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Helvetica Physica Acta
Vol. 47, 1974. Birkhäuser Verlag Basel

Perturbation Expansions in Quantum Statistical Mechanics

by Irja Nieminen1)
Institut für Theoretische Physik, ETH, Zürich

(26. IX. 74)

Abstract. The perturbation expansion introduced by C. Bloch and C. de Dominicis [1, 2]
for the reduced density matrix (RDM) is investigated for multi-time-temperature complex variables
for T > 0. A uniform upper bound is found for the truncated RDM, and in the Euclidean case lower
bounds are derived for potentials of one sign. It is found that, for a bounded number of particles
in any intermediate state, the partial expansion defines an entire function of the coupling constant.
At least in the case of bosons, however, the complete expansion diverges.

Introduction

We investigate, in this paper, thermodynamic perturbation expansions in quantum
statistical mechanics for finite non-zero temperatures. More precisely, we study such
expansions in the form introduced by C. Bloch and C. de Dominicis [1, 27].

We consider a system of identical, spinless, non-relativistic particles, interacting
through a two-body potential in a cube of volume V L3. We set m 1/2, A 1.

The particles are either bosons or fermions with cK(k) as the annihilation operator for a
particle of momentum k, and with cf(k) as the respective creation operator. These

operators satisfy the usual commutation relations. The Hamiltonian of the system is

given by

HV H°+UV, (1.1)

where

H° ZEkc*(k)cv(k) (1.2)
k

is the free particle Hamiltonian and

Ur=2~V 2 ikik2\U\k3kJc*(kJc*(k2)cv(kJcv(k3) (1.3)

k

describes the interaction. The momenta in these sums run over the allowed values in a
box V L3, and Et k2 is the energy of a particle of momentum k. The potential

') Permanent address : Department of Theoretical Physics, University of Helsinki.
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function in (1.3) satisfies

(k,k2\U\k3kJ (k2kx|C7|k4k3) U(kx - kj S(kt + k2, k3 + k4), (1.4)

U(k) U(-k) U*(k), (L4a)

where the Kronecker 8 expresses the conservation of momentum.
We investigate the Bloch perturbation expansion for the reduced density matrix

(RDM), which is defined as the thermodynamic expectation value in the grand canonical

ensemble

Py exp[ß(Rv -Hv + pNv)] (1.5)

of a product of operators (1.7) given below. Here ß 1/kT is the inverse temperature
(T temperature, k Boltzmann constant) of the system, p the chemical potential,
Ny the particle number operator, and the thermodynamic potential Rv is determined
from condition VxPv= 1. We choose as fixed thermodynamic parameters ß and p,
restricted to values 0 < ß < oo, —œ < p< +oo for fermions and p < 0 ior bosons.

Let Tj, t2, t2„ be a set of complex quantities (Rer inverse temperature and
Im r time) satisfying

Re n > ¦ ¦ ¦ > Re r2„ ; Re(rx - r2„) ^ ß. (1.6)

Define operators

cv(kt, r,) exp[TjHv - pNv)] cv(kt) exp[-TjHy - pNy)], (1.7)

where symbol # in c*(k,) means that it can be either a creation or an annihilation
operator. Then the RDM is defined as

RDM F"«4(k1,r1) • ¦•cv(k2„,T2jyyv, (1.8)

where ^A^>v Vv(APv). In order that (1.8) be non-trivial, it must contain n creators
and n annihilâtors.

To obtain the Bloch perturbation expansion for (1.8), one considers [2] the 'time'
evolution operator

U(t, t') exp(rHv) exp[-(r - A) Hv] exp(-THv) (1.9)

with complex t as described above. This quantity satisfies the Bloch equation, which
for Rer 0 is identical with the equation of motion in the interaction picture.
Consequently, the Bloch equation can be treated formally as in ordinary quantum mechanics.
This leads to the Dyson expansion for U(t,t'), which is then used in (1.8) to obtain a
perturbation expansion. This expansion is discussed further in Section 1, where we
write down the final perturbation expansion for the truncated RDM.

