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On the Spectral Properties of
Some One-Particle Schrödinger Hamiltonians

by Lawrence E. Thomas

Forschungsinstitut für Mathematik, ETH, Zürich

(6. VII. 72)

A bstract. We consider a class of relatively compact perturbations {V} of H0 =p\+ p\ + p\
acting in momentum space, L2(u3,d2p). Resolvent matrix elements [rp(\jHo + V — z)<f>] are shown
to be meromorphic in a neighborhood of the positive real axis, tf> belonging to a dense set. Absolute
continuity of the continuous spectrum follows.

1. Introduction

In this article we discuss spectral properties of some one-particle Schrödinger
Hamiltonians. We consider a class of perturbations {V} oi H0=p\+p2,+ p\ acting in
momentum space, L2(U3,d3p), for which the following spectral properties of
H H0 + V are shown ;

i) the absolutely continuous part of the spectrum of H and the spectrum of H0
coincide,

ii) the eigenvalues of H are isolated from one another except perhaps at the origin,
where they may accumulate,

iii) H has no singular continuous part.

Each of these spectral properties is probably desirable in a mathematically
rigorous scattering theory. This is particularly true in the time-dependent perturbation
scheme, in which one wishes to establish the existence and completeness of wave
operators (defined in some canonical way), effecting a unitary transformation between
H0 and the absolutely continuous part of H [1]. Property i) is in fact a necessary condition

for the existence of such operators. Properties ii) and iii) bear on the boundary value
behavior of resolvent matrix elements and hence on the analytic properties of the
S-matrix itself.

The perturbations considered are relatively compact, from which it follows that the
essential spectra of H0 and H coincide. Of course, there exist compact perturbations of
H0 transforming the continuous spectrum of H0 into a discrete spectrum for H. There
also exist second-order ordinary differential operators with singular continuous
spectrum [2]. But by imposing additional analytic conditions on V we can rule out these

pathologies and attain the above spectral properties.
We prove the above spectral properties for the class of perturbations {V} by

exhibiting a dense set of vectors 3 for which the resolvent matrix elements [ip(ljH — z)<p]

<p, ip e 777) are meromorphic in zasz crosses the positive real axis (the essential spectrum
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of H minus the origin) and travels into the second sheet. Aguilar and Combes [3] have
given a proof that meromorphy of the resolvent matrix elements from a dense set
implies the spectral properties. We do not repeat that argument but only show the
meromorphy.

The method described here accommodates perturbations which are not necessarily
short range [4], repulsive [5], spherically symmetric [6], or dilatation analytic [3]. In
addition, the method is applicable to a wider class of problems, for example the
description of spectral properties of multiparticle Hamiltonians and the discussion of
positive bound states and resonances. These applications will be reported elsewhere.

Section 2 introduces the important notion of bounded contour distortion and
discusses the resolvent meromorphy for a restricted class of perturbations (which
includes some short-range potentials). Section 3 extends the results on meromorphy
to perturbations (including some long-range potentials) which are limiting cases of
perturbations in Section 2. Section 4 summarizes basic applications of the theory.

2. Second Sheet Continuation of Resolvent Matrix Elements

We wül be working throughout in three-dimensional momentum space U3, and
three-dimensional complex space C3. Let Jf L2(U3,d3p) and let 3> {<pe 3? \<p is
entire in C3}. & is dense in JT. We set H0=p2 =p\+p\+ p\ andH H0 + F where V
is the convolution by a function v(p) with properties described below. A point in C3

(as well as in R3 c C3) will be designated by p. The complex valued function
Pl +P\+p\ on C3 is simply written p2. We denote \p\\ + p\\ + \p\\ defined on C3

by \p\2.
The convolution function v(p) is assumed in this section to have the following

properties :

i v(p) is an analytic function on an open set v of C3 containing
ii) for any p e y there exists a real M(p) > 0 such that

v(p - k)v*(p - k)d3 k < co.

R3 n i%\\k\>M'p))

Example 1. v(p) cos ap/p2 + m2, a a real number. For a 0, V is just the Yukawa
potential. For et # 0, v(p) satisfies the above conditions but is not dilatation analytic.

