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Theory of Coupled Hydrodynamic Modes Applied Above
Structural Phase Transitions

by Charles P. Enz

Département de Physique Théorique, Université de Genève, 1211 Genève 4

(1. X. 74)

A bstract. Starting from the fluctuating part of the lattice free energy the coupling between a
soft shear mode and the heat diffusion mode is established. The soft mode response function is
derived and compared with neutron scattering data for the two cases of a soft staggered (it-corner)
mode (SrTi03, LaA103) and a soft sound (zone centre) mode (Nb3Sn). In an appendix the classical
form of the fluctuation-dissipation theorem is derived in the framework of a classical many-body
theory.

1. Introduction

In this paper we wish to demonstrate the fruitfulness of the hydrodynamic
description of many-body systems by developing a purely classical many-body theory
and applying it to the particular cases of the coupled modes discussed earlier [1].

Examples of couplings between hydrodynamic modes have been known for a
long time. The most common and physically the most important example is the thermal
expansion coupling between the isothermal sound mode co (1 — icoT0/2)vq and the
heat diffusion mode cu —iDq2 which occurs in practically all hydrodynamic systems
(see the review of Ref. [2]). This coupling gives rise to the transition from isothermal to
adiabatic sound (velocity v0) and to the occurrence of a central (co 0) peak of width
Dq2 in inelastic light scattering, the socalled Landau-Placzek peak [2].

Another example is sound in a molecular liquid which couples to internal molecular
degrees of freedom, as was first discussed by Mandel'shtam and Leontovich in 1937 [3].
This coupling is characterized by a relaxation time t which governs the transition from
ordinary (first) sound (velocity v0) at low frequencies (cot 4 1) to zero sound (velocity
vx) at high frequencies (cut > 1). As was emphasized by Mountain [2] the effect of the
coupling again is a central peak in inelastic light scattering.

The central peaks evidenced in inelastic neutron scattering near structural phase
transitions in the perovskites SrTi03 [4] and LaA103 [5] and in the A15-compound
Nb3Sn [6, 7] are of a similar nature. In fact, they have been interpreted as Mountain
modes [3, 5, 6] in the sense that the relaxation time t serves to distinguish between
Cowley's first and zero sound in crystals [8]. In these cases the response function has been

parametrized in the form

PXtil <") MÛ) -co2- icoP(q, cu)}-1 (1.1)



750 Charles P. Enz H. P. A.

where [1,7,9]

r(q,co)=ro + 82J(yo-ico) (1.2)

so that S2, describes the coupling between the modes cu cotQ) — iro/2 and cu —iy0
(here the index zero serves to distinguish y0 and S0 from the critical index y and the
particular S2 [1] occurring later). This parametrization gives rise to a three-pole structure

of Xt, as is explicitly shown in Appendix D.
The similarity with the examples mentioned before is brought out by the fact that

the same parametrization also applies to the response function of the thermal expansion
coupled sound where [2]

«>i(q)=vq, r0 T0v2q2

82 (v2-v2)q2, y0 Dq2 (1.3)

and of the molecular deformation coupled sound where

OiQ)=v0q, ^o 0

820=(v2-v2)q2, yo-l/T. (1.4)

While in these examples the coupling is not at all related to a phase transition it
was the main idea of Ref. [1] that the strong temperature dependence of the soft mode
frequency is the reason for the coupling of the soft mode to temperature fluctuations
and hence for the central peak in perovskites. Without this idea it was indeed difficult
to explain the value of the coupling constant S2,m the mentioned case of perovskites and
A15's because of the difference with the examples of sound in fluids. In fact, all known
cases of central peaks in perovskites and A15's refer to shear modes; in the perovskites
they are in addition modes of the staggered displacement [1] (i.e. modes with wave vector
near the i?-corner qR (tt/o) (1,1,1) instead of the centre of the Brillouin zone).

While in Ref. [1] only the case of the soft staggered mode was investigated we give
in Section 3 below a general derivation of the response function xt valid also for the soft
sound mode. Starting in Section 2 from an expression for the fluctuating part of the
lattice free energy the mode coupling follows quite naturally. This will show convincingly

that the soft frequency coupling near a phase transition is a feature of similar
generality as the thermal expansion coupling.

In the case of A15-compounds a different phenomenological model, which also
leads to the form (1.1), (1.2) of the response function, has recently been proposed by
Kragler and Thomas [10]. In this work a coupling of the soft sound mode with the d-
electrons is introduced with the result that cojq) vq, ro 0, 81= (vl — v2) q2 where
v0 and v are, respectively, the unrenormalized and renormalized sound velocities and

y0 describes the electron dissipation. Unfortunately this model yields no information
about S0 and the estimate of y0 turns out to be much too large.

Experimentally, information about y0 is limited to order of magnitude bounds
[4, 5]. The reason is that the central peaks have not been resolved in the neutron
scattering experiments done so far [4-7]. The only existing estimate of the central
peak width in SrTi03 is due to the electron paramagnetic resonance (EPR) measurements

of Müller et al. [11], the theory of which is discussed in Sections 3 and 4. As
already mentioned in Ref. [1] the wave-number average over y0 which in our theory
is implied in this estimate, sets a limit to the validity of the hydrodynamic form of
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y0. In terms of the wave-number cutoff qm already introduced in Ref. [1] this means that
the average y0 Dq2 defined in Section 3 is meaningful only for qm 4 rr/a.

While it is evident from the above that little can be said at this moment about y0,
the tests of 8% turn out to be quite explicit, with respect to both the wave-number and
the temperature dependence. For the soft i?-corner (staggered) mode the frequency
behaves as co2t(q) oc q°ey and leads to [1]

(1.5)

For the soft zone center (sound) mode, on the other hand,

82°0 oc q° e2y~2

where e=(T-Tc)IT,
co2(q) oc q2ey and

r)2°o oc q2 e2y~2. (1.6)

Both these results are derived simultaneously in Section 4. The difference between the
two cases is that only in the first case the response function has the Ornstein-Zernike
form [9] so that cu((0) cu0 defines a correlation length.