In Section 2 we prove three theorems. In Theorem 2.1 we find a majorization for
our expansion, and Theorems 2.2 and 2.3 give minorizations for the Euclidean truncated
RDM.

In Section 3 we turn to convergence questions. We find that for potential Ui
(given by (2.1) below) the partial sum over graphs with less than N (a finite integer)
particles in any intermediate state yields an entire function in the coupling constant
À. In Theorems 3.2 and 3.3 we find that, for potentials U2 and U3 (given by (2.2) and
(2.3) below), the truncated RDM expansion is not analytic in À at A 0. The expansion
clearly diverges, at least in the case of bosons.
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1. The Perturbation Expansion

In this section we shall write down the Bloch interaction expansion for the
truncated RDM.

As explained in the Introduction, one uses the Dyson expansion for U(t,t') to
get a perturbation expansion for (1.8). The expansion thus obtained is then developed
further with the aid of the Wick-Bloch-de Dominicis Theorem [1-5] to obtain the
expansion in a form in which each term corresponds to a graph. The Linked Cluster
Theorem [6, 7] yields then the result

RDM 2G(1-G,2---G,p, (LI)
A

in which G,(i 1, ...,r) are connected graphs each containing at least one pair of
external vertices ; each external vertex appears in one and only one GI(. The sum is over
all possible products with 1 ^ r ^ n. The procedure to arrive at (1.1) is well known;
we refer to the book by Mills [8], in which this derivation is given in detail for n 1.

We now define recursively [9] a truncated RDM, which we denote by the superscript

T

lc*(kx, Tl) 4(k2, Tjyv ict(kx, tj c*(k2, r2)>v

«c*c# „#
2 U2n//V ••C2#„»V

~ 2 Part € CcP„cPi2" 'CPuM^y'" "Pr, "Pr2 vPrs'„//VVv, (1.2)

where 2Part extends over all partitions

\P 11' •'12' • • •> -'ls(l)} 1-^21' P22' •••>-»:

of {1,2, 2n] with r > 1 and

Pll<Pl2< ¦¦¦< P

J...{Prl,Pr2,

ls(l)> Pn < Pr2 < <P„

rs(r,S

e 1 for bosons and e — 1 for fermions. In ep we have P 0 for an even and P 1

for an odd permutation from 1,2, ...,2nto Pxx, PX2, Prs(r). With this definition we
arrive at

v«[c*(kx,TX)...c*(k2n,T2jyy T _
oo r(m)

2 IG(;»(kf,Ti:...;k*,Tjv
m=n—1 r=l

(1.3)

which is a sum over all connected graphs containing all external vertices. For each

graph we have two indices, m and r. m is the number of interaction lines in the graph

T„=0Rer, Rer Rer3

(+Vk
W|ZkHfi k,

ff

or, (+) a M cr

Figure 1.1
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and is called the order of the graph. There are, in general, a large number of different
graphs having the same order. These we have distinguished with the additional index r.
The analytic expression corresponding to a graph Grm> is

2« /''-> »' *«i-> \
G<."> (-1)"«"*+« n tj da[\da{--- j daL\.

7»- 2 [ fî exp[±T|(E, - ,*)] fi (kjr kj21 U\k% kj4)
k'.i k^^L'"1 J'1

2m+n 1

exp[<rj(Ej1 + Ej2 - EJ3 - Ej4)] n 8(U, 1?)/?(1,) • (1.4)
v=l J

An example of a graph is given in Figure 1.1. At each interaction line we have two
incoming and two outgoing particle lines as shown in Figure 1.2. The integration path
in (1.4) for the complex cr-integrals must be chosen so that Re a increases along the

fei< iS|4

^ fela

°\

Figure 1.2

path of integration [2]. In exp[+tj(E, — p)] we have (+)-sign for a created and (—)-sign
for an annihilated external particle. The integer m{ gives the number of interaction
lines in interval (ti_x,tj). We have 2 mi ni. Further we have denoted Ejs (kj-s)2.

