%(k')

ccc
+ vfp,(k')] x [ufp,,(k'')+vfp,,(k'')]-[ufp,(k'")

+ v^!p,(k'")] 9_kT_Jk.t (kX.k'e') + interch. (6.21b)
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RH(k'p',k"p"Xp")=\ 2 [«$,(k') -<>,(k')].[«™ (k") + „^(k-)]x [„w.(k")
A'A"A*
e e e

I'l-f
(0) jum-+ vpp.(km)] ök.m(k'A',k"e") + interch.

+ * 2 [uf,(k')vf,(k») + u%,(k")v%AX)]¦ [«f,?
A'A"A-

i'CC

vf)p.(k"7] D_k.^f(k'X',k"X") + interch. (6.21c)

In the dressed polariton representation, the second-order scattering amplitude
(6.20) is fully symmetric with respect to the permutation of the indices of the outgoing
modes. Like the first-order probability, (6.20) is a linear combination of partial
probabilities, the coefficients of which are the ul^(k)'s and vfp, (k)'s of the canonical
transformation. These partial probabilities (6.21) are also polariton-like combinations of the
coupling functions arising from the quartic anharmonicity H3. Inspection of the
expression (6.20) indicates that the resonant behaviour of Wkp(k'p',k"p",k'"p") is
similar to that of the first-order probability and we will not discuss it any further. We
only emphasize that in the dressed polariton representation there are two resonance
regions, namely in the excitonic part of the spectrum and in the phonon region, where
the energy shifts must be taken into account.

If we assume that the exciton-lattice coupling vanishes, then the amplitude (6.20)
is reduced to

Wsk™(k'p',k"Z",kmt2"' :ai<;(u)((k)Â71(kp)[|^"(k)+^«(k)|2Pj:e(k'p',k''f',k"n

+ \ufpu(k)-vTpu(k)\2R^(k'p',k''?',k'T)Il+Ne(V')

+ Nr(k") + Nt(k") A>(k'')] x S(co$,(k) - o$0)(k')

- cokT - cok,ç.) 8k-_k-_k-;k, (6.22)

with the definitions :

Rl(k'P',k"i",kT 4|2K$(k') „(°)«.-n'P'(k')Pk»m-(k'A',ke)

+ 0k.rkr(k'A',ke)]|2, (6.23)

^(k'p'.k-f.k-r) =i| 2 u^,(k')[Dk,tvt(kX,k'X') + ZVm.(kA,k'A')]
A'

+ 2 [utyfrk, + vfpu(k')][9^,r_kT(kX,k'e')
e'

+ 0_kT_kT(kA,k'A')]|2

In (6.22), the polariton occupation number np(k) has been discarded. It can be
seen from Wsk(p\k'p ,k"|",k'"£'") that our quartic anharmonicity leads, in the bare
polariton representation, to the scattering of the incoming polariton into another
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polariton and two phonons. Furthermore, the bare photon scattering amplitude
obtained from Rk€(k! p ,k" £",k'" g") shows that the photon is scattered into the (k'A')
exciton and two phonons, and that H3, for our model Hamiltonian, does not contain

mechanisms leading to the direct second-order Raman effect in the absence of
dispersion.

In deriving the expressions for the scattering amplitudes, the nature of the
phonons involved has not been specified and, therefore, the results can be used to
describe physical processes of either Raman scattering by optical phonons or Brillouin
scattering by acoustic phonons. A restriction arises from our model Hamiltonian, which
is valid for small wave-vectors only and, hence, second-order effects involving phonons
of large but opposite wave-vectors cannot be properly represented by the derived
amplitudes. The above derivation of the scattering probabilities does not proceed
through perturbation theory and, therefore, the derived results are applicable to the
description of the Raman effect under resonance conditions, provided the behaviour of
the system and the proper nature of the modes are fully recognized. Numerical calculations

of the derived results for real crystals will be necessary for the quantitative
comparison with observed data.

