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Strong Asymptotic Completeness of Wave Operators for
Highly Singular Potentials

by W. O. Amrein and V. Georgescu1)

Department of Theoretical Physics, University of Geneva, Geneva, Switzerland

(27. V. 74)

A bstract. We prove the existence and strong asymptotic completeness of the wave operators
for rotation invariant Schrödinger Hamiltonians with highly singular (repulsive or attractive)
potentials.

I. Introduction

This paper is a complement to our recent investigation [1] of the relation between
two different definitions of bound states and scattering states for quantum-mechanical
N-particle systems. One of these definitions is in terms of spectral subspaces determined
by the Hamiltonian of the system : bound states are identified with linear combinations
of eigenvectors, and scattering states with vectors belonging to the subspace of
continuity of H. The second and physically more transparent definition defines bound
states as states in which all particles stay close together at all times and scattering
states as states in which the particles separate into at least two clusters moving away
from each other as t -> +oo. For precise mathematical definitions and additional
motivation the reader is referred to [1].

It was shown in [1] that for practically all Hamiltonians of physical interest the
two definitions are equivalent, and it was pointed out at the end of Section III that
this result was not necessarily to be expected for Schrödinger Hamiltonians with
locally highly singular attractive potentials. In order to find out whether the two
definitions might still be equivalent for such potentials, we investigated the rather
simple case of a single particle moving under the influence of a spherically symmetric
such potential, e.g. V(r) xr~ß with a < 0, ß > 1. If ß > 2, H P2 + V defined on
D(H) C%(R3/{0}) is not essentially selfadjoint. We stated in [1] without proof that
the two definitions of bound states and scattering states were equivalent also for such

potentials if H was any spherically symmetric selfadjoint extension of H. In the
present paper we shall give a proof of this result.

The proof is based on Proposition 3 of [1], i.e. one has to verify the existence and
asymptotic completeness of the wave operators Q± slim exp (iHt) exp (—iH0t) as

*) Partially supported by the Swiss National Science Foundation.
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t -*¦ ±00. (An alternative proof is given in the Appendix, cf. Lemma 4.) Asymptotic
completeness here means that the range of Q± is the entire absolutely continuous
subspace of H and that H has no singularly continuous spectrum. Since H and H0 are
both invariant under the rotation group, it suffices to establish existence and asymptotic

completeness of the restriction of Q± to each partial wave subspace AClm. AClm is

isomorphic to L2(U+), and the restriction of H to A7lm is unitarily equivalent to the
ordinary differential operator —d2/dr2 + V(r) + 1(1 + 1) r~2 in L2(R+) characterized by
a boundary condition at the origin ([2], Chapter 11.1.1). Our proof is based on an
investigation of the spectral properties of this differential operator. We should also
mention here that the first part of the asymptotic completeness property (i.e.
Q+Q+347 j^7aJH)) has recently also been proved by a different method for a similar
class of potentials by Pearson [3].

Although highly singular attractive potentials are not much used by physicists
since H is not bounded below, they give rise to some delicate mathematical problems.
We think that from the mathematical point of view it would be interesting to find
methods applicable also to non-spherically symmetric potentials. We expect that in
Various cases, and also for certain spherically symmetric potentials which are rapidly
oscillating near r 0, some of the conclusions of the present paper will fail to hold. In
particular it can be seen from our proofs that asymptotic completeness will not hold
if the spectrum of some selfadjoint extension of the symmetric operator —d2jdr2 + V(r)
in .L2(0,1) contains an absolutely continuous part (in that case the absolutely
continuous spectrum of the S-wave Hamiltonian contains either a negative part or a part
having spectral multiplicity two and hence cannot be unitarily equivalent to the free
S-wave Hamiltonian which contains no such parts. For an example cf. Pearson [4]).

We conclude this introduction with the statement of our theorems, the proofs of
which will then be indicated in Sections II and III. The first three deal with spectral
properties of the Hamiltonian, the last one with scattering theory (cf. also Theorem 5
in the Appendix). Definitions can be found in Section II.

Theorem 1: Let U: (0, oo) -> R belong to LA ([a, oo)) for each a > 0. Vet H be one
of the selfadjoint operators defined by the differential expressions 1= —d2/dr2 + U(r) in
L2(0, oo),{£(A)} its spectral family. Then

a) The restriction of H to E((0, oo)) L2(0, oo) has an absolutely continuous spectrum
(in particular the positive singular spectrum if H is void).

b) The negative absolutely continuous spectrum of H coincides with the negative
absolutely continuous spectrum of any one of the selfadjoint extensions of
-d2jdr2+ U(r) in L2 (0,1).

