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Helvetica Physica Acta
Vol. 47, 1974. Birkhäuser Verlag Basel

The Maximal Kinematical Invariance Groups of Schrödinger
Equations with Arbitrary Potentials

by U. Niederer
Institut für Theoretische Physik der Universität Zürich, 8001 Zürich, Switzerland1)

(21. XII. 73)

Abstract. The general potential-independent form of the maximal kinematical invariance
groups of Schrödinger equations is determined. The problem of finding the invariance group for a
given potential is reduced to solving a single equation containing the potential and the invariance
transformations. For some of the most interesting potentials the invariance groups are given
explicitly.

1. Introduction and Results

This paper is devoted to an analysis of the maximal kinematical invariance groups
(MKI's) of »-dimensional Schrödinger equations with arbitrary potentials. The
MKI [1] of the equation

iS, + —9*~V(t,x)
2m

p(t,x)=0 (k l,...,n) (1.1)

is the group of all coordinate transformations

g: (t,x)^g(t,x) (1.2)

with the property that there exist companion functions fjt.x) such that the map

g: p^Tgp, (Tgp)(t,x)=fg[g-1(t,x)]p[jg-%x)] (1.3)

sends any solution p of equation (1.1) into another solution, Tgp, oi the same equation.
The MKI has already been determined for the free particle [1], the harmonic

oscillator [2], and the free fall, i.e. the particle in a constant homogeneous field of force
[3]. It was shown that the MKI of all three systems is the Schrödinger group, Sch(»),
in three different realizations; this group can be described as the «-dimensional Galilei
group with the time-translations replaced by the three-parameter group SL(2, R)
of projective time-transformations (see (3.1) below). The purpose of the present paper
is to extend these results in two ways, namely, to gain potential-independent information
on the general form of the invariance groups, and to give more examples of non-trivial
invariance groups.

*) Work supported by the Swiss National Foundation.
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In Section 2 the determination of the MKI of equation (1.1) is carried as far as it is
possible without specific knowledge of the potential; the following theorem is proved:

Theorem: The MKI of equation (1.1) is given by the coordinate transformations

Ir 1 Rx + y(t)\
«*•>-/*?»-4ir <1'4)

and the companion functions

; Id \ d 11
(1.5)fjt,x)=d<"2exp\-- -x2 + 2Rx-A1-i\ + -12-y-y + l(t)

where the scalars d, I and the vector y are (real) functions of t, and Re0(n) are constant
rotations. All these quantities and the constant of integration in (1.4) have to be
determined from the condition

V[jg(t,x)] -d2V(t,x) -ddx2 + mRx-(ddj-d2f) +-(ddj2-d2f-y + d2'l).

(1.6)

Comparing the different orders in x of equation (1.6) for a given potential we obtain
several conditions for the unknown quantities and the coordinate transformations
(1.4) can then be fully determined. In Section 3 this program is carried out for some of the
most interesting potentials.

The theorem may also be used to find the maximal number iV(») of dimensions
any MKI can have. Since the functions d(t) and j(t) axe determined by second-order
differential equations, they contain at most 2 and 2» free parameters, respectively;
together with the constant of integration and the rotations we find

N(n) 3 + 2« + i»(» - 1) \(n + 1)(» + 2) + 2. (1.7)

The Schrödinger group Sch(») is an example of an MKI for which this maximal number
is actually attained.

2. Proof of the Theorem

The equation which determines the MKI is given by

id't+-^dkk-v(t',x')
2m [fJt,x)P{t,x)]=0, (2.1)

where (t',x') sg(t,x), and p is any solution of the original Schrödinger equation (1.1).
In this section equation (2.1) is solved as far as possible for an unspecified potential.
The technique used is similar to that in the appendix of [1].

Defining the derivatives

d2(t, x) dtjdt', cJt, x) dtjdx't,

bjt, x) dxjd,', d,Jt, x) dxtjdx'k, (2.2)
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we convert equation (2.1) into an equation with the differential operators d„ dk and,
using the fact that p is an arbitrary solution of (1.1), we obtain the following set of
equations by comparing the different orders of space-derivatives of p :

c, 0,

dirdkr d28,k,

2d2 dtf, + (drk drd,k + 2imbt)fg 0,

(2.3)

(2.4)

(2.5)

d2 ditfg + (drk dr dik + 2imb,) d,fg + 2itnd2fg + 2m[d2 V(t, x) - V(t', x')]fg 0. (2.6)

The derivatives (2.2) are easily inverted to

df\dt d-2, dfldx,=0,

dx'Jdt -dr3 Rik bk, dx\jdxk d~l Rlk,

where (2.4) is used to write dik as a rotation,

dtk dRjk1 dRkt.

The integrability conditions for (2.7) imply

d d(t), Rtk Rlk(t), dtbk dd8ik-d2RlkRtt.