VII. Conclusion

The excitation spectrum arising from the interaction of three fields, photon,
exciton and phonon in polar crystals has been studied in successive approximations.
When anharmonicity is neglected, the spectrum consists of dressed by the phonon
field polariton modes, which migrate through the crystal. The exciton-phonon
interaction, which is responsible for the dressing of the polariton modes, shifts the dispersion
energies that appear in the expression of the dielectric function and produces dispersion
in the low energy-phonon part of the spectrum. When anharmonic interactions are
taken into account, the absorption bands are found to consist of the superposition of
two terms. The first term describes the main Lorentzian line peaked at the renormalized
polariton energies, which can be asymmetrically broadened if the energy dependence
of the damping function is taken into consideration. The second term describes an
asymmetric band, which governs the absorption at frequencies far from the renormalized

polariton energies and is responsible for the structure of the side bands. The
broadening of the main line comes only from the damping function and it is asymmetric
only if the anharmonic interactions are strong enough to make its energy dependence
substantial in the narrow frequency range of the order of the line width. On the other
hand, the second term contributes over the entire frequency spectrum, except at the
renormalized polariton excitation energies, and describes interference effects arising
from anharmonic polariton-polariton interactions ; it results always in the asymmetric
broadening of the main line. The exciton-phonon interaction brings in additional
contributions to the damping function and to the interfering term in the expression
for the spectral function.

The Stokes components of the first- and second-order Raman scattering amplitudes
have been derived in the bare and dressed polariton representation respectively as
well as those corresponding to the independent fields. Lattice and excitonic resonance
regimes have been considered for both outgoing and incoming modes. In the dressed
polariton representation, the resonance energies are shifted with respect to the exciton
energy E^ and phonon frequency côkf respectively. When the exciton-phonon
interaction vanishes, these energy shifts disappear and the expression for the polariton
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scattering probability includes terms that resonate only in the excitonic region of
frequencies. The resonating terms have been shown to be the coefficients of the canonical
transformation, which diagonalize the first-order Hamiltonian and, therefore, they
take the extreme values of zero and unity. Thus resonance does not bring divergence
in the scattering amplitudes, but instead a rearrangement of the various terms occurs
arising from the fact that electromagnetic content of the polariton mode is reduced
to zero. The existence of a resonant enhancement in the expression for the scattering
probability cannot be ascertained analytically. The frequency dependence of the
Raman amplitude, as well as the excitation spectrum and the line-shape of the absorption

bands, have to be computed numerically for an actual crystal.

Appendix

To calculate the two-particle Green functions appearing in the expression for
Pj^k.co) in the polariton representation, we introduce the row vector operator

gl(ki,k2) (ypi(k1)y;2(k2) Ypi(ki)yp2(k2) y^i) y;2(k2) y^kjyjjk,)). (A.l)

Using this operator and its hermitian conjugate, we define the two-particle Green
function G2(k',k",co) ((g2(k',k");gl(kx,k2)yy, the equation of motion which is
given by

coG(k'k",co) i- ([g2(k',k"),gt(kx,k2)]_yt„, + «[g2(k'k"),Ä0pol]_;g2(k1k2)»,
2n

(A.2)

where the polariton Hamiltonian 77^°' is given by (5.5). From (A.2) we obtain the
matrix elements of G2(k',k",co) :

t t /l\ [n0-(k')-n0-(k")]
<<yPV) y/T) ; yPl(kx) y;2(k2)» -y m+; ' V,iV,A-kM2.

(A.3a)

«»to»«.*» - (è) • JXP"-if>*"** ' <A'3b)

<<W-;vU>>=-(i).^^w,.v (A-)

t t / 1 \ (nn- — nn")
«yP-vh yPiri2» - H • ,——\ W** ' <A-3d>

\2ttJ CO — (COp- — COp")

«yW/, Yp,YP2» - H • (1+,V+V\ (Sk',kA",k2 + V,kA-.ki. (A-3e)
\irj co + (ay + cop-)

t t.s (l\ Ci+np'+n.)
«YP'Y/, Yp\Yp>» - • ^—T (K',k8vM>+8Vk28vM,)- (A-3f)

\7r/ co - (cop-+ cop~)
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All the two-particle Green functions appearing in the expression for P(J(k,co) consist
of a linear combination of (A.3). The average value of the polariton occupation number
is denoted by

<y;.(k') yp„(k")> np,(k') 8py8wx np.8k.y.

In our notation, 8k-y implies also Sp<p- and the k-dependence of the polariton energy
cop cop(k) has been suppressed, for sake of convenience. The poles of the functions
(A.3) are located at the energies co ±cop-(k') ± cop»(k").

Similarly, for the three-particle Green functions, we introduce the row operator

gl(kx,k2,k3) (ytx(kt)y;2(k2)y;3(k3) ypi(kx)y;2(k2)y;3(k3)

yp>l) yP2(k2) y;3(k3) yt/k,) y/2(k2) yp3(k3) ypi(kx) yft(k2) y^k,)
yPl(ki) y/2(k2) yp3(k3) ypt(kx) yp2(k2) yft(k3) ypi(kx) yR2(k2) yft(k3)).