Remarks: i) We use the definitions of Kato ([5], Chapter X.1.2) for the various
parts of the spectrum of a selfadjoint operator.

ii) In the proof of Theorem 1 we shall give even more specific information about
the absolutely continuous spectrum of H and its multiplicity.

iii) Suppose U is such that the wave operators Q+ slimexp (iHt) exp (—iH0i0t)
as t -> ±oo exist (H00 is the selfadjoint extension of —d2jdr2 defined by/(0) 0). This
is the case, for instance, if r2\U(r)\2 e L1(R,oo) for some R < oo, cf. Kupsch and
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Sandhas [6]. In general these wave operators will not be asymptotically complete, and
the ranges of Q+ may be strictly smaller than the absolutely continuous subspace
AfM(H). In such a situation the states which belong to Af^JH) and which are orthogonal
to the range of Q+ will be absorbed at the origin as t -> +oo ; more precisely: if/is such

a state, then for every R > 0

lim \\(I-FR)exp(-iHt)f\\2 0

and similarly for Q_ and t ->- —oo. (FR is the orthogonal projection onto the subspace
of states localized in (0, R), ci. [1].) It is interesting to remark that the vectors in the
absolutely continuous subspace of the negative part of H are bound states in the sense
of the definition of [1] (cf. the addendum for an indication of the proof). This aspect of
the completeness problem will be developed in more detail by Pearson [7]. Our aim
here is different in that we shall add a condition on the behaviour of U near r 0
which will guarantee that there is no absorption at the origin.

Theorem 2: Let LT: (0, oo) ->- IR belong to IA(Ja, oo)) for each a > 0. Suppose that
the essential spectrum of one of the selfadjoint operators H° defined by the differential
expression -d2/dr2 + U(r) in L2(0,1) is empty. Let H be as in Theorem 1. Then

a) The spectrum of H is simple.
b) The essential spectrum of H is [0, oo).

c) H has no singularly continuous spectrum.
d) H has no positive eigenvalues.
e) The restriction of H to £((0, oo)) £2(0, oo) is unitarily equivalent to the operator

of multiplication by the independent variable in L2(0, oo).

Theorem 3: Let U and H he as in Theorem 1. In order for H to have the properties
a)-e) of Theorem 2 it is sufficient that one of the following conditions be verified :

1) U =UX + U2 where Ux is an increasing and continuous function of r in (0,1) and

UneL\0,l).
2) U=UX+U2 where

(a) Ux e C2(0,1], UJr)<M <oo for all r e (0,1]

and

jdr(M- UJr))-1'2
0

1
U"Jr) +5_ \U'Jr)\2[dr

I (M-UJr))3'2 4 (M - UJr))5'2

i
(ß) jdr(M-UJr)A'2\U2(r)\<x>.

< oo.

3) limU-(r) oo.
r-K»
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4) liminfr2î/(r) >-1/4.
r->0

5) lim [U(r) + (2r) ~2 + (2r log r) ~2] oo.
r-*0

Theorem 4: Let / be a non-negative integer, suppose V:(0, oo) ->- U belongs to
L1([a, oo)) for each a > 0 and verifies one of the following assumptions:

i) V(r) +1(1 + 1) r~2 satisfies 1) of Theorem 3,

ii) V satisfies 2) of Theorem 3 and

(y) jdr(M-UJr))~1'2r-2< oo,

iii) V satisfies one of the conditions 3)-5) of Theorem 3.

Let H, be one of the selfadjoint operators defined by the differential expression
-d2/dr2 + V(r) +1(1 + l)r~2 in L2(0, oo). Then Hi has the properties a)-e) of Theorem 2.

Furthermore the wave operators Qi± s limexp(iHtt) exp (—iH0rlt) as £->±oo exist
and

Qt+Qt+M? JtfaJHj).

Remarks: i) H0>, is the restriction to Jt?lm ot the selfadjoint operator H0 P2

acting in L2(U3).

ii) If V has a repulsive singularity at the origin, condition 3) is verified and
hence the wave operators are complete. If V has an attractive singularity of the form
V(r) etr'» with a < 0 and ß > 2,2) and (y) are verified with UJr) V(r), U2 M 0.

Alternatively V(r) +1(1 + l)r~2 verifies 1) with U2 0. For ß < 2 one may apply 1)

or 4) depending on the value of I.

iii) Theorems 1-3 can also be proved for long-range potentials under the assumption

that U =US+UL where Us is as in Theorems 1-3 and UL belongs to L\oe([0, oo)),

is of bounded variation near infinity and converges to zero as r -> œ [8], [13]. (In our
proofs we use only the fact that the spectral function of a certain selfadjoint extension
of —d2/dr2 + U(r) in L2(l, oo) is sufficiently regular, and this has been established in [8]
also for long-range potentials.)

II. Proof of Theorem 1

We follow the method of Kac [9] and use the terminology of [9] and [10]. The
interval (0, oo) is divided into (0,1] U (l,oo), and one obtains the spectral properties
of selfadjoint extensions of L0 —d2/dx2 + U(x) in L2(0, oo) from spectral properties
of selfadjoint extensions corresponding to the two subspaces.