On the other hand, neutron scattering at SrTi03 [4] and LaA103 [5] indicates that
Sq oc q°e°. This suggests a discrepancy with (1.5) which, however, was shown in Ref.
[1] not to exist within present accuracy. Similarly, while the experiments with Nb3Sn
[6] indicate that 8% oc q2e°, there is at present again no discrepancy with (1.6). All
problems related with experimental results are discussed in Section 5.

As shown in the general derivation of the response function xt hi Section 3 the
coupling parameter 81 is proportional to the (integrated) order parameter correlation
function St (q, co) which, in turn, is related to Xi (q, co) through the fluctuation-dissipation
theorem. The classical form of this theorem needed here is derived in Appendix A
which, more generally, sketches a framework of classical many-body theory. The idea
is to cast the hydrodynamic equations of motion into a canonical form by extending the
fluctuating part of the internal energy into a Hamiltonian. This formalism is in many
respects complementary to the way Zwanzig [12] and Kawasaki [13] introduce fluctuation

dynamics but is developed with the same goal. In turn our theory has many parallels

with the works of Kadanoff and Swift [14] and of Halperin, Hohenberg and Ma [15].
Finally, it is worth mentioning that in limiting this analysis to the cubic symmetry

above the phase transition we voluntarily eliminate unessential complications. Thus,
the mode frequencies in the vicinity of both the zone centre and the i?-corner have a

particularly simple parametrization [16]. In Appendix B the related eigenvalue problem

as function of the direction of q is solved algebraically and the connection with the

group theoretical notation [17] established. In particular the form expressing cojq)
in terms of the anisotropy parameter A [9] is justified for SrTi03. With the explicit
form of cotiq) the various integrals over the Brillouin zone, appropriately restricted by
the cutoff qm, then are easily evaluated in Appendix C.

2. The Hydrodynamic Equations

In the terminology of Ref. [2] hydrodynamics in a crystal is described by the equations

of motion of the elastic continuum and of the fluid of thermal phonons. For the
latter a flow or drift may safely be neglected here since effects of second sound or
Poiseuille flow [2] are of no importance.
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The elastic equation of motion may be written in the form

put -pPùt + 2 r,tj,ki Vj Vküt - 8FJ8ut. (2.1)
lkl

Here ut is a component of the local displacement vector u(r,t) of the soft mode with
damping P (P 0 for a sound mode) and r)u u are the components of the viscosity or
staggered viscosity tensor for a zone center or an i?-corner soft mode, respectively.
FL is the fluctuating part of the lattice free energy and p the mass density. The relation
between density fluctuation and displacement,

V-u 8(AV)/AV -8pjp (2.2)

where J F is a macroscopic volume element, shows that 8p 0 for a shear mode.
Without drift the only equation of motion of the thermal excitations is the entropy

balance equation [2].

(pS)"+V.7s o- (2.3)

where s is the entropy per unit mass and

l -jV(8T) (2.4)

the entropy current which in the absence of a phonon dirft is entirely due to an effective
heat conductivity A* (which for simplicity is assumed to be a scalar) and to the local
temperature fluctuation 8T(r,t). The entropy production density a can be shown [2]
to be quadratic in VST, in u and in 9 where 9 is the deformation tensor defined by

9lJ i(ViUj + VjUt). (2.5)

Since terms proportional to (ST)2, u2 and u8T and spatial derivatives thereof will be
neglected we may drop a and, according to (2.2), also (8p)s in equation (2.3).

While in general the lattice does not contribute to the entropy [2] this is not so
in the presence of a soft mode. Indeed, the soft mode parameters which occur in FL
strongly depend on temperature and hence

psL -8FJST (2.6)

is an entropy density carried by the lattice.
Thus FL is a functional of the local displacement u(r, t) and the local temperature

fluctuation 8T(r,t) and has the form

FJu,8T]=[d3rUco2o(T + 8T)u2 + i2CtjM(T + 8T)9,j9kl-pu-f
v \Z tJkl

(2.7)

Here cu0 is the soft mode frequency (cu0 0 for a sound mode). CtJ „, are the isothermal
elastic or staggered elastic constants for a zone centre or an i?-corner soft mode,
respectively, and f(r,t) is a local external force per unit mass.
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Performing a partial integration with the second term of (2.7), making use of (2.5),
the equation of motion (2.1) takes the form

f dco2 1 1 ac
\co20 + —rrST— CV ® V—— [(VST) + SrV] ® V(61 p p dT

92 a i „ „aU -+ äF+rä?VV®Vs)-/ (2'8)

valid up to bilinear terms in ü and 8T. Here CV <g> V is the symmetric matrix with
elements

(CV®V)il 2C,JMVjVk (2.9)
Ik

and r,V <g) V is defined in the same way.
The lattice entropy per unit mass is found from (2.6), (2.7),

1 dcol 1 ^-^ dC,, k,s,= °-u2 V_ii^.0..0 2.10L 2 dT 2pA,dT u "' K '
r ijkl

where the dependence on ST is of higher order and hence neglected. Thus the effective
entropy fluctuation due to fluctuations u and ST is

8s (c*/T)8T + sL (2.11)

where c* is an effective specific heat (per unit mass). Inserting equations (2.4), (2.10),
(2.11) into (2.3) we find