In the last product in (1.4) lv and 1% are the incoming and outgoing particle lines, which
are connected to produce particle line lv in the graph. Each particle line in the graph
gives rise to a factor /?(1„), where

ft(h) (1.5)U{ v>

l-eexp[ß(p-l2)]
K '

corresponds to a particle line going from right to left, and

^1')" mJ Ö (L6)
exp[/3(l? -p)]-e

corresponds to a particle line going from left to right. The former are called (+)-lines
and the latter (—)-lines. e 1 for bosons and e — 1 for fermions.

Then we still have the sign factor in front of (1.4). To find the sign of the graph in
the case of fermions, we proceed as follows. We complete the graph with extra particle
lines connecting the external vertices pairwise with dotted lines as indicated in the
special example shown in Fig. 1.3. L is then the number of closed loops and S the
number of (—)-lines in the completed graph. C is the number of crossings among the
completion lines. In Figure 1.3 we have L 3, S 5 and C 1.
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There are m 8-functions in (1.4) coming from (1.4) and 2m+n 8-iunctions appearing
in the last product. These reduce the number of independent momenta. One of the former
S-functions reduces to 8(E ± kj), in which created and annihilated particles appear with
opposite signs. Thus we have m — n + 1 independent momenta. If we write

G<m>(k*, t)v V8 (2 ± k.) G<.m>(k*, T)y,

then G(rm) is independent of volume in the limit V -*¦ œ.

(1.7)

Rex, Rer2 Rer3 t4 0

Figure 1.3

The grand partition function can be obtained as a special case of the RDM, and it
is given by [2]

log Zv log Zy+^jGk, (1.8)

where Zv is for non-interacting system, Sk is the symmetry number of graph Gk,

and the sum runs over all connected graphs containing no external vertices. The
pressure is then given by

1 1

Py Ry lug Zy.
V v ßV

e (1.9)

The thermodynamic limit exists also for pressure.
Our description differs somewhat from the conventional one (see, for instance

[6, 8]). We have definite signs for the particle lines in the graph. This is not the case in
the description normally used. One usually takes the o--integrals from 0 to ß and
replaces the last product in (1.4) by a more complicated expression

Il S(lv, VJ [@(ay - ajft(\j + e&(ay - <)/e-(lv)] (1.10)
v=l

to take care of the different possibilities for (+)- and (—)-particle-lines. Here

f+1 forcr>0
0(a)

0 foro-<0
(1.11)
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ctv is the complex 'time' at which lv is annihilated and a'y is that for the creation of 1,.

Thus in the usual description all such graphs are identical, in which only the directions
of the particle lines are varied. If we expand the analytical expression of such graph by
taking explicitly account of the ©-functions in the cr-integrals, we get a sum of terms in
which each term corresponds to a distinct graph in our representation.

2. Uniform Bounds for Diagrams at T > 0

We consider the thermodynamic perturbation expansion for grand canonical
pressure and multi-time-temperature RDM at T > 0. In this section we shall derive
uniform upper bounds for every term (characterized by a diagram) in such expansions.
Uniform lower bounds will then be established for positive (or negative) potentials for
the pressure and the Euclidean RDM.

Without striving at the utmost generality we investigate a system of identical
non-relativistic spinless particles with mass 1/2, interacting through a two-body
potential U(x) in three-dimensional space. We set Ä 1. Let V L3 be a cube

{xeR3; |x,| < L/2}

and r T(V) the set of lattice points k 2-rm/L with n e Z3. The two-body potentials
U(x) with Fourier transform U(k) are assumed to belong to one of the following classes :

Ux : The potential function is continuous and satisfies

U(k) U(-k) U*(k),

\\UL sup\U(k)\<œ,
k

1 V^||t/|jr sup-Y |L7(£)|=sup||C/||ljL<oo. (2.1)
L V *-l L

ksr

U2:

U e Ux, U(k) > 0, U(0) > 0. (2.2)

U3:

U eUx, U(k) ^ a e'""2 for some a > 0, b < <x>. (2.3)

Obviously U(x) e L2(U3), if U e Ux.