For zeC, one introduces the solutions uJ-,z) and uj-,z) of the differential
equation /(/) zf on (0, oo) defined by the initial conditions

ujl,z) l, u'Jl,z)=0, ujl,z)=0, ujl,z)=-l.
Under our assumption on U, I is in the limit-point case at infinity ([10], Theorem

23.3). If Imz 7^0, there exists precisely one linear combination Xr(x>z) =u2(x,z)
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+ coJz)ux(x,z) such that Yr(-,z) 6 L2(l, oo). At 0, I can be either in the limit-point or
in the limit-circle case. In the former case L0 is selfadjoint and H L0; in the latter
case H is characterized by a boundary condition at 0 of the form

fe D(H) of e D(L*) and W[f,w]=0

where w is a real function in D(L$) and W denotes the Wronskian ([9], Section 6 or
[11], Appendix II.5). In the first case there exists precisely one linear combination
xJx,z) =u2(x,z) — coJz)uJx,z) belonging to L2(0,1); in the second case coi(z) is

determined by the condition that

W[uJ -, z) — cot(z) uJ -,z),w]=0.

We also introduce the selfadjoint operator HT in L2(l,oo) determined by
—d2/dx2 + U(x) and the boundary condition/'(1) 0 and the selfadjoint operator Hg
in Z.2(0,1) defined by the boundary condition/'(1) =0 and, if 0 is in the limit-circle
case, W[f,w] 0. We first study the spectral function tt of Hr which is given by ([11],
Appendix II.7)

t

rjt) lim — ds Im coJs + ie). (1)

o

For k e {z\ imz > 0, z =£ 0}, we define the Jost solution f(-,k) of /(/) k2f by the

boundary condition

lim exp (—ikx)f(x, k) 1.
X-rtX>

If Imz > 0, yr(-,z) must be proportional to/(-,z1/2) (we choose the determination of
the square root such that Im z1'2 > 0), i.e. there exists c(z) ^0 such that

C(z)f(¦,z1'2) =u2(-,z) + œjz) uj-,z). (2)

Since

W(u2(-,z), uJ-,z)) ujl,z)ui(l,z) — ujl,z)u'jl,z) 1

(2) implies that

^(/(•,21,2W-,*))
¦W — W(f(-,z1'2),uJ-,z))

(notice that the denominator is different from zero, since otherwise uj-,z) would
belong to L2(l,oo), which is impossible since Hr cannot have a non-real eigenvalue).

Since U e L1(l,ao),f(x, k) and d/dxf(x, k) are uniformly continuous functions of k

on any compact set not containing the point k 0 in the closed upper half plane (this
can be seen for instance from the considerations of [2], Chapter 12.1.1).
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Let A he a compact interval in (0,oo). It follows that the limit

lim W(f(¦, VX + Te),uk(-,X + ie)
«-?+0

lim [/(1, VA + ie) uJl,X + ie) -/'(1, VA + ie) ujl, X + ie)]
«-»+0

=/(1,^)^(1,A) -/'(U1/2K(1,A) s W(f(-,X1'2),uJ-,X))

exists uniformly in A e A and is continuous on A.
Since f(x, ±X112) =f(x, +X1'2)* and uJ -, A) is real, one has

W(f(-,±X1'2),uJ-,X)) W(f(-,+X1'2),uJ-,X))*. (3)

Also

f(x,±X1'2) -W(f(-,±X1'2),u2(-,X))uJx,X) + W(/(-,±X1/2),uJ-,X))u2(x,X).

By combining the last two equations one gets

-2*A1/2 W(f( ¦, +A1/2),/( •, -A1'2))

-2ilm[W(f(¦, +X1'2),uJ•, A)) W(f(¦,-X1'2),uJ¦, A))]

+2iIm[W(f(¦, +X1'2),u2(-,X)) W(f(¦,-X1'2),uj-, A))]. (4)

It foUows that for XeA, W(f(-,±X1/2), uJ-,X))^0. Hence

o^m r /um ^(/(-,A"2),k2(-,A))
coJX + id) hm coJX + ie)=- -—- 5)

«-+0 ^(/(•.A1/2),m1(-,A))

exists uniformly in XeA, in particular it is continuous. A short calculation, using
also (4), gives for A e A

lmcoJX + io) X1,2[\W(f(-,X1/2), Ml(-,A)|]-2 ^0. (6)

In view of (1), this shows that on (0,oo) rr is absolutely continuous and has a

strictly positive and continuous derivative.
By writing the resolvent kernel of H in terms of vr and xi ([12], p. 1329) and using

[10], Section 21.4b, one may calculate the spectral matrix {at]} of H. In particular [9]

r

a(t) crxJt) + a22(t) lim - dslm[Qxx + Q22] (s + ie) (7)
«-»+0 TT J

0

with

QxJz) cojz) cojz) [coi(z) + cojz)]-1 (8)

Q22(z)=-[toi(z)+œJz)]-1. (9)

To prove a), it is sufficient to show that a is absolutely continuous on (0, oo) (cf.[9],
Section 1).
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One obtains from (8) and (9)

lm(Qxx+Q22) \cot +œF\-2[(l + \cor\2)lmcoi + (l + \coi\2)lmœJ. (10)

The finite limit of coJX + ie) as e ->-+0 exists except possibly on a set N of points
A e IR of Lebesgue measure zero ([9], Section 2). By combining this with the properties
of coJX + io), it follows that for A e (0, oo)/N the following limit exists, is finite and

strictly positive :

lim Im (Qxx + Q22) (X + ie) Im (Qxl + Q22) (X + io)
e-++0

(1 + \coJX + io) |2) Im coJX + io) + (1 + \eoJX + io) \2) Im o>r(A + io)