Example 2. v(p) sinp2jp2 + m2. This function is cited as an example which
satisfies conditions i), but not ii). Hence it will not satisfy the hypotheses of the
theorem below.

Let U he a simply connected open set of the complex plane C.

Definition 1 : Bounded contour distortion. Let a(z, r):U x U3 -> C3 be a continuous
function, and let 2(z) be the range of cr for fixed z. 2(z) is a bounded contour distortion
if for fixed z

i) a maps R3 to ^(z) homeomorphically, ]£(z) is piecewise smooth, and the (complex
valued) Jacobian dajdr d(p)jd(r) is bounded and bounded away from zero almost
everywhere,

ii) there is an M(z) > 0 such that if \r\ > M(z), a(z,r) r.
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Theorem 1. Let 2(z) be a bounded contour distortion defined in an open set Us
intersecting the quadrant C++ {z\rez > 0, im2 > 0} such that

i) for some open set N <= £7S 0. C++, 2(z) K3, z e N ;

ii) for z fixed in Us, p2 — z ^ 0 for each f> e 2(z) and for each q e 2(z)> V(P ~~ *s

analytic in f> for p in a C3 neighborhood containing 2(z)-

Then the resolvent matrix elements [xpiljH — z)cp] cp, ip e 3) may be meromorphically
continued throughout Us.

We begin the proof of this theorem by defining a family of (separable) Hilbert
spaces Jfz, z e Us. Vet jfz he the space of square integrable functions defined on 2(z)>
with inner product

der
— d3r
dr

(9, «AU / r(PH(P)\d3P\ / 9*(o(z,r))9(o(z,r))
ZW R3

Jfz is just Jf for z in N <= VSC\ C++.
In each Jfz we define the integral operator Kz(8) : Jfz -> Jfz, depending on the

complex variable S, as

r v(i — q)
(Kz(8)cP)(p)= J 2_zl89(q)d3q.

ZW

(The reader should note that no absolute value signs appear around the differential form
d3q (dajdr)d3r. It is in general complex valued). It is clear that for z in the neighborhood

N and |S| sufficiently small, Kz(8) is just V(ljH0 -z-8).
Lemma 1. For sufficiently small -n(z) > 0, Kz(8) is compact analytic, \8\ < v(z).

Proof: Choose n(z) \ min \q2 — z\. Then q2 — z — 8^0, q e 2(z)> an(i Kz(8) is
Hilbert-Schmidt since

\ v(p-q)

ZWxZW'
k2-

\d3pd3q\<oo

by the definition of 2(z)> assumptions ii) of the theorem and i) on v. K clearly depends
analytically on S.

We next introduce a linear mapping A%z : Jfz -> Jfw, z, w e Us. Vet che a smooth
curve running fromz to w in Us. Let 2>(ACWZ) ={9e Jfz\3 a C3 neighborhood W containing

(J 2W and <p is analytic in W}. Then we define Acwz9 9\^wy Hence Acwz is
xec

analytic continuation of cp from 2(z) t0 2(w)- Note that Acwz_1 Aczw and that this
inverse is defined on the range of A%z. If x is a point on the curve c, we have Azw ACZXACXW,

for elements cpe3(A^w).
Let zhea point in Us and let 9Z be the connected part of {z' e Î7S| |^' — z\ < r)(z)},

rj(z) the same as in Lemma 1.

Lemma 2. For z + 8e9z and any path c from z to z + 8 lying in dz, Kz(8)cp

Alz+sKz+s(0)Az+Stl9,9e®(Acz+s,z).
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Proof: We have

f v(p - q)
(X,(8)0ta„= 2

\?(q)d3q.
J q2 — z — 8

ZW

By condition ii) of the theorem, we may choose a complex zx e c, zx — z ^ 0 such that
v(p — q)cp(q) is nonsingular for p, q ranging independently over a C3 neighborhood
containing (J 2(x), where I, is the interval on c from z to zx. [v(f — q)jq2 — z — 8]9(q)d3 q

is an analytic closed differential form in q on this neighborhood. Using the complex
form of Stokes' theorem [7], we may replace the integration path 2(z) 0I the above
integral by 2(2i) to get

(Kz(8)9)\x(z)= j P^~ 9(A)d3q <z,KZl(8 -zl+ z)AZi,z(9\xiz)).