Id \„ T dcoldu2 T ^dCiik,d

where

D X*/(pcy) (2.13)

is an effective heat diffusion constant. In (2.12) the entropy production a as well as the
term (8p)s could be neglected because we have retained only linear terms in ST and in
d/dt while, as mentioned before, cr is quadratic in VST, in Ü and in 9 and (8p)s is proportional

to V-Û8T.
Equations (2.8) and (2.12) reduce to equations (3) and (4) of Ref. [1] if the temperature

dependence of the staggered elastic constants and the viscosities are neglected.
In introducing an effective heat conductivity A* and an effective specific heat c* we
want to take into account the facts i) that in general the transport coefficients depend
on frequency [12] (which for the neutron scattering data in question is rather high) and
ii) that not all the thermal degrees of freedom participate in the soft frequency coupling.
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3. The Soft Mode Response Function

We define the soft mode response function by

~ -. -, 1 8ujr,t)XiJr,t;r',t')=-—!A-y (3.1)
p8fjr ,t')

Introducing in addition the temperature response function

_> -, 1 8(8T(r,t))
epjr,t;r',t')=- '/ (3.2)

P 8fjr,t)
functional derivation of equations (2.8) and (2.12) with respect to the external force /
yields, respectively,

{ &»o 1 1 SC
RZ\a,2 + -AL8T — CV0V-- — [(VST)+STV]

k ol p pdl
d2 d 1 „ „ d dcol

+ d72+rdt-p^®vYt\ x« + WUi<Pj
' Ik

- -J d^~ [(V. 9i) iVn «0 + 9i Vm V„ ««]
" mnl

1 -, -,
:-8tj8(r-r')8(t-t') (3.3)

P

and

(a
\ T det)2. ^—> a T ^r-v ac,,, ,t 9

a7-ßVT^^^2^(^v?2^a7[(V^*)(V^)] (3-4)

where we have used (2.5).
In order to eliminate cpj we multiply equation (3.3) by 3' —d/dt' — DV2, noting

that this operator has the same effect as 9 d/dt — D V2 when applied to functions which
depend only on the coordinate differences r — r' and t — t'. Substituting dcpj from (3.4)
equation (3.5) can be written as

2 A,kXkj + BJd' - 9) cpj - Su d8(r- r') 8(t -1') (3.5)
k p

where

Aik d'
dco2 1 ldC d2

co2 + -^8T--CV <g> V-- — [(VST) +8TW] ®V + —dl p pol ot*

9 1 „ „ d) T ldco2\2 j d\ T dco2

+rjrA • v
* ÏjTjii) A+"A+T?A
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dC„

~dTdT
(V„«,) + (V,«,)

dt

x{(VmV„M,)|% + %-| + (V„Ml)

m pcJlfZ, dT' Y mit/

(Vm ûj + Vm uJ - + ùkVm + ukVm-

P SJ ~^J "Glm.nl "Ghr.sk

df~ct, Z, Z, dT
mnl hrs

rfir* (V.V.«,)

'dt

(vr%) + (Vr%)-

dt

+ (v»«,;
9 9

(V, Vr«„) + (Vm Vrwh)- + (V,*i„) Vm + (Vr«fc) Vm- (3.6)

and

9cu„ 1 x-^ dC,„ „,Bi —^Ui—y-^.[(VnUi)Vm+(^mVnu,)].
dT p-*-/ dTr mnl

Since the external force/was introduced only to generate the response functions
(3.1) and (3.2) we now let/go to zero. Then «and ST become thermal fluctuations which
essentially form a Gaussian distribution around zero with width proportional to the
temperature T. All physically relevant information is then contained in the average
< >0 over this distribution whose precise definition is given in Appendix A.

At this point we introduce a random phase type approximation by writing the
averaged equation (3.5) as *)

2 <Atk>o<Xkj>o + <Bty0(d' - 9)<9,>o - 8tj d8(r-P) 8(t -1'). (3.7)
k p

From Appendix A it follows that

(8T(r,t)y0 0, <ju(r,t)yo 0 and (ßjr.t) ujr',t) >0 0 ioxi^j and any?,?'

and, by time reversal invariance, <jut(r,t)ù)(r',t)y0 0 for any i, j, r, r'. Invariance of

averages under space and time translations (compare equations (A.30) of Appendix A)
then implies that (9' — d)<jepf)o 0 and that

(uJr, t)ujr,t)y0 pi8ij

with pt ^ 0 and

<yrujr,t) Vsujr,t)y0 - (uJr, t)Vr Vsujr, t)y0 pri 8rs8U

(3.8)

(3.9)

Equation (3.7) is essentially a mean field approximation and hence may not be adequate in the
critical region. However, since the goal of this paper is to understand the physics underlying
soft mode-related central peaks we seek the simplest mechanism yielding the form (1.1),
(1.2) of the order parameter response function. In an improved solution the basic 'interaction
Hamiltonian' (2.7) would have to be treated in perturbation theory along the lines of Ref.
[15], in which the critical behaviour is determined by recusion formulas. Presumably, such a
treatment would also modify the e-exponent in relations (1.5), (1.6). We plan to come back to
this problem in the near future.
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with prl ^ 0 are independent of r, t and are the only correlation functions left in <jA tky0-

Hence we find from (3.6), after replacing 9' by 9,

9 \( 1 92 9 1 9

--z)v2j|o2--cvc3v +- + r---,vft3v-u

+ ^[lf) *>h*Tr7?v Z dT dT +-V"V'3Ï (3-10)

r \ I r v mnrs

Since <£>0 only depends on f — r',t — t' we may now go over to the Fourier
representation

XiAlo) jd3r -\dt(xtj(r,t)y0exp[-i(q-r-cot)]. (3.11)

v

Multiplying the Fourier transformed equation (3.7) from the right by (—ico + Dq2)-1
y-1(?.cu) we find with (3.10)

- X^l co) (cu2 - cu2 - icoT) 8ik + RtJq) (1 - iconjq)) - icoSJJq) (-ico + Dq2)
P

(3.12)