\wt(X + io) + coJX + io)
(H)

By using ImcoJX + ie) > 0, Ima>,(A + ie) > 0, one deduces the following inequalities
(we omit the argument A + ie)

Ima>,|ü>, + wr|_2< (Imo>r)_1 (12)

(1 + \cot\2) \cot + ojr|-2 < 1 + (Im cor)~2 + (Re co,)2\co, + cor\-2. (13)

By using the inequality y2[(y + b)2 + c2]'1 < 1 + (b/c)2 and identifying y Rea>(,
b Re wr, c Imcür, the last term of (13) can be estimated as follows :

(Rea,()2|w, + a>r|2 < 1 + (Rea>r/Ima>r)2. (14)

By inserting (12)-(14) into (10), we get

1 + \ci>JX + ie)\2
0 < Im (QX1 + Q22) (X + ie) < 2 Im coJX + ie) + 2 '¦

Im a>r(A + ie)

Vet A [XX,X2] <zz (0, oo) be a closed finite interval. Since coT is uniformly
continuous and Imcxijz) > 0 on S {z\z X + ie, X e A, 0 4: e ^ e0, e0 > 0}, there exists C

such that 0 < Im (Qxl + Q22) (z) < C for all z in the interior of S. It then follows from
the Lebesgue dominated convergence theorem that

o(X) o(XJ + lim — \ dp Im (Qxx + Q22) (p + ie)
£-?+0 TT J

1 f
o(XJ H— dplm(Qxx + Q22) (p + io).

rr J

This shows that a is absolutely continuous on (0, oo) and that its Radon-Nikodym
derivative is almost everywhere on (0, oo) equal to

1

o-'(A)=-Im(ß11 + ß22)(A + w). (15)
77
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If A is as above, one can also see that o-'(A) ^ m > 0 for almost every XeA. Indeed,
since u>r is continuous, there exists 1 < K < oo such that for all A e A : \coJX + io) \ < K.
It follows that

(1 + \co,\2)\cot + coA2 > 1(1 + Kl2) (K2 + M2)"1 > iK'2-

From (6) one obtains also that Imtor(A + io) > m0 > 0 for all A e A, and the desired

result o-'(A) > m > 0 a.e. follows by inserting the above inequalities into (11). These

properties of o-'(A) are collected in Remark i) at the end of this proof.
We next treat the negative part of the spectrum of H. The proof of b) is based on

the following lemma:

Lemma 1: Let A < 0. Under the conditions of Theorem 1, the following two
statements are equivalent :

1) coJX + ie) converges to a finite limit with strictly positive imaginary part as

2) (Qu +Q22)(X + ie) converges to a finite limit with strictly positive imaginary
part as e -> +0.

To proceed with the proof, we need a precise definition of the support Qa+ of the
absolutely continuous part of a selfadjoint differential operator. We use the definition
of Kac [9] which is essentially the same as that given in [14]-[16]. We define Qa+(H)
to be the set of points A 6 IR for which condition 2) of Lemma 1 is verified. Similarly
one introduces QaJHJ and QaJHr) by replacing in condition 2) Qxx + Q22 by a>,

resp cor.

Lemma 1 states that for A < 0 we have

XeQaAHJoXeQBJH).

The negative part of the absolutely continuous spectrum of H (resp. HJ as defined in [5],
Chapter X.1.2, coincides with the closure of the set QttAH) D (—oo,0) (resp. Ca+(#9) 0
(—oo,0)). (This can easily be seen from the considerations of [14] and [16].) Hence
2nc(H) H (-oo,0) 2*ÀHg) H (-°°,0). Part b) of Theorem 1 now foUows from the
fact that the absolutely continuous spectrum of any selfadjoint extension of
—d2/dr2 + U(r) in L2(0,1) is the same as that of Hg (the resolvents at z i of two
selfadjoint extensions differ by an operator of rank two or less, cf. [10], Remark 19.1 ;

the result then follows from [5], Theorem X.4.12). ¦
Proof of Lemma 1: Since 2e (Hr) [0, oo) ([10], Theorem 24.5), cor is meromorphic

in Rez < 0. The poles of cor in Rez < 0 are simple and form a sequence —oo < px< p2
< • ¦ • < 0 which may accumulate at most at z 0. Near pk one has

<ojpk + ie)=ißke-1+0(e) with ßk tJ{pk}) > 0. (16)

Let

A (z) QiJz) + Q22(z) (cojz) cojz) - 1) (wjz) + cojz))-1. (17)
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a) Suppose 1) is verified. If A ^ pk for all k, limcor(A + ie) coJX) as e -*¦ +0 is

real. By hypothesis the denominator of (17) has a strictly positive imaginary part for
z X + io. Hence lim (QX1 + Q22) (A + ie) as e -> +0 exists and is finite. From (11) one
sees that its imaginary part is strictly positive.