Theorem 2.1: Assume U e Ux, 0 < ß < œ, p e IR^/x < 0 for bosons) and n 0, 1,
2, — Then there exist constants A, B < oo such that every term in expansion (1.3)
with (1.7) satisfies

2n
\m,

Pr)(k*,Tx;...;k2n,T2Jv\<AB-T\ l~'
¦

" (2.4)
¦*- -*• m,
i=l nit '¦

where the t's satisfy (1.6), t0 ß, t2„ 0, 0 < V < œ and 2 ± k( 0.

Proof: The whole a- and r-dependence of Glrm)(k*,t)v is in the exponent of (1.4)
and can be easily estimated. We write

Ej EJ3 + VU-V)X-V)2 (2.5)
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and obtain

1 2n

exp -2 [o-jEj + TiE,]
I i-l

(2n
T m,-l

- 2 (Tt-i - o\)So + 2 (o'j- crj+J ê'j + (aL, - t.) é'm,
i=i L j=i

(2.6)

i-l f ma "I

<r0 2 +e0+ 2 e;
n-lL b=l J

J
(2.7)

fj <f0+ 2 EL

where Ea appears with a (—)-sign for a created and with a (+)-sign for an annihilated
external particle. The energies é] can be read off directly from the graph: for Sq one
has to cut the graph vertically between rt_, and a[, and for ê\(j ^ 1) a similar cut after
a]. Then Slt is the sum of the energies of the cut (+)-lines minus the sum of the energies of
the cut (—)-lines. The cut (+)-lines and (—)-lines define an 'intermediate state' of the
graph.

The absolute value of (2.6) is smaller than!\ 2n m<

- min(#j) ßU 2 2 exp{-<?j ß), (2.8)
l-i 1 1=1 j=o

since
2n r mi-l -i

Re 2 (r,_, - ai) + 2 (c'j - a}+1) + (a', -rj)\= ß.
1=1 L j_! J

When 0 < ß < co, peM1 and k e K3, we have from (1.5) for bosons

l</+(k)<- l—— (p<0)
1 - exp(-ß\p\)

and for fermions

0</+(k)<l.
Consequently,

0 </r(k) < Cexp[-ß(k2 - p)],

where the constant satisfies C > 1 for bosons and C 1 for fermions. Thus the absolute
value of G(rm)(k*,T)v (V < oo) is smaller than

FB-mC2m+„pj l±_ " 2 nn Kk'ikj2if/ikj3kj4)i.
Kll» •••, Km2„4 »-1 J ±

2m+n 2n mt / r -|\u 8(1?, 1«) 2 2 exp\-ßU] + 2 U? - /*) (2-9)
i-l 1=1 1-0 I JJ
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where 2- extends only over the (—)-lines in the graph; If and 1, are the outgoing and
incoming momentum belonging to the same particle line. The energy (cfj + 2_ 1?)

can again be read off from the graph : at the appropriate cut it is the sum over the energies

of all cut (+)-lines and uncut (—)-lines. This factor, together with the potentials

n I(k{, kj2| C7|kJ3kj4) | ~ fi I U(k'n - k<4) I,

will provide a uniform majorization for the sum (integral) over the m+1 —n independent

loop momenta, after the complete use of the S-functions.
Consider one of the m + 2n — 1 cuts, which gives rise to factor

exp[-j8^J + 2i;)].

Those closed loops which are crossed by this line contain at least one (+)-line which
is cut. Those loops which are not cut contain at least one (—)-line each. Denote these
distinguished particle lines by pi, p2, ...,pL. The remaining m + 1 — n — L independent
loop momenta are labelled according to the following algorithm. Start at any open
orbit at one end or at any closed orbit at the distinguished particle line in the direction of
the arrow. Denote bypL+1 the first internal momentum, which is not determined (via
the S-functions) by kx, k2„, p1( pL. If there is none, proceed to the next orbit.
The subsequent particle line is either independent or a linear combination of k1;

k2n, pj, pL+j. If it is independent, denote it by pL+2. The next particle line is
again either independent, when it is denoted by pL+3, or it is a linear combination of
kj, k2„, Pj, pi+2. We proceed in this manner, until all particle lines are labelled.
After this we write down the potentials corresponding to the interaction lines in the
graph in the same order as the labelling was performed. Each potential is written down
when it appears for the first time in our path. In this way we obtain the following
product of potentials

U(qh) £/(q«) - - - U(ql>) U(q0-pL+J U(qx -pL+2)... £/(qBl_, -pt+WI)

U(qlui) U(qlf)... U(q%) U(dUl-pL+Ui+J U(qUl+x - pL+Pi+2)...