Here

RiJq)=-^FCim,nkqmqn (3.13)
" mn

is the elastic matrix used in Ref. [1],

RlkWTlM^-^im.nkqmqn (3.14)
" mn

defines a relaxation time matrix t and

2 -, T /9cUq\2 T yr-^dCtn srdCrs nk
8ik(q) — \-zz-) 9t0tk + -z-r > —A Az-psrqmqn (3-15)

c*\dT) P20y£^s dT dT

axe generalized coupling constants.
Equations (3.12) to (3.15) give the general response function valid for any crystal

symmetry and any type of soft staggered or sound mode. We now assume cubic

symmetry so that in the parametrization (B.3) of Appendix B

1

— Gijikt (Xx — XJ 8,j 8k, 8,i + X2{8ik 8jt + 8t, 8jk — 8U 8kJ + X3 8U 8kl(l - 8„).

(3.16)

This reduces equation (3.13) to [15]

R,k(q) [Kq2 + (Ar - A2) qf] 8ik + X3qtqjl - 8ik). (3.17)
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Furthermore, for cubic symmetry pt in equation (3.8) becomes independent of i and
pn in equation (3.9) has the form

Prt P,8ri + PJl-8rt). (3.18)

Then the coupling constants (3.15) may be written

8fk(q)=828tk+Vik(q) (3.19)

where

fr/<K

is the coupling constant of Ref. [1],

VM —£{*, [A',2 + 2(A3 - A'2)2] qf + 2P± X'2(q2 - qf)} 8ik
ci

+ -: {<!>, (A'3 - X'J(2X'X + A'3 - X'J + 2p± X'2} qt qjl - 8lk) (3.21)
c*

and we have put AJ dXJdT.
In the case of the soft staggered mode of the perovskites cu0 /0, r*# 0 and CUM

are the staggered elastic constants. We may therefore neglect the temperature
dependence of the CtJM as well as the staggered viscosities r)ij>kt, so that X't 0, rlk 0
and Vik 0. For SrTi03 a further simplification comes from the fact that to a good
approximation A3 0 (see Appendix B) which makes the staggered elastic matrix (3.17)
diagonal with eigenvalues rjq) given by equation (B.14) of Appendix B. The response
function (3.12) now assumes the form (1.1), (1.2) with

Xik(q,cA) =Xi(q,co)8,k

cofQ) œ2+ rjq), r0 r
S2 S2, Yo Dq2 (3.22)

where S2 is given by equation (3.20).
In the case of the soft sound mode of the A15 compounds cu0 0 and r= 0, so

that S2 0 and the elastic constants CiJM and viscosities r,iJkl become the leading terms
of the soft mode. For Nb3Sn, in particular A3 ^ 0 at Tc [18] so that diagonalization of the
elastic matrix (3.17) is non-trivial (see Appendix B). We therefore restrict the discussion
of the response function (3.12) to the soft Tx mode [6, 18] with propagation direction
q0 cc (1,1,0) and polarization direction ê0 oc (1,-1,0) (see Table V in Appendix B).
Projecting equation (3.12) onto ê0, making use of (3.19) we recover again the form (1.1),
(1.2) with

x^iq, c») ie0,x~liqqo, a) e0)

af(q) (êo, R(qq0) h) =vlq2

r0 (èo, R(qq0) r(q0) ê0) r0 vl q2

82o=(êo,V(qq0)ê0) X2q2 (3.23)
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where from equation (3.17)

^ i(Ax + A2-A3) (3.24)

and from equation (3.21)

V.Tldv2,)2
X2 2^— —°- (3.25)

c* \dT

From (3.8) and (3.9), (3.18) follows

P i<u2>o (3-26)

and

^=K(V-£)2>0. (3-27)

Thus the existence of a central peak associated with the Ä-corner mode, equations
(3.22), and with the Tx mode, equations (3.23), crucially depends on the fluctuations
(3.26) and (3.27), respectively. In particular, ptl #0 means, according to (3.27) that
an appreciable amount of longitudinal thermal phonons must be present which
evidently is always the case.

It is useful to express the fluctuations (3.26) and (3.27) in terms of the Fourier
transformed correlation function or dynamical structure factor

sijq,co) \d3r [dt— <ujr,t) uJ0,0)yoexp[-i(q-r - cot)] (3.28)
J 1 2rr
v

because Si} is related to the response function (3.11) by the classical fluctuation-
dissipation theorem

Su(q,co)=^^xîj(q,co) (3.29)
7TCU

derived in Appendix A (see equation (A.38)). Here x'J is the dissipative part related to
the response function by the dispersion relation (see equation (A.33))

C dco v7,(q, co)

Xu(iz)=\—<^L-L; lmz>0. (3.30)
J TT CO — Z

With (3.29) and (3.30) the dynamical structure factor associated to the form (1.1),
(1.2) of the response function readily follows [4],

n _ /_ S2y0 W/ « 2 '2
Si(q,co)=[r0 + A^- {[cof(q)-co2 +.2fn\ ..2 "0^0

kBT \ y2 + co2J{\ «"' y2 + o,2

+"2ir°+!+^i> • (3-3i)

From (3.26) to (3.30) one also finds the fluctuations, namely with (3.22) and (1.1)
[1]

P/kB T V'1 | i 2 Xitil 0) ipV)-1 2 coT2(q) (3.32)
a ' a
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and with (3.12) and cu0 0, T= 0

<l>JkBT=V-1ZiZq,qjXtJq,0)
T ti

(ZpV)~1I(q,R-1(q)q). (3.33)
«*

In certain paramagnetic impurity centres the local displacement generates an
effective magnetic field via an effective coupling constant G. In such a case time-dependent

fluctuations (uJ0,t) «j(0,0)>0 at the centre give a contribution AH to the EPR
linewidth. Since the time imprecision of these fluctuations is T £ (AH)-1 this
contribution is roughly given by

+ T

(AH)2 ~ G2(2T)-1 f dt -?- <«,(0, t) uJO, 0)>0 (3.34)
_r

2-7T

or making use of (3.28), by

(n/2)AH

(AH)2~G2 J ^¦f^StJlco). (3.35)

o T

If Su is given by the diagonal form (3.31) and if this expression is dominated by the
central peak, i.e. close to Tc, the effect of the time averaging in equation (3.34) depends
sensitively on the width of the central peak in St relative to the width (77/2) AH
describing the time imprecision in (3.35). We assume here that the coupling constant G

varies little with temperature. (For a detailed analysis of the EPR lineshape and
crossover problem see Ref. [19].)