If A pk, one has from (16) and (17) that

lim (Qxx + Q22) (X + ie) wt(X + io).
e-,+0

Hence 1) implies 2).

b) Suppose 2) is verified. (17) implies

wjz) [A(z) wjz) + 1] [wjz) -A(z)]-1. (18)

If A ^ pk for all k, limaj,(A + ie) as e -> +0 exists and is finite, since wJX) is real and

ïmA(X + io) >0. Also

Imoj,(A + io) lmA(X + to)[1 + wJX)2]\wJX) - A(X + io)\~2 > 0.

UX pk:

lim co,(A + ie) A (A + io) (Qxx + Q22) (X + io).
e-»+0

Hence 2) implies 1). ¦
Remarks: i) We have proved in particular the foUowing result : Let A he a compact

set in (0, oo). There exist two constants m and M depending on A such that

0 < m < o-'(A) < M < oo for a.e. XeA.

ii) Suppose that the essential spectrum of Hg is contained in [0, oo). Then the
singularly continuous spectrum of H is void and its essential spectrum 2e (H) is [0, oo)

(this foUows from Theorem 1 because 2e (H) 2e (HJ U 2e (Hr), ci. [10], Theorem
24.1, and because Je (Hr) [0, oo).)

iii) Let K+ =QaJHJ (1 Qa+(Hr). By using the results of Kac [9], one can easily
see that the restriction of H to E(U/KJ L2(0, oo) has simple spectrum and the restriction

of H to E(K+) L2(0, oo) has a homogeneous spectrum of multiplicity two. Note
that, under the assumptions of Theorem 1, one has K+ <= [0, oo).

III. Proof of Theorems 2, 3 and 4

Theorem 2 follows immediately from Theorem 1 and the remarks at the end of
Section II if one notices that £e (HJ £e (H°) ([11], Theorem 83.1). Theorem 3

foUows from Theorem 2 provided that one can show in each case that the essential

spectrum of the corresponding differential expression in (0,1] is void. For (4) and (5)

this foUows from [12], XIII.10.C25 and XIII.10.C30, respectively, and for (3) from
[12], XIII.10.C26 or [10], Theorem 24.2.
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For (2), let / be a solution of (-d2/dr2 + UJr) - M)f= 0. Then there exist cx,

c2 e C and two functions ek: (0,1) -> C with limejr) 0 as r -> 0 such that

\M - UJr)y*f(r) (cx + ejr)) exp
I i j \M - UJs)\112ds
\ o

+ (c2 + ejr)) exp l-i j \M - UJs^ds

(cf. [12], proof of Theorem XIII.6.20). Hence

i i
j \f(r)\2\UJr)\dr=j \f(r)\2(M - UJr)y2(M - UJr)A'2\UJr)| dr

i
const | (M - UJr))-ll2\UJr)\dr < oo.

One may now apply the foUowing lemma

Lemma 2: Let Ux,U2 e ^{„«.(0,1). Suppose that every solution / of
-d2jdr2f+ UJr)f= 0 is square-integrable on (0,1) and such that \f(r) \2\UJr) - UJr) |

e L^O, 1). Then every solution g of —d2/dr2g + UJr)g 0 belongs to L2(0,1).
(This follows from Theorem XI.8.1 of [17] where oo may be replaced by 0 and the

assumption of continuity of Ux and U2 can be weakened to Uv U2 e L\oc.)
It foUows that every solution of —d2/dr2f+ (UJr) + UJr) —M)f=0 is square

integrable in (0,1). Hence L0 —d2/dr2 + UJr) + UJr) acting in L2(0,1) has deficiency
indices (2,2) ([10], Theorem 19.4), and the essential spectrum of any selfadjoint
extension of L0 in L2(0,1) is void ([10], Remark 19.2).

For (1), the argument is similar. Every solution / of —d2/dr2f+ UJr)f=0 is

uniformly bounded in (0,1] ([12], XIII.6.27). Hence

1 1

j \f(r)\2\UJr)\dr < const j \U2(r)\d,r < oo

and Lemma 2 implies that —d2/dr2+ UJr) + UJr) has deficiency indices (2,2) in
L2(0,1). This completes the proof of Theorem 3. (Some of the statements of Theorem 3

foUow also from the results of [13], in particular Corollary 5.2.) ¦
Under the hypotheses of Theorem 4, it follows from Theorem 3 that Ht has the

properties a)-e) of Theorem 2. The proof of the existence of the wave operators ß,±
wiU be given in the Appendix. It remains to show that the range of Qi± is equal to
je^JHj). For this, suppose/ e 3faJHj) and/ J_ Q,Jfim. Let U: Jf,m -+ L2(U+) be the

unitary operator such that UHtE((0,oo)) U_1 is the multiplication operator by the
independent variable in L2(IR+).2) Write Uf= {/(A)}. For e > 0, let Ae {A|A > 0 and

(£(A)} denotes the spectral family of H,, {EJX)} that of H0f,.
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|/(A)| > e}, and define fc E(Ae)f. Vet p e Z,'0(IR+). From the intertwining property
exp (iHj) Qt Qtexp(iHQiit) it follows that for g e At°tm

(P(Ht)ft, Qtg) (/, Qt p*(Ho, j) E0(Ae) g) 0.