With these relations equations (2.5) and (2.6) now read

bt bt bt dt bt
d, ln fa — im—, d. In L im 1 H V(t,x)--V(t',x')

a

(2.7)

(2.8)

(2.9)

(2.10)
d2 ' 2d4 2d2

The integrability conditions for the first of these equations are

d,bk dkb„ (2.11)

hence, together with (2.9), we obtain

R,k const., dtbk dd8tk. (2.12)

The last equation in (2.7) is now integrated to

x'^-^flx + yW], (2.13)

where we have replaced the vector b(t) by the more convenient vector y(t) by putting

b dd(x + R-1 y) - d2 R-1 y. (2.14)

The companion function fg is calculated from (2.10) with the result

fg(t,x)=d"2exp
im
~2~

d Id \ d
-x2 + 2Äx-l-y-y +-y2-yy+ *(*) (2.15)
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and the unknown quantities d(t), j(t), R, l(t) have to satisfy the condition

m m
V(t', x') - d2 V(t,x) —ddx2 + mRx-(ddy -d2j)+ — [ddy2 - d2f-y + d2l),

(2.16)

which follows from (2.10) and (2.15).

3. Examples of Invariance Groups

Equation (1.6) trivially admits time-translations for any static potential, rotations
for any spherically symmetric potential, and translations y vt + a for any potential
which is constant along the direction of y. There are, however, more interesting cases,
and a look at (1.6) tells us that, among the static potentials, the widest possibilities
are offered by the potentials belonging to one of the following classes :

1) V(x) Ax2 + B-X + C. In this case the difference on the left-hand side of (1.6)

may be balanced by the quadratic right-hand side.
2) V(x) is homogeneous of degree (—2). The difference then vanishes for y 0, R 1.

3) V(x) AikXiXk. For d=l,R l, the difference is linear as is now the right-hand
side.

Belowwe give the coordinate transformations (t',x') g(t,x) of the MKI forsome of these
potentials.

Potentials admitting the full Schrödinger group

The free particle, the free fall, and the harmonic oscillator have already been
treated in [3]. The coordinate transformations of the corresponding invariance groups
are given as follows :

V 0:

t'
xt + ß

yt + 8'

V —mg-x:

yt + 8
(Rx + Yt + »). (3.1)

od + ß 1 / l(a* + ß)2
t' -, x' -\Rx + vt + a + -K .7 e-it2Rg

yt + 8' yt + 8

V =%mw2x2:

2 yt + 8
(3.2)

1 a tan cat + ß
t' — arctan

eo y tan tot + 8

1 +tan2 cot
X

(x tan wt + ß)2 + (y tan cot + 8)2
(Rx + y sin cot + a cos cot). (3.3)
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In all three cases the MKI is the »-dimensional Schrödinger group Sch(») which is
defined by the group elements

g=(S,&,v,R); S=r P\eSL(2,n); a.,veUn; Re0(n), (3.4)

and the multiplication law g3 g2gx :

S3=S2SX, a.3 8x*2 + ßxv2 + R2&x,

R3 R2 Rx, v3 yx a2 + xx v2 + R2\x. (3.5)

The group Sch(«) can be considered as the »-dimensional Galilei group with the time-
translations replaced by the projective transformations of SL(2, U) (which include the
time-translations as a subgroup).

That Sch(») is the MKI for the free fall and the harmonic oscillator is surprising
because the fixed origin and the fixed vector g, in (3.2), would ordinarily seem to exclude
translations and rotations. It was shown in [3] that the two realizations (3.2) and (3.3)
of Sch(») and the corresponding Schrödinger equations can be obtained from the free
particle case by appropriate coordinate transformations.

The inverse square potential

A short calculation leads to the tollowing result :

r.A,-.
x2

xt + ß 1
t' C, x' -Rx. (3.6)

yt+8 yt + 8

Thus the MKI is the direct product of SL(2, U) with 0(n).

The anisotropic harmonic oscillator

Assuming that all frequencies are different and non-vanishing we obtain

B

V \m 2 bo2x2:

i-i
/' t, x,' =Xt + vt sin cu, t + a, cos w, t, (3.7)

where wf ^ wk # 0(i ^ k). The MKI is the 2»-dimensional Abelian group R2".

The time-dependent Kepler problem

Finally, to give an example for a time-dependent potential, we consider the Kepler
problem with a time-dependent gravitational 'constant' :

V -K1-:
tr

t 1
t' x' Rx. (3.8)

1 + yt 1+yt
v
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1
V -K t1/2r

1 1
t' j2t, x'=g^x. (3.9)

For comparison we note that the MKI of the true (static) Kepler problem is given by

1

V -k-:r
t' t + ß, x' Rx. (3.10)

Thus in all three cases the MKI is the direct product of the one-dimensional Abelian
group U with 0(n) ; only its realizations are different. It is interesting to note that the
three time-transformations are three different one-parameter subgroups of SL(2, R)
which, taken together, generate the full SL(2, U) ; in other words, SL(2, U) can be
decomposed into the three groups (3.8), (3.9), (3.10) of time-transformations.

In a recent paper [4] it was shown that, for space-dimension one, the only static
potentials with non-trivial MKI are sums of powers (x + cv)v with v —2,0,1,2. The list
at the beginning of this section might suggest that the same situation holds for arbitrary
dimensions. To show that this is not the case, we give the following, somewhat
pathological, counter-example for » ^ 2 :

V(x) /z_2[e*ln<*+l'>2-'(x + b)], (3.11)

where H_2[x] is a homogeneous function of degree (—2), J is a generator of 0(n), i.e. a
real antisymmetric matrix, and b is an arbitraryvector. Apart from the time-translations
the potential (3.11) admits the one-parameter group

t' T2t- *' -[Ä(s)x+Ä(s)b-8b]. (3.12)
o o

where 8 es and R(s) esj.
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