In the fast motion regime [19] the central peak averaged over q is broad compared
to AH, or <Mj(0,<)«j(0,0)>o varies fast during the time imprecision (AH)'1. Hence we
find from (3.35), (3.31) and (3.22)

AHI iG2V-12SJq,0)

(G2 kB T/2ttV) 2 (P + 82/Dq2) co7*(q). (3.36)

In the slow motion regime [19] the ^-averaged central peak is narrow compared
to AH, or (u,(0,t)uJ0,0)yo varies slowly during (AH)-1 so that we may use equations
(3.26), (3.32) in (3.34),

P

2r~r
(AHS)2 G2— <«f>0 (G2 kB T/2ttV) 2 o>T2(q)¦ (3-37)

For further discussion it is useful to normalize the ç-averaged central peak by
defining the function

or(cu2) V-1 J SJq, cu)/^-1 2 SJq, 0). (3.38)
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The coupling constant G may be eliminated from (3.36) and (3.37) in the form

ao

I
dco (AHA2-°^ jâÉ; (3-39)

0

and equation (3.35) may be written as

(ir/2)JH
C dco IC dco

(AH/AHS)2^ a(co2) \—a(w2). (3.40)

4. Critical Behaviour

Above Tc the isothermal susceptibility diverges with exponent y [20]. For the
parametrization (1.1), (1.2) this means that in the limit q -> 0

X:1(q,0)=pcof(q)ccey. (4.1)

Hence we have in the case (3.22) corresponding to the i?-corner mode of SrTi03

co2 X2K2ey (4.2)

and in the case (3.23) corresponding to the Tx mode of Nb3Sn

v20=X2ß0ey. (4-3)

In the first case equations (3.22), (B.14) lead to the Ornstein-Zernike form [9]

cof(q)=X2{K2 + q2-(l-A)q2} (4.4)

where the inverse correlation length k vanishes with exponent v [20]

k k0 e\ (4.5)

In the limit q ->- 0 equations (4.4), (4.5) lead to (4.2) with

n 2 - y/v 0 (4.6)

where r, is the critical exponent describing the deviation from Ornstein-Zernike
behaviour [20].

In the Ornstein-Zernike case we may define new variables

x Klqm=(eleoy (4.7)

where qm is a cutoff wave number which comes from the fact that equations (3.26),
(3.27) and (3.34) actually involve a spacial average of the correlation function
<jujr,t) 14,(0,0)>o over microscopic distances. The critical region is then defined by

y 2v>l, x4V e4e0<emf (4.8)
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whereas in the mean-field region

y 2v=l, x>l, e>e0^emf. (4.9)

If a mean field region exists it is obvious from (4.9) that the changeover temperature
from critical to mean-field behaviour determine by em/ should be close to e0 as defined by
(4.7).

_

Since the critical behaviour occurs only in the limit q -> 0 of the soft modes (4.2)
and (4.3) it is evident that the integration over the Brillouin zone smooths out the
singularity in equations (3.32) and (3.33) so that p andp, axe non-critical. Indeed with
equations (C.6), (C.7) of Appendix C we find

9 (kB Tqj2rr2 PX2 VA) (1 - xtan-^ljx)) (4.10)

and with (C.ll)

ip» (kBTq3m/18TT2poiX2)He) (4.11)

where ê(e) as given by equation (B.27) is slowly varying and of order unity.
Parametrizing the specific heat c* in terms of an effective number of thermal

degrees of freedom 2/* as

f*k Tc*y(T)=J—A- (4.12)
pa3 Tc

where a is the lattice constant and the last factor takes care of the leading temperature
dependence near Tc (see Section 5), the coupling functions (3.20) and (3.25) may be

written, respectively, as

82=g(e)e»-2 (4.13)

and

A2 k(e) e2y~2. (AAA)

Here g and k are smooth functions of e obtained with the help of (4.10) and (4.11),
respectively,

g(e)/g(0) (l + e) (1 - xtanAl/x)) (4.15)

with

g(0) (2v2X2K0qm(aKn)3lTT2f* VA) (4.16)

and

k(e) (y2 X2ß20(aqm)3l9TT2f* oc) (1 + e) &(e). (4.17)

By comparison with (3.32), equation (3.37) may be written, with (4.10), (4.15),

(AHs)2=(AH0s)2g(e)lg(0) (4.18)
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where

(AH0s)2 (G2 kB Tc qljArr3 X2 VA) (4.19)

and qm is the cutoff for the slow motion regime. From equation (3.36) we obtain with
(C.6), (C.8)

AHf AH0fh(e)e-v (4.20)

where

Â(e)=^(l+-^-|(l+e)(tan-1---^) (4.21)
k0\ ry(e)J \ x 1+x2}

and

AH0f (G2 kB Tc rj8TT3 X\ VA qi). (4.22)

Here qm is the cutoff for the fast motion regime and the average y(e) is defined by

l/y(e) (Dq^e))-1 V'1 | (Dq2)-1 coJ^/V-1 | a>T*(q) (4.23)
7 7

q(e) is explicitly calculated in equations (C.9) and (CIO). From (4.19) and (4.21) the
coupling constant may be eliminated [1],

(AHos)2/AHof 2X2qiqsm/r. (4-24)

The transition between the two regimes (4.18) and (4.20) is governed by temperature.