Z(*i)

(Note that because 2(x) is a bounded contour distortion, 2(2i) — 2(z) is compact.
2(^i) — 2(z) may be regarded as the boundary of a four-dimensional region in the
domain of analyticity of the differential form. This allows application of Stokes'
theorem.) We next choose z2e c such that v(f> — q)cp(q) is nonsingular, p, q ranging
independently over a neighborhood of 1J 2(x), 12 the portion of c from zx to z2. It follows

xelv
in a similar manner that

(KZl(8 -zx+ z)cp) |ZUi) AZi,Z2KZ2(8 -z2 + z)A<Z2iZ(9yzl)).

Combining this equation with the previous one, we get

(KZ(8)<P) Ijjc AlZiKZ2(8 -z2 + z)AZ2,z(9\UzJ.

By repeated application of this process, a finite set zx,z2,. .,zk can be obtained such that
zk z + 8, and

Kz(8)9 Az,z+5Kz+o(0)Acz+s.z9.

Only a finite number of z/s are required since otherwise one could conclude the existence
of a point zsec such that v(p — q) would be singular for p, q ranging over 2(zs)-

Lemma 3. Let <p e 3) and let ip be a solution to the integral equation

W + Kz(8)9 9yz), z + 8e9z.

Then ip e @(ACZ+S,z) and d)\z,z+0) Acz+SiZip satisfies

•Alxu+a) + ^z+aWMzcz+a)) 9\-£.u+h>,

where c is any path in 9z from ztoz + 8.

Proof: The proof of this lemma closely resembles that of Lemma 2. Condition ii)
of the theorem and the entirety of cp e 3) imply the existence of a zx e c, zx — z ^ 0, such
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that

f v(p-q)
#*)=- J q2_z_8'l>®d3q + 9'(P)

ZW

is analytic in a C3 neighborhood of (J 2(x)> A the interval of c from z to zx. Using

Lemma 2 we may then write

'l'kiz., AZl,zKz(8)ip + <p\T,Zt)

K*.(8 -zx+ z)(ipT,z0) + 9\T(Ziy

We next choose az2ec such that tp(J>) is analytic in a neighborhood of IJ 2(x)> ^2 the
xel2

interval of c from zx to z2. Again by repeated application of this process we can obtain
a finite set zt, z2, zk, zk z + 8 and

«Akte+S) + Kz+oWMlxu+S,) <rHïU+8)-

Only a finite number of z/s are required since otherwise there would heazssc such that
ip(p) would be singular on ^(zs), and yet nonsingular on 2(zs — p) • zs — P e c, p ^ 0. But
this is impossible since ip has the representation

f V(P — 9)
+&>— J 2_z_^\*z,-P,(q)d3q + 9(p)

2C^-P)

which for |p| sufficiently small surely is analytic in a C3 neighborhood of 2(zs)- Since ip
is analytic in a neighborhood of 2(x) for any x e 9Z, the analytic continuation of ip to
'Alscz+S) is Path independent.

We are now able to prove Theorem 1. We show that the meromorphic continuation
of [ip(ljH — z)cp] cp, ip e 3) throughout Us is given by

-*(*)= / fcA*b*>)^)ir— ^ + KM)-^(9\^)(p)d3p.
zw P z

("A* ls(z) is the analytic continuation of ip* from R3 to 2(z)-) First note that if
z 6 N <= U, fi C++, the integral expression on the right-hand side is

Jt(z)= f p>p)-J—(i + V—L-) ^(^^(l/iï-^Lr,
i.e., Jt(z) is the resolvent matrix element for z in TV. It remains only to check the
meromorphy of Jt(z') ,z' e9z,ze Us. By Lemma 3 the integrand of Jt(z') may be analytically
continued from 2(z') to 2(z)- Applying Stokes' theorem as in Lemma 2, we obtain

**(*') / (r\nz-,)(P)zT-^(l + KA0))-l9\^(zl)(p)d3p
z<o * ~*

/ (0*lrc.))(AT^-7(^(l+A,.(O))-^|ï(,,))(Ai3#
» p — z

ZW r
J («A'tc^TT^1 +*«(*' -z))-l9~kaP)d3P-

ZW
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But from Lemma 1, Kz(z' — z) is compact and analytic in z'. Hence the latter expression
is meromorphic in 9Z [8]. This completes the proof.