Thus p(Hj)ft A Q,je,m. But /£ is cyclic for Ht with respect to E(Ae)jVtm, i.e.

{P(Ht)fe\P e L°°(U+)} is dense in E(AB)tflm. Hence E(AJjf lm JL Û,JTi«- Using again
the intertwining property, this gives for all g,he Ac"tm

0=(E(Ae)g,Qlh) (g,Q,Eo(Ae)h).

Hence Q,E0(As)jif ,m _L Aflm, i.e. QtE0(AE)jflm 0. Since Qt is isometric, this implies
E0(A8) 0. Since H0t is unitarily equivalent to the multiplication operator by the
independent variable in £2(R+) and Ae cr [R+, it follows that the Lebesgue measure of
Ac is zero. Since € > 0 was arbitrary, this means/(A) 0 a.e., i.e./= 0. ¦

Remark: A different but longer proof of asymptotic completeness under the
conditions of Theorem 2 wiU be given in the Appendix in connection with the proof
of the existence of the wave operators. Since these are known to exist in many situations
[6], the preceding argument demonstrates the role played by the spectral multiplicity
in the completeness argument.
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Appendix

Throughout this appendix we shaU assume the hypotheses of Theorem 2. It wUl
be proved that they imply the existence of the wave operators (cf. Theorem 5 below for
the precise statement). We shall use the results of [9], Section 6, especiaUy Theorem 6.

Let (cf. [9] for the notation)

w(-,A) =[sgno12(A)]Voü(Ä)%(-,A) + VJ^uJ-,X).

By using the definition of 8tJ and Qtj ([9], equations (1.2) and (0.6)) and the fact that
co, is meromorphic by the hypothesis made on H°, one finds after a short calculation
that for A > 0 one has

u(-,X) (l + wt(X)2)-1'2[u2(-,X)-w,(X)uJ-,X)]. (19)

(If A is one of the poles of cu,, it is understood that u(-,X) -uJ-,X).)
For A > 0 we also define

<,A)=[g-W/2M(-,A). (20)
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Let P E((0, oo)). According to [9], Theorem 6, one then has :

i) For every fe PL2(0, oo) the integral

CO

F(X) (<Ff)(X) \v(x,X)f(x)dx
o

converges in mean in L2(0, oo).

ii) The operator !F : PL2(0, oo) ->- L2(0, oo) is unitary, transforms H into the operator
of multiplication by A, and its inverse is given by

CO

(jr-lF)(x) jv(x,X)F(X)dX,
0

(the integral converges in mean in Z,2(0, oo)).

Lemma 3: u(-,X) e L2(0,1) for every A>0. The function Ai—=> ||«*(-,À)l|t2 <0,i> is

bounded on every compact set in (0, oo).

Proof: If 0 is in the limit-circle case, the result is evident. We therefore assume
that 0 is in the limit-point case.

Suppose first that A is an eigenvalue of Hg. The system L0(f) A/ and /'(1) 0
has a non-trivial solution in L2(0,1) which is unique up to a multiplicative constant
([10], Theorem 19.4). Since «i(-,A) is a solution of this system, one must have
m1(-,A) e L2(0,1). Since the eigenvalues of Hg coincide with the poles of co,, one has

u(•,X) -uJ ¦,X) and hence u( -,X) e L2(0,1).
Suppose A is not an eigenvalue of Hg. Then it belongs to the resolvent set p(Hg)

of Hg. It is easily seen that the kernel of the resolvent of Hg ior 0 < y < x ^ 1 is given
by (Imz ^ 0)

Gz(x,y) [ujy.z) - wjz)ujy,z)]ujx,z).

For/E Z.2(0,1) one then has

i
[(H„ - zAf] (1) j [ujy, z) - w,(z) ujy, z)]f(y) dy. (21)

o

By providing the domain of Hg with the graph norm, it can be viewed as a Banach

space DG(Hg). The mapping DG(Hg) s g i->- g(x) e C is then continuous for each

*e(0,1] (this is a slight generalization of [12], XIII.2.16). On the other hand
z i-> (Hg — z)~1fe DG(Hg) is analytic in some neighbourhood of A since A 6 p(Hg). It
foUows that the limit of the left-hand side of (21) as z -+ X is [(Hg - A)"1/](l).

If f(x) 0 in some neighbourhood of x — 0, one can take the limit z -»- A on the
right-hand side of (21) under the integral sign, which gives for such functions/

i
[(Hg - A)-1/] (1) j [ujy, X) - w,(X) ujy, X)]f(y) dy. (22)
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On the other hand

| [(Hg - A)"1/] (1) | ^ c\\(Hg - A)-V||Dc(He)

<4(Hg -X)-l\\mL2WyXh Do(H,))ll/l|i.î(0, 1) < C(A)||/||L2(0>1)

where C is a continuous function defined on p(Hg).
It foUows that the right-hand side of (22) defines a bounded linear functional on

a dense subset of £2(0,1). One may now apply the theorem of F. Riesz ([11], Section 17)

to conclude that u2( •, A) — co, uJ •, X) e L2(0,1) and

IK-.A)||i.2(o,1)<C(A)[l + co,(A)2]-1/2.