U(qul-i - PL+nJ U(qiJ U(q2j U(q1l+i_J U(q2m+x_J t/(qvm'+1_„), (2.10)

where q* (with or without superscript v) is a linear combination of kx, k2n, pt,
Pl+v There appears in (2.10) chains of potentials

^(q0 -Pt+i) U(qx -pL+2)... tf(q„,_, -Pl+A ;

U(qUl-PL+u,+i)U(qPl+1-pL+ltl+2)...U(qP2_i-pL+pJ; (2.11)

corresponding to chains of independent momenta :

Pl+1,Pl+2> ¦ ¦ ••Pl+Kp

Pl.+ «1 + l>Pz.+ /M+2> • • ;Pl+UJ ••• (2-12)

on various orbits. We split the product of sums (integrals) over the independent
momenta to two independent sums (integrals)

1

VL A, ym-n+l-L
Pt + l

2
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as follows. We replace the product U(q\) U(q2)... U(qvJ by [|| U\\J\ In place of (2.12) we
introduce new variables of integration

Pl+m q«-i — Pl+u

The momenta in [ê\ + 2- VJ different from pt, pL are replaced by zero. We thus
get for Grm'»(k*,t)v the following majorization, when p < 0

2n m+l-n-L

Pl+u

L /1
tp(-Lß\p\)Yl I

y J exp(-j8p?) J K + 1)

\T — r |m<
C2m+n TT '-' " (llt/IIJ»^-1 (HC/HI

i- J- tn,)i-l
exp(-Z.j3|jLi|)iL(w + 2«), (2.13)

where

d sup^exp(-ßp2) (2(14)

per

In the case of positive chemical potential (fermions only) the factor exp(—Lß\p\) is
to be replaced by exp[(2m + n)ßp]. For bosons C > 1 and for fermions C 1.

Expression (2.13) can be brought into the form of the right-hand side of (2.4).

QED

Theorem 2.2: Vet U e U2, 0 < ß < œ, p e U1 (p < 0 for bosons), and 0 < V < œ.
Then every graph for the pressure or the truncated Euclidean RDM

(Im tj • • • Im t2„ 0)

satisfies

\G^(0*,Tx;...;0*,T2Jr\ > -^iexp(2 ± ^IT ~ i /2>"+"' (2"15)

where/= min{/^(0)}.

Proof: We observe, that for potentials of uniform sign and real temperatures t(,
G(rm)(k*,T)v is a sum over a function of uniform sign. As lower bound for |G(P"°(0, t)v\
we restrict the k-summation to the contribution with kjt • • • kjj,"^ 0, which is
consistent with the S-functions. This leads to (2.15).

For V -*¦ oo estimate (2.15) breaks down. For convenience we shall then restrict
our discussion to a class of potentials, to which the techniques of Feynman integrals
can be applied.
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Theorem 2.3: Let U e U3, 0 < ß < oo, p e U1 (p < 0 for bosons), and Inn-j • • •

Imr2„ 0. There exist constants A > 0, B > 0,C < œ such that every graph G(rm)(k#,r)
of order m for the pressure or the truncated Euclidean RDM satisfies

2n

|G<m)(kj*, Tl ;... ;k*, r2B)J > AB- fl |T'-1w ,Til"" (exp[-C | kf] )". (2.16)

Proof: From (1.5) and (1.6) one finds lower bounds

fHk)>cexp(-ßk2), (2.17a)

where

1
0<C4:

1 + exp(ß\p\)

Further we have

U(k - 1) ^ «exp[-6(k - l)2] Ss a exp[-2&(k2 + l2)], (2.17b)

exp[aj(Ejj + Ej2 - Ej3 - E'J4)] > exp\-ß 2 EjJ
v=l J

(2.17c)

and

exp[±T, E,] > expf-jSEj] (2.17d)

Using these lower bounds and the fact that the integrand of G(rm)(k#, t)x has a uniform
sign, we get according to (1.4), (1.4) and (1.7) in the limit V -* oo

¦2", I- _ T |mi / 2n \
|G{,»>(kf, tj ; • • - ; k*„, t2„)J ^ [8(2 ± k,)]-* f] ' '^ "

exp(-/3 2*?)

1 C i- m m

x
,9 ,3(m-„+i) <¦•• f^2m-n«mnexp[-è(qi-qi)2]n3(qv)
(^tt; J j j-i v-i

2n m j
X

2n mi / 4 \ f 2n \ f 2m-n \
Jl n exp f -jS 2 EU c2m+" exp (-/3 2 kf j exp \-ß £ Pv) - (2-18)

whereq^ — q^ is the momentum transfer at^'th vertex and S(qv) expresses the conservation

of momentum at the vth interaction line;

(2m-n
\ /2n \

U PvjU^Uk.j

andqv is a linear combination of vectors belonging to the same set. The same momentum
pv belongs to two different vertices and each k, belongs to just one vertex. The energies
E'-f are either p2 or k2 (v =1,2,...,2m — n;i 1,2,...,2n): eachp2 appears twice and
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each k2 only once in the sum

2n m i 4

2 2 2 E},.
i-l J=l s=l

From (2.18) follows

\G^(kt,Ti;..,,k*2„,T2JJ>[8(l±ki)]-1 „n
2U 'n- n- \m,Ti-l~Til

,2s3tm-n+l) 11 |
K ' i-l '

» - m I r 2n 2m-n 1 1

x j d3px - • • j d3p2m_R n S(qv) exp |-g ^ 2 k? + 2 P? I j > (2-1»)

where a, c and g are constants independent of the graph. The Gaussian integral in (2.19)
can be obtained from a calculation given by Symanzik [10] (or use [11]). The result is

m [ [ 2i 2m-n T\
J d3pi. - - j d3p2m_n Jl S(qv) exp [-g I 2 kf + 2 PÎ J)

)(3/2)(m-n+l)
2n

S(2± kt)[T(GrmA312exp - 2 ^fe)k,-ky (2.20)
I i.j=i /

where T(Grm)) is the number of trees in graph GV"'. It can be shown that 2 ^o'kj'k,
is a positive definite quadratic form of the k/s. The proof for this is the same as given in
the book by Bogoliubov and Shirkov [12] on pp. 324-6 for an analogous problem.
According to this same source

o< I A°u*i-K< 2 4S'te)k,-k„ (2.21)
i,J l i.J-1

if G' is any tree of G. For tree G' with m — 1 internal lines the momenta Pj, p2,
pm_j are linear combinations of kj, k2, k2n with coefficients +1 or 0 satisfying
pj ^ 2n 2?"i kf. Hence

2n 2n m-l 2«

2 A?f(g) kt kj 2 g k? + 2 g P2i < 2 g*™ 2 k?- (2.22)
i,j=i i-i j=i i=i

Finally, we find an upper estimate for the number of trees of a graph of order m. The
number of internal lines is 2m — n, and each tree contains m — 1 particle lines. Thus the

number of trees is smaller or equal to J. For m — n ^> 1 we can use Stirlings

formula x! a (2-rrx) 1,2xxe~x, which is good for x > 1. From this one finds that the number
of trees is at most (7rw)_1/222m_". These minorizations can be combined into form (2.16).
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3. Partial Summations for T > 0

In this section we shall apply Theorems 2.1-2.3 to investigate the convergence
properties of the perturbation expansion in quantum statistical mechanics. The
systems considered interact through two-body potentials XU, where À 6 R1 and U eUt
(i 1,2,3). We ask for analyticity properties at A 0.