At a fixed T the right hand side of (3.40) is a monotonically increasing function of
AH, so that

AHs>AH>AHf; T const (4.25)

Since AHS oc €° and AHf oc e~v as e -*¦ 0 it is evident from (4.24) that, sufficiently close
to Tc, AH AHS, and according to (4.18), (4.7) [21]

(AHS)2 (AH0s)2 (1 - Cev + 0(e2")} (4.26)

with [1]

TT TTKa
C -(e0)-v=—-. (4.27)2K0> 2qm

For sufficiently small e the dynamical structure factors S, is dominated by the
central peak part (D.ll) of Appendix D for which equation (3.40) becomes

(^^F-y-iLltan-^^^V^y\AH.J é>Q2cofTT \ yi Jl 44^Qfco2

-ï-tan-1!^ AHKyiyY (4.28)
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Here the second equality defines the ^//-dependent average <y0> over q of the central
peak width y0. This quantity defines a transition line-width

AHtr -<jyiy^AHjV2 (4.29)
TT

where the second equality determines the transition temperature to the fast motion
regime as function of the coupling constant [11, 19], e etJG).

5. Discussion of Experimental Results and Conclusion

i. SrTi03: Neutron scattering

In Table I are compiled the parameters for SrTi03 used in Ref. 1. M NApa3
is the molecular mass, NA being Avogadro's number. The values of the parameters
A2, A3 and A are discussed in Appendix B. 2/= 2pa3cv(TJ/kB is the experimental number

of thermal degrees of freedom. The temperature dependence of equation (4.12) is
justified by the fact that near Tc, approximately, cv oc T [17, 23].

Table I
Numerical values of the parameters characterizing the displacive phase transition of SrTi03, as
used in Ref. [11

a 3.904 Â [22]
M 183.5 g/mole

p 5.12 g/cm3 [22]
A2 89 (meV Â)2 [17]
A3 0 [17]
A 0.04 [17]
r=0.88meV [4]

Tc 105 K [4, 21]
Mcv(Tc) 11.6 cal/mole K [17, 23]

/=5.84
X(TC)= 0.167 W/cmK [24]

X(Tc)lpcv(Tc) 812 meV Â2

The parameters of the fit of the neutron scattering data for SrTi03 [4] obtained in
Figure 1 of Ref. [1] are collected in Table II. As has already been remarked in Ref.
[1] it is not possible to fit the 82-data of Ref. [4] with the more realistic critical value
v 0.65 of Refs. [11] and [21]. The use of the value 0.92 obtained from the oiQ-data of
Ref. [4] is justified only by the internal consistency with this reference achieved in
this way.

This consistency is well born out by the values of e0 given in Table II which not
only are in agreement with equations (4.8) and (4.9) but also with the changeover
point lnem/ S —1.2 or emf S 0.30 of the cu0-curve in Figure 1 of Ref. [1]. Also the values
of the fraction of the Brillouin zone involved in the integral in (3.32) and measured by
qm a/rr is reasonable ; in the critical region the neighbourhood of q 0 is clearly enhanced.

The ratio/*//given in Table II may be interpreted as the fraction of thermal
degrees of freedom not taking part in the freezing out of fluctuations. It therefore is
expected to parallel the number qma/rr which is well born out in Table II. This
interpretation of/*//suggests that the effective heat conduction is frozen out accordingly,
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Table II
Numerical values of the parameters characterizing the critical and mean-field behaviour of SrTi03
above Tc 105 K, as obtained from the neutron scattering data of Ref. [4] fitted in Fig. 1 of Ref. [1]

Parameter Critical Mean-field

V 0.92 0.50
Ko, Â"1 0.676 0.405
ta*(0). (meV)2 5.2 1.5

e0 0.080 0.30
ln<r0 -2.53 -1.20

A"1 0.066 0.22
?m«/w 0.082 0.27

/* 0.34 1.8

Pif 0.058 0.31

so that A*/A _¦ cy/Cy=f*/f, and the value D X/pcvgiven in Table I is indeed realistic.
Note that in this point we deviate from Ref. [1], where in addition the fraction (/*//) M
was related to the oxygen rotations. This fraction, however, has no obvious physical
meaning (but rather (///*) M).

With this new value of D we have to re-estimate the parameter y0 Dq2 of equation

(3.22). A representative value of q is obtained with the help of the average q
defined in (4.23), taken at eres ~ 0.013 which corresponds to the temperature resolution
of Ref. [4], see also [1]. From equation (C.9) we find q(eTes) 0.021 A and

yres=^2(O=0-12meV (5.1)

which happens to be the same as the value obtained in Ref. [1] from the wave number
resolution <7res 0.003 A-1 (note that here Dqfes 0.0073 meV). Since yres represents
a lower bound of y0 the minimum S2 0.3 + 0.1 (meV)2 obtained in Ref. [4] is easily
explained by the estimates of Ref. [1], so that there is indeed no discrepancy with (1.5).

With the above interpretation of the ratio/*//it is also possible that/* goes to
zero at Tc, which means that all the thermal degrees of freedom freeze out. In particular,
/* oc e4y~2 would lead to a finite limit of S2 at Tc. On the other hand, as remarked in Ref.
[1] the value of yres disagrees with the bound y0 < 0.02 meV given in Ref. [4].