This shows that ||w(-,A)||t2(0)1) is a bounded function of A on every compact set A in
(0, oo) such that A contains no pole of co,. On the other hand, if Xq is a pole of co,, one
has the following estimates valid in some neighbourhood of Xq: \C(X)\ < cx\X — Ao|_1

and |co,(A)| >c2|A —Ao|-1 withc2^0. This shows that ||m(-,A)||L2(0,i) is also bounded
in some neighbourhood of each pole of co, and proves the lemma. ¦

Lemma 4: Vet R < oo,/e PL2(0, oo) such that ^/has compact support in (0, oo).

Then

lim||FRexpH#*)/|| 0.
I'l-OO

Proof: Vet A be a compact set in (0, oo) containing the support of ^/and x > 0.

Then

[exp (-iHt)f] (x) j e-<" v(x, X) (Pf) (A) dX. (23)

A

It foUows from (19), (20) and Remark i) at the end of Section II that v(x, X) is essentiaUy
bounded on A. Thus by the Riemann-Lebesgue lemma, [exp (—iHt)f](x) converges to
zero as \t\ -»- oo.

By using the Cauchy-Schwarz inequality we find from (23)

|[exp(-iHt)f] (x)\2 ^ Wf\\2 j \v(x,X)\2dX
A

Also, from Lemma 3

R J?

j dx j \v(x, X)|2dX J dX jdx\v(x, X)\2
O A A O

JM-,X)\\h<o,R>dX< co.

A

By applying the Lebesgue dominated convergence theorem, one obtains

K

lim \\FR exp (-iHt)f\\2 lim f | [exp (-iHt)f] (x) \2dx 0. ¦|r|-»oo |t|-»°oJ
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Lemma 5: There exists a continuous function r\:(0, oo)-> R such that
v(-,X)= tt-1'2 A-1/4 Im [exp (mj(A))/( •, A1'2)].

Proof: Since v( ¦, X) is a solution of (—d2/dr2 + U(r))f= 0, one has

v(-,X)=aJX)f(-, X1'2) + a_(X)f( ¦, -X1'2). (24)

Since v( •, X) is real :

v(-,X) 2Re[«+(A)/(-,A1'2)] 2Im[*«+(A)/(-, A1'2)]. (25)

It remains to calculate 6(A) j«+(A). By (4), (24) and (3) it is given by

6(A) iX-1'2 W(f( ¦, -Xll2),v( -,X))= iX'1'2 W(f( ¦, Xll2),v( ¦, A))*. (26)

b is a continuous function of A on (0, oo) since f(x,X1/2), f'(x,X112), u(x,X) and
cr'(A) are continuous in A (for cr' this foUows from (11) since wt is meromorphic). We

may write 6(A) 16(A) | exp (t'ij(A)). 17(A) can be chosen such as to be continuous, and it
remains to show that

|6(A)|=i7r-1/2A-1/4. (27)

For this one uses (20), (15), (11), (19) and the properties of to, and easily gets that

v( ¦, A) tt-1/2|co,(A) + cor(A + io) I"1 [Im cor(A + io)]1'2 ¦ [uJ ¦, A) - co,(A) uJ ¦, A)].

Upon inserting this into (26), and by using (6) to express Imcor(A + io) and the fact
that co, is real, one obtains

\b(X)\=iTT-1'2X-1'2X1'*\W(f(-,X1'2),uJ-,X))\-1\wjX) + wJX + io)\-1'

¦\W(f(-,X1'2),uJ-,X))-wt(X)W(f(-,X1'2),uJ-,X))\.

In virtue of (5) the last equation reduces to (27). ¦
We now define

vas(x,X)=-tr'1'2 X'1'* sin (VXx + -r,(X)).

Lemma 6: Let A [Xx, X2] cr (0, oo) be a compact interval. There exists a constant
K K(A) such that for each R ^ 1 and for all h e L2(0, oo) having support in A :

CO CO

j [w( •. A) - vaJ ¦, A)] h(X) dX < K\\h\\LHo,., f | U(r) \dr. (28)
0 t2(J8,oo) R

Proof: The differential equation for v(-,X) and the condition that v(-,X) behave

asymptoticaUy like v„J -,X) can be combined into the foUowing integral equation

œ

v(x, X) - vaJx, A) J A"1/2 sin [A1/2(;y - x)] v(y, X) U(y) dy. (29)
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By inserting sin (a — j8) =sinacosj8 — cos asin j3 and using the Fourier Sine and
Cosine theorems ([12], XIII.5.32-33) one obtains the following estimates valid for

y>i:

j dXX-1'2 sin [A1/2(y - *)] v(y, X) h(X) <V7r||cos(A1/2yMy,A)
Li'O, »)

x X-1'*h(X)\\L2lo.x}+VlT\\sin(X1'2y)v(y,X)X-1'*h(X)\\Ll(o.,

< VlrA^'lAH^o.., sup \v(y, A) | #(,l)||A||L,(O#0O). (30)
y&i
XeA

The supremum of |w(y,A)| appearing in (30) is finite since v is continuous in both
variables and bounded at large values ofy according to Lemma 5. It foUows with (29)
and the triangle inequality for vector-valued functions that

\[v(-,X)-vttJ-,X)]h(X)dX *? | W(y)\dy f <*AA-1/2sin[A1/2(y - x)]
L2(K,eo) R o

xv(y,X)h(X)
lI(0, co)

By combining this inequality with (30), one obtains (28).