Example 3. v(p) cosapjp2 + m2, et a real number. We discuss the meromorphy
domains of the resolvent in two cases by constructing bounded contour distortions. In
both cases z starts from a neighborhood TV c C++, crosses over the positive real axis
and travels into the second sheet.

Case 1. The matrix elements of the resolvent [ip(ljH — z)cp] cp,ipe@ will be
meromorphic in the second sheet for im t/z > —\m, z # 0. In the complex plane C, let
Sz(t) 0 < t < oo be a simple smooth curve depending continuously on z which originates
at the origin, avoids the points ±y/z, and lies in the strip |im*| < \m. In addition, let
the locus of Sz(t) be the positive real axis for all but a finite part of the curve, and for a
neighborhood TV c C++, let the locus be the entire positive real axis, z e TV. Sz(f) is
parameterized in such a way that Sz(f) =tioxt sufficiently large. Then the mapping
cr(z,r) for 2(z) is given by a(z,r) Sz(r)(f/r). One can verify that 2(z) satisfies the conditions

of Theorem 1. In particular, for p,q e 2(z), p2 -z ^ 0, and v(p — q) is analytic
for p in a neighborhood of 2(z)> e 2(z)-

Case 2. The matrix elements of the resolvent [ip(ljH — z)9] <p,ipeÇ& will be
meromorphic in the second sheet region argz > —7r/2. Let x(z) he a point in C depending
continuously on z which lies on the positive real axis for z in a neighborhood TV <= C++,
and otherwise lies on the vertical line Rex Re s/z, —Re\/z<imx(z) < im tfz. Let
Sz(t) 0 < t < oo be the piecewise smooth curve with the locus of points consisting of the
three straight line segments, [0,x(z)], [x(z),2Rey/z], [2Re<\/z,+co] in C. Again assume
Sz(f) =tiort sufficiently large. (Note that Sz(f) is so constructed that for any two points
xx,x2eSz(f), \re(xx —x2)\> \im(xx—x2)\.) Then the mapping a(z,r) for 2(z) is
a(z,r) =Sz(r)(fjr). Again one can verify that 2(z) satisfies the conditions of Theorem 1.

3. Continuation of Resolvent Matrix Elements for Long-Range Potentials

The results in the previous section concerning the meromorphy of resolvent matrix
elements may be extended to a larger class of perturbations. This class consists of potentials

which are limits, in a sense defined below, of potentials considered in Theorem 1.

The class includes certain long-range potentials.
Let Vn, n — 1, 2,... be a sequence of potentials with corresponding convolution

functions vn(p) and assume the v„ satisfy the conditions given in Section 2. Let F be a
potential with convolution function v(ft).

Theorem 2. Suppose

i) there is a bounded contour distortion 2(2), independent of n, defined throughout
an open neighborhood Us satisfying the conditions of Theorem 1 for each vn(p) ;

ii) the Vn converge to V in the sense that the integral operators Knz:jfz^-Jfz,
RT : Jf, —> Jf-,

(K„(8)<f>)(P)= \VfP q[9(q)d3q,
J q2-z-8rzw
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y(P - q)

q2-z-8'
C v(p - q)

(Kz(8)9)(p)= J 2_z_s9(q)d3q
ZW

satisfy

limKttz(0)-+KZ(0)
n—xx,

in norm, uniformly in z.

Then [np(ljHr. + V — z)cp] cp, ip e Ql can be meromorphically continued throughout Us.