(A.4)
From this operator, together with its hermitian conjugate vector operator g3(k',k" ,k'"),
we define a three-particle Green function G3(k'k"k"',co), whose equation of motion is
similar to (A.2). Using the following notation

<yP>i) yPf2(k2) yp3(k3) ypt(k4)y npi(kx)np2(k2)(8kiM38k2Mi+ 8kiMi8k2M),

dfk'k'.k^) Sk,kiSk.jk2 + 8k,k8k,ki, (A.5)

^(k'k-k'-.k^k,) Sk, kiSk.jk2Sk.k3 + §k,ki8k,,k38k.jk2 +...A terms,

we can write the twenty non-zero matrix elements of G3 (k' k" k'", co) :

G»(k'k'k-, co) ((yp.yp„yp.; y/^»
1^ [(1+V)(1+V + V)+VV] J(k,k„k„;kik2k3)

2àTT œ — (oy+oy+ œp»)

Gf(k'k"k",co) ((Y}yWP-;yPlyP2yP3yy

(l\ (1 + np-) (1 + np- + np.) + np- + np

\2tt
1 \ I

1277/ CO

co+ (cop'+ cop"+cop-)

G22(k'k"k'",co)= —

(A.6a)

A(k'k"k"',k1k2k3)
(A.6b)

{[n ,(1+ n + np.)

Gf(k'k"k",co)= —

top- + cop—|- cop-)

- VV^k',k^(k"k".k2k3) + VSk',k"[(l + npi) KmA-M.
+ (1 + »pj KmM^ + VSk',k-[(l + np) 8kuk28k,,k3

P3) K.M^w-^
1

+ (l+«„JS„.t_81,»1J} (A.6c)

1

2tt {[«„-(l+V + V)
CO - (—cop- + COp" + cop-)

- VVl Vk^k'k'.k^) + np,8k,x[np8kiM8k.k3

+ (1 + np2) 8k2M38k,ki] + VSk',k-[«Pl8kl,k2Sk",k3

+ (1 + ^2)Sk2,k3Sk",k1]} (A.6d)



Vol. 45, 1972 Absorption and Light Scattering in Insulators 1045

Gf(k'k"k",co) | —

G|2(k'k"k",co)

CO — (—COp-+ COp"+ COp

{[np-(l + nP- + np-)

- VV^ SWMA(k'k-, k, k2) + np,8k,M„[np38kuk8k,M2

+ npAz,kA-kJ + np-8k-,v\-npA„k38vM2 + wpA2,k38k",kl]}
(A.6e)

co- (cop - + cop-)
{[nP--(l + np-+ np-)

- VV] 8k.,kJ(k'k",k2k3) + (1 + np) 8k,x[(l + npi)8kuk28k,k3

+ (1 + »J KmMkJ + VSk--,k-[(l + V) Skl,k2V,k3

+ (^+npA8kiM38k.M2]} (AM)

Gf(k'k"k"',co)= ^
1

2^7
COp, + COp,

{[nAl + np. + n,

- np-np7] Sk,,k2J(k'k"',k1k3) + (1 + V) Sk,;k„[(l + np)8^8^
+ npA„k28v,^ + VSk-,k-[(l + «P2)Sk2,k3Sk,iki + «pi8ki>k28k,k3]}

(A.6g)

Gf(k'k"k"',co)
¦ COp- + COp-)

{[« .(1 + n - + n

- np-np,] 8k.;k3d(k'k",k1k2) + (1 + np.) Vk'^WkMc,
+ wP2Sk2,k3Sk-,k3] + VSk",k'[wp3Ski,k38k-ik2 + wp2Sk2;k38k.ki]}

(A.6h)

Gf(k'k"k",co)
277 CO- (cOpi+COp«-COp.