Theorem 5: Let U and Ü be such that each of them verifies the hypotheses of
Theorem 2. Let H be a selfadjoint extension of —d2/dr2 + U(r) and H a selfadjoint extension

of —d2jdr2 + U(r). Then the wave operators Q+ slimexp (iHt) exp (—iHt)EaJH)
as t -»- ±oo exist and are asymptoticaUy complete, i.e. Q±Qf EaJH).

Remark : It sufficies to set U 1(1 + 1) r~2 in the above result to obtain the existence
and asymptotic completeness of the wave operators of Theorem 4.

Proof: AU the quantities defined so far in relation with U can also be defined for
U, in which case they will be distinguished by a superscript °. The definition

Q± ^-1exp[+(-n-fl)]ß-

gives us two unitary operators from PL2(0,co) onto PL2(0,oo). We shaU show that
they are identical with the time-dependent wave operators, i.e. that

lim \\(Q± -1) exp (-iHt)f\\ 0
«->±C0

for a dense set £i of vectors/in PL2(0, oo).

For 2l we choose the set of functions such that the support of SFf is compact in
(0, oo). Iffe 3), the support of ^Q±f is also compact in (0, oo). By virtue of Lemma 4,

it suffices to show that for all/e 3 (we consider only the case t -> +oo)

lim sup ||(J - Fn) (Q+ -1) exp (-iHt)f\\ 0.
R-»co t>0

(31)
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\\(I-FR)(Q+-I)exp(-iHt)f\\
CO

f [v(-,X) - v„J¦, A)] e-"«»+'*<»-'"(//) (A) dX

o

00

j[$(-,X)-ittJ-,X)]e-'»(âf)(X)dX

L2(K,co)

L2'R, co)

+ j [Vas(-, A)« ,-lnU) o- £as( •, A) e-iwa)] e "*»-"<• (Jf/) (A) rfA

f(Jl, co)

As a consequence of Lemma 6, the first two terms in the last member of this inequality
converge to zero as R -*¦ oo uniformly in t. It remains to estimate the third term.

We have

vaJx, X) e-'"u> - vaJx, X) e-'*a> -(2*V1/2 A1'4)"1 [e'2'^» - e-^«>] e-iVxx

Thus the above third term has the form

n-uVlx+xt) g(X)dX
L2(K, co)

f e-H"x+"2'»g(p2)2pdp (32)
LX(R, co)

where g belongs to L2(0, oo) and has compact support in (0, oo). The function
h(p) 2V2rrpg(p2) also has these two properties. Given e > 0, we choose a function
hx e Cg((0, oo)) such that ||A - hx\\ < e/2. (32) is equal to

00

-f(»X+«2t)
V2rT~T

h(p) dp

<ll*-*lll +
V2t~t

lHr, co)

CO

f e-«l'*+l'2t) hjp) dp (33)

L2(R,co)

where we have used Parseval's relation for the Fourier transformation to estimate the
first term. In the second term on the right-hand side we integrate by parts with respect
to the variable p and obtain for t ^ 0

œ b b

j" e-ta*-M2oÄi(jLt) d[l ^ j \h'Jp)\(x + 2pt)~1dp + j \hjp)\2t(x + 2pt)~2dp (34)
0 a a

where 0 < a < 6 < oo are such that suppAt <= [«,6]. Since 2t(x + 2pt)~2 < (Aax)-1 for all
t > 0 and all p~& a, the right-hand side of (34) is bounded uniformly in O 0 by
const -x-1. It foUows that the second term on the right-hand side of (33) is bounded by
const • R-1'2 uniformly in tf > 0, so that (32) is less than e uniformly in O 0 provided
that R is sufficiently large. ¦
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Addendum

In the situation of Theorem 1, suppose/e 3^AJHE(—x>,0)). If Q± exist,/is orthogonal

to Q±3rV, since 2ac(#o) [0. °°)- Hence, given e > 0 and R0 > 0, there exists T
such that ||(/ - FR)exp(-4Ht)f\\2 < e for aU \t\ > T and all R > R0 [7]. On the other
hand ti-+exp(-4Ht)f is strongly continuous. Since [—T,T] is compact, the set

{exp(—iHt)f\te[—T,T]} is compact in 72(IR+) and consequently also in L2(R). By
virtue of the Fréchet-Kolmogorov theorem ([18], p. 275) one has

sup \\(I-FR)exp(-iHt)ff<e
te[-r,n

provided R > Rx RJe, T). Hence

lim sup ||(/ - FR) exp (~iHt)f\\2 0

i.e./is a bound state in the sense of the definition of [1].
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