Proof: Again let 9Z be the connected neighborhood of z defined above Lemma 2 in
Section 2. Kz(0) is compact since it is the limit in norm of compact operators. Kz(8) is
compact analytic in 8, z + 8 e 9z since it can be written as the composition of a bounded
analytic (multiplication) operator and a compact operator,

fv(p-q) 1

KZ(8)9(P)= ;\ '
,ACq)d3q.J (q2-z) [l-(8lq2-z)]

ZW

Note that Knz(8) converges uniformly to Kz(8), z + 8 e 9. Now set

•*(*) f **h*>(Â7T— fl + ^(°))_1 HP)d3p, cp,**®-
J p — z

ZW

For z in TV, Jt(z) is just equal to [ip(ljH — z)<h]. Jt(z') is meromorphic about the point
z,z' e 9Z because

Jt(z') lim f 0*| (^—L-^l +Knz(0))-i9\m,,(p)d3p
ZW) r

lim f ip*\I(I)(^)—1^(1 + Knz(z' - z))-i 9\liZ)(P)d3P
ZW r

j rkaUTTZz-A1 + K*(z' -*))~l 9~\nz,(P)d3P.

zw

The latter expression is meromorphic in z' since Kz(z' — z) is compact analytic. This
proves the theorem.

cos ctp cos etp
Example A.v vn a a nonnegative real number. In configu-

p2 p2 + (1/w)

ration space, Va(r) is

0 r<ct
Vet(r)

2tt2
r> a

r
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Case 2 of example 3 in the previous section provides a contour distortion 2(z) m the
region R2 {z e C \argz > —(77/2)} for which all v„ satisfy the conditions of Theorem 1.

(Note that in Case 2, the contour distortion did not depend on m.) To establish the
meromorphy of the matrix elements [ip(ljH0 + V — z)cp] <p,ip e <3 in R2, one must show the
uniform convergence Knz ->- Kz for z in any compact neighborhood B cz R2. We show

only the boundedness of Kz in B, by writing Kz as the sum of two operators,
KZ K1+K2,

C cosct(p-q) 1

Kz9(P)= ^ J' 2
9(q)d3q

J (p-q)2 q2-z

cos a(p — q) 1

(P-q)2 q2-z
ZW

/ (P-q) 2 „2
-<p(q)d3q

ZW (\{q\\p-q\<M)

Ç cos et(p-q) 1

+ —77 V2—~2 9(q)d3q,
J (P-q)2 q2-z

ZW n{q\\p-q\&Af}

where M is an arbitrary positive constant. The first term is bounded since the integration

has kernel satisfying the Holmgren criteria for boundedness of the operation.
(Namely, if

Tip J K(x,y)iP(y)dp(y), sx sup J \K(x,y) \dp(y), s2 sup J \K(x,y) \dp(x),
x y

then \T\ < (s1s2)1/2 [9].) The second operation is bounded since it is Hilbert-Schmidt.
The uniform convergence Knz -* Kz may be similarly demonstrated by breaking up
the path of integration for the operator (Kz — K„z) into the two parts again and showing
the uniform convergence of the K\ — K^z and K2 — K2Z separately.

4. Concluding Remarks

In this section we make some remarks concerning conditions for V in configuration
space in order that the convolution function v for V in momentum space permit
applications of Theorem 1 or 2, for z in a neighborhood of the positive real axis. If V is
multiplication by an L2-function of compact support, then V is convolution by an entire
function in momentum space. Theorem 1 may be applied in this case to show that the
resolvent matrix elements of Qs are meromorphic on an (infinitely sheeted, in general)
Riemann surface {z\ — 00 < arg2 < 00,2 ^ 0}. If F is multiplication by an L2-function w
suchthat J wemir,d3r < 00 for some m > 0, F will be convolution by a function « analytic
in the region im |^| < m. Theorem 1 will give meromorphy of the resolvent matrix
elements in the region {z e C| lim \fz\ < mj2, z =£ 0}. This latter result is that of Dolph,
McLeod and Thoe [4]. Theorem 2 and the example following it show resolvent
meromorphy in a neighborhood of the positive real axis for Va multiplication by

0 r<
w..

r > a
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in configuration space. One can show as well resolvent meromorphy in a neighborhood
of the positive real axis for V Vx + V2 where Vx is multiplication by a function

w1eL2(U3), J* w1emlr>d3r< oo,

and V2 is multiplication by
iv

w2(r) 2 o-iW^r-rl),
i-i

at real, wai defined above. Considerably more general conditions on F in configuration
space can be given, so that the convolution function v has appropriate analytic properties

in momentum space for application of Theorem 2. The proof of the sufficiency of
these conditions, however, requires a rather detailed examination of the Fourier transform

of the potential and so we do not describe the conditions here.
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