Theorem 3.1 : Vet U eUx,0 < ß < oo, peU1 (p <0for bosons), N a fixed integer,
and 0 ^ V < oo. When E ± kx 0 and {r} satisfies (1.6), then the partial sum over all
graphs G£m)(ki*,T1;...;k2*,,T2)iV in the truncated RDM with less than N intermediate
particles is an entire function of X, which is continuous in {t} (and continuous in (k)
for V oo) and uniformly bounded for {t} varying over a bounded region satisfying
(1.6).

Proof: We apply Theorem 2.1 to prove absolute and uniform convergence. We
only need a bound on the number of graphs contributing to the truncated RDM, when
the number of particle lines in every intermediate state is bounded by N. It is not difficult

to see that there exists a constant M M(N) which gives the maximum number of
different choices for the next interaction after a certain intermediate state. Thus the
subclass of graphs of order m contains ^CMm graphs where C < oo. Now it follows
immediately from Theorem 2.1 that our partial sum represents an entire function of A.

QED

A uniform bound N of the number of intermediate particles is obtained, if one
requires that the number of (+)- or (—)-lines in an intermediate state is bounded by K.
Thus those Brueckner-Goldstone and Bethe-Faddeev ladder expansions which fulfil
this requirement always converge. This is true for attractive or repulsive potentials
both for bosons and for fermions. The ladder expansions which do not satisfy this
requirement may converge or diverge. As an example of this we refer to the zig-zag
expansion treated in [13] for which both convergence and divergence can occur.

The above results hold for T > 0. When T -*¦ 0, expansions which converged for
T > 0, may become divergent. Finally we remark that C. Gruber [14] has proved the
analyticity of the Euclidean Green's function at A 0 with V < œ for fermion systems
with 0 < ß < œ, p e R1, and \\U\\ < oo.

Since e +1 for bosons, no cancellations between contributions of diagrams of the
same order occur for boson systems if U e U2 or U3. Therefore, as in quantum field
theory [15], sufficiently strong lower estimates on the contributions of individual
graphs lead immediately to :

Theorem 3.2: Let UeU2,0<ß<oo,p<0 and V < oo. Then for a boson system
the interaction expansion of the truncated RDM is not analytic at A 0, if
ImTj ••• Imr2„ 0.

and

Theorem 3.3: Vet U e U3, 0 < ß < cc, p<0 and V oo. Then, for a boson system,
the interaction expansion for the truncated RDM is not analytic at A 0 if
Imrj • ¦ • Imr2„ 0.

Proof: A necessary condition for a series 2m-o am^m to define a holomorphic
function at A 0 is that 2 |«m|?'m converges for some r > 0. This can be easily disproved
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for the interaction expansion using the violent increase of the number of graphs G(rm)

with the order m together with Theorems 2.2 and 2.3. Consider the set of connected
graphs of order m. Connect first the m lower vertices of the interaction lines by one
closed orbit ((m — 1)! different possibilities). Select among the m upper vertices n
vertices, and attach to each of those an incoming and an outgoing external line

ii J • (n\)2 different possibilities 1. Connect the remaining m — n upper vertices in any

way ((m — n)\ different possibilities). We obtain ^(m — 1)! ml connected diagrams,
which produce for the interaction expansion a divergence at least as ^rmm\, when
(2.15) or (2.16) is used.

QED

We remark that the divergence of the interaction expansion for bosons has nothing
to do with the Bose-Einstein condensation, since it occurs at all temperatures.

The work of Ginibre [16] and Gruber [14] has shown that, for positive Gaussian
potentials, the Euclidean Green's functions exist for V ^ oo, p < 0, and for sufficiently
small values of the activity z eß" (no phase transition at this temperature and small
densities), and are analytic in z around z 0.

For 1-dimensional quantum lattice, H. Araki [17] has proved analyticity at A 0

of the pressure and the RDM, while our divergence proof for bosons systems also holds
in one dimension.
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