Note that both values q(etes) and qres axe smaller than the critical qm of Table II.
And since qma/iT 0.082 4 1 the hydrodynamic form y0 Dq2 as well as the average q
defined in (4.23) are well justified. We see, therefore, that, apart from (5.1) the consistency

of our fit with the SrTi03-data of Ref. [4] is quite good. As to LaA103 the data of
Ref. [5] are unfortunately not sufficient to go beyond the comment made in Ref. [1].

ii. SrTi03: Electron paramagnetic resonance

The parameters of the fit of the EPR data for SrTi03 [21] obtained in Fig. 2 of
Ref. [1] are collected in Table III. In the fast motion regime the impurity spin senses a
time-averaged displacement fluctuation. This time average smears out the
microscopically long range correlations in equation (3.34), so that the impurity centre
appears strongly localized. Hence the ^-integration in equation (3.36) extends over the
full Brillouin zone and qm rr/a.

In the slow motion regime the impurity spin senses an instantaneous displacement
fluctuation. Hence the microscopically long range correlations simulate a large ex-
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Table III
Numerical values oft he parameters characterizing the critical behaviour of SrTi03 above
Tc 105 K, as obtained from the EPR data of Ref. [21] fitted in Fig. 2 of Ref. [1]. The slow
and fast motion regimes are defined relative to the reciprocal EPR linewidth AH

Parameter Slow motion Fast motion

V 0.65 0.65

Ko. A"1 1.19 1.19
10-*meV
Gauss

9.0
16

S:S x^+w)-'
to 0.022 0.55
In «o -3.82 -0.60
qm, A-» 0.10 0.805
am allT 0.12 1

tention of the impurity centre which reaches over many unit cells and qsm 4 rr/a.
Since equations (3.32) and (3.37) contain the same ^-integral it is quite satisfying that
the value of qsm in Table III is of the same magnitude as the <7m-values of Table II.

The value of k0 in Table III is obtained from qm rr/a and the fitted value of e^ via
equations (4.5) and (4.7). Using the same value of k0 and of v in the slow motion regime
the value of qsm is then determined from the fitted value of e0. With this e0 equation
(4.27) leads to C 18.6 [1] in accord with Ref. [21]. As remarked in Ref. [1] the slow
motion fit is quite insensitive to the value of v; we also produced a fit with the value
v 0.92 of Table II which covers both the slow and fast motion data of Ref. [21].

Insertion of the values of Tables I and III into equation (4.24) yields

T(l + 82/ry) S 82/y 4400 meV (5.2)

(note that in Ref. [1] this value is too small by a factor of tt) This is to be compared with
the value obtained from equations (4.5), (4.13), (4.23) and (CIO) and Tables I, II, III
(note that, according to the values of e0 of Table III, x 4 1 holds practically for all
data in Fig. 2 of Ref. [1])

S2/y (g(0)/DK2) e2"'2 0.16 e-0'7 meV. (5.3)

The discrepancy with (5.2) comes from the fast motion fit where y given by (4.23)
is not justified since qm rr/a while y0 Dq2 is valid only for hydrodynamic values

q 4 -rr/a. Therefore it was argued in Ref. [1] that (5.2) is preferable to (5.3) and may be
used to estimate the average y of the central peak width y„ defined in equation (D.ll)
and approximately given in equations (D.8).

For cu2, <^ S2 which according to Figure 1 of Ref. [1] holds for ln e < -2.2 we deduce
from (D.8) y' s cu^/y)"1. With equations (4.2), (5.2) and with A2 from Table I, k0
and v from Table III we find, y being measured in Gauss [1],

ln(Ty') 13.1 + 1.30 lne; lne<-2.2 (5.4)

(note that in Ref. [1] the wrong factor rr in (5.2) is just compensated by having used for
k0 in (5.4) the critical value of Table I instead of the value of Table III). Equation (5.4)

or y'/e1-30 s 0.029 meV s 5000 Gauss s 4.4 x 1010 sec"1, valid for e <^ 0.1 is the main
result here, giving the first estimate of a central peak width (see also Ref. [11]).
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Equation (5.4) represents the dividing line between slow and fast motion regimes
(the broken line in Figure 2 of Ref. [1]). This interpretation also follows from equation
(4.29) if we identify the average (2\/2/w) <y0> with the above y The transition
temperature between the two regimes obtained in this way is the intersection between the
slow motion line and equation (5.4), i.e. according to Figure 2 of Ref. [1], lnetr ~ —4.6 or
etr^ 0.010.

ill. Nb3Sn: Neutron scattering

The available parameters for Nb3Sn are collected in Table IV. The elastic
parameters A2, a, ß0 and the exponent y are discussed in Appendix B. We note that the value
of the exponent y is almost the same as that for SrTi03 from Ref. [21]. The ^-dependence
of equation (1.6), S0 Xq in equations (3.23), agrees with Figure 10 of Ref. [6]. This

Table IV
Numerical values of the parameters characterizing the Martensitic phase transition of Nb3Sn

a 5.288 Â [25]
M 397.4 g/mole

p 4.46 g/cm3
\2ßo 3.34 x IO10 cm2/sec2 [6, 18]

a 5.88 [18]
ß0 1.05 [18]
Tc 45 K [6, 18]

Mcv(Tc) 25.6 J/mole K [26]
/=3.07
y =1.35 [6, 18]

A2 0.417 x 1010cm2/sec2 [6]

Figure 10 also indicates that A is at most weakly temperature dependent, which is
consistent with the fact that from Figure 12 of Ref. [6] a unique value of A2 can be
extracted. This Figure 12 also yields values for X2ß0 and y which are consistent with those
obtained from Ref. [18] in Appendix B.

From equations (4.14), (4.17) and with the values of Table IV we deduce

(/*//) €-2v+2 Try2X2ß20Y
- 0.30 (5.5)

(qma/Tr)3(l + e)&(e) 9a/A2

which is a very reasonable number. Since (1 + e) {1(e) is of order one the most obvious
conclusion from equation (5.5) is that, as discussed in the case of the neutron scattering
data for SrTi03,/* oc 62y-2.