{[«P"(l +WP'+WP")

— n„in,P p cvkid(k'k",k2k3)+(i + v) sk',k»[(i+V skl,kA",k3

+ (1 + «J Skl,k3Sk",k2] + (1 + np„) V,k-[(1 + npi) 8kuk28k,k3

+ (1+w/>3)Sk1,kA',k2]} (A-6i)

G"(k'k"k",co)= —
1

2~77
co — (cop-+cop—cop-)

{[n .(1 + n -+ n A

- np,np„ ] 8k.k2d(k'k*,k1k3) +(1 + V) WVk.kA'.k,
+ (1 + *P2) 8k2,k8v,^ + (1 + «„•) Sk",k-[vSkl,k2V,k3

+ (1+V)Sk2,kA',k1] (A.6k)
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{[np-(l+n -+n
o - (cop.-f ay- cop.) J

- W ] ^-^(k'k-.^k,) +(1 + y)8k,ik.[«p3Skik3Sk.;k2

+ wP2Sk2,k3Sk",kl] + + V) Sk",k-[«P3Sk1,k38k',k2+ wPA2,k3Sk",kl]}

(A.61)

The other matrix elements G3 (k'k"k", co) are obtained from the above expressions
in the following way : a) permutation of the indices ij according to the scheme 1 «-> 8,
2 «-> 7, 3 <-> 6 and A <-> 5; b) the sign of the functions (A.6) is reversed as well as the
sign of the linear combination cop in the denominator ; c) in the second and third terms
of the numerator, «p,Sk(,kj. <-> (1 + nPl) 8k.<kj for i, j 1,2,3 and i, j ', ", '".

By combining linearly the G'j (k'k"k'",co), we get all the three-particle Green
functions contained in PjJ(k,co). In doing such a combination, one must keep in mind
that

G„(k...,co) G„(k...,-co) (A.7)

in the complex co-plane for both two- and three-particle Green functions. The poles of
the functions (A.6) are located at the energies ±ay + ay ± cop-.

Using the functions (A.3) and (A.6), the matrix elements P(j(k, oj) of the scattering
operator (3.9), which are linear combinations of two- and three-particles Green
functions, can be written in the general form :

2( (1 + nD-+ nA
^TTTTZTZ. w[(<V+<V) ^(k>',k"p") + cork0!(k'p',k"p")]

k'k" Ik'k"
P'P"

(C0p,+ COp.)'

(np— np

("V

x3k>_k.,k+ 2
k'k"k'
P'p'P"

[(co. - cop.) Jtf(k'p',k"p") + coft!(k'p',k"p")]

1 + n ¦ + n + n-+ n ¦ np- + ynp- + n-n
^o-Aco.n+co .)2

[(cop, + oy + aip.) rka(k'p',k''p",k>") + a,rka(k'p',k''p",kV)]

+ [y(i + y + y)-yy]
o2 - (-cUp-4- ay+ cop-)2

[(-cop, + cop. + cop-)rU(k'p', k"p", k"p")

+ corS(k'p',k>",kV)] +
[n .(1 + np-+n-)-np-np p

(ay-ay + ay)2

X [(ay- cop» + cOp.)r2(k'p',k"p",kV) + coP'Tk2(k'p',k"p",k'"p'")]

[np-(l+np. + npA-np.np.] T3 „+ —2—; — l(cop-+ <Op— co-) rka(k p,k p ,k p
*» - (cy + cop» -cop.y
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+ cor£(k'p',k"p",kV)] W±k-,k+ 2
k'k'k-
P'p"P"

[(co2-co2)

x [cop,R^(k'p',k"p") + coRki(k'p',k"p")] +

p

1

x [ayi^ky^V) + co*£(ky,kV)] +

(o2-o2.)

1

~P""ka\" r >— r I ' ~"ka\" r >~ r i-i '

n 1 \H (co2 - coi-)
p

x [cop.RTk3(k'p',k"p") + coR^Çk'p',kV)]j8k,±k„±k.k. (A.8)

In (A.8) the index a stands for the polarization indices e, A and £ of the incoming mode
The first term in (A.8), which is summed over the two outgoing polaritons, represents
first-order scattering process, the Stokes component is proportional to (1 + np- + np-),
whereas that of the anti-Stokes is proportional to (nP-—np-). In the second term, the
summation runs over the three outgoing modes and corresponds to the second-order
scattering process. The last term results from the last two terms in the numerator of
the three-particle Green functions (A.6) and represents scattering events, where two
of the outgoing modes have the same band index p and wave-vector k and cancel
each other.

Making use of the relation (A.7), it is found that in the expressions for P22(k,co)
and P33(k,co), all coefficients /"and R vanish, whereas they are non-zero but can be,
nevertheless, neglected for P11(k,a>) and P14(k,co). All the coefficients in (A.8) are
easily expressed in terms of the anharmonic coupling constants and the u's and v's
for the outgoing modes. The algebra involved is rather tedious and the final expressions
are so lengthy that they will not be given here.
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