In conclusion we hope to have demonstrated the validity of our hydrodynamic
understanding of soft mode related central peaks. The theory presented in this paper
may be oversimplified in many respects and therefore fail to explain certain finer
features such as the parameters y0, qm and/*. But the quality of the experimental
results does not allow at present to go beyond the 10 to 30% accuracy of the fits
discussed in this last Section.
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APPENDIX A

Canonical Fluctuation Dynamics

In order to gain a systematic description of the dynamics of the fluctuations u
and ST we here define canonical variables and construct a Hamiltonian which leads to
the equations of motion (2.8) and (2.12).

It is important to realize, however, that dissipative terms cannot be described
by a time-independent Hamiltonian because the corresponding terms in the equations
of motion have the wrong signature under time reversal [2]2). We therefore put T= 0,

ffii.ki — 0 and D 0 in this appendix, it being understood that the corresponding terms
can be generated by a linear response treatment based on the dynamics developed here.

The total free energy fluctuation is given by

where FL is the lattice part (2.7), so that with (2.6)

SF / cVi
8(8T)

p\sL + -rr,8T) p8s. (A.2)

Since the natural canonical coordinates turn out to be u and p8s we perform a Legendre
transformation to the internal energy fluctuation

U[u, P8s] F+jd3r8 TP8s (A-3)

so that, according to (A.2) and (2.10),

8U T T dco2 T r+.dCuu
¦ 8T[u, P8s] — P8s + °-u2 + > -AAL q $ iAA)L r J r,r*r Or* ST 9«/-* Z-, r)T tJ *' V '8(p8s) r pc*r 2c* dT 2pc*vA* dT

tjkl

The dynamics of the system may now be obtained by associating canonical
momenta p and -rrtou and p8s, respectively and by defining the Hamiltonian as

p2
H\j>,tt;u, p8s ; t] U[u, P8s] + f d3 r —. (A.5)

v 2P

A homogeneous equation of motion of type (2.8) is obtained with a time-dependent Hamiltonian
of the form H(t) (1/2) (e~r'p2 + w%e+rtq2). I am grateful to W. Schlupp for this example.
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Here the parametric time dependence comes from the external forcef(r, t). The canonical
equations of motion now follow with the help of (2.7) and (A.l) to (A.5),

x 8H _p
8p p

-, 8H [ 9cu2 1

p-M-T°+w8T--Pcw
1 dC _ )_ -[(VST) + STV] ® V + 0(u2) \u + pf
pdT j

8H
(p8sy= — 0

OTT

8H T „ T dco2 T ^ dCij k. n ^ ^7r --—— =—pSs + °-u2 + A ~r- 9u9k, 8T[u, p8s]. (A.6)
S(p8s) pc*/ 2c* dT ZpCvf^ dT

These equations are the same as (2.8) and (2.12) with r 0, r,i]M 0 and D 0.
In order to develop a many-body theory of classical observables we restrict the

fields u(r, t), p8s(r, t) and the associated momenta to the discrete set of points R spanning
cells whose linear dimension, b, is a multiple of the lattice constant a (an even multiple
for staggered fields). In renormalization group theory this corresponds to integrating
out the irrelevant Fourier components uik*etc. with |£| > A [27]. Writing the complete
set of these discrete coordinates {uJR,t),b3p8s(R,t)} as vector Q(t) and the canonically
conjugate momenta {b3pt(R,t),rr(R,t)} as vector P(t) equations (A.6) are the special
case A P,Q of the following general equation of motion :

A(P,Q;t) LA + dA/dt. (A.l)

Here

lJJL.jLAAA (a.8)
SP 8Q 8Q 8P

is the Liouville operator where the dot designates a scalar product in the vector space
of P and Q. In terms of Poisson brackets

S/1 Sß 35 S^

^--^-«ë'âp-âêw (A-9)

equation (A.7) may also be written as

LA=[A,H) (A.10)
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The formalism could be developed further into a Hilbert space formulation of classical
mechanics [28]. This, however, is not our aim here.

Writing the set of external forces {b3pfJR,t),0} as vector E(t) and making
use of (2.7), (A.l) and (A.3) the Hamiltonian (A.5) may be written as

H(P,Q;t)=H0(P,Q)-Q-E(t) (A.ll)

where H0 is independent of the external force and hence contains no parametric time
dependence. Similarly we have from (A.8)

L(t) L0 + E(t)-8/8P. (A.12)

The classical time evolution depends on the initial values P, Q which we take at
t 0. It is convenient to express this dependence by a double time argument [29],

P(t,0)=P(P, Q;t); P(0,0) P

Q(t,0)=Q(P,Q;t); Q(0,0)=Q. (A.13)

Without parametric time dependence, E 0, the time evolution can be obtained in the
form of a Taylor series, expressing the nth time derivative with the help of (A.7) as L0,

A(t)=\ {^Al2LI" A(t0) exp[L0(t-t0)] A(t0). (A. 14)
t—i nl
n=0

Including parametric time dependence iteration of equation (A.7) yields successively

more complicated expressions,

A L2A + LA + d2A/dt2

A L3A+3LLA + LA + d3A/dt3

etc.

Restricting the class of functions A by the condition 9^4/9/ 0 the time evolution may
be expressed as

A(t) U(t,t0)A(t0) (A.15)

where, according to (A.7), the operator U obeys the equation

?-U(t,to) L(t)U(t,to). (A.16)
ot

Integration with U(t,t) 1 yields

U(t,t0) TexpU dt'L(t') (A. 17)



770 Charles P. Enz H. P. A.

where T is the chronological ordering operator and the group property

U(t,t')U(t',to) U(t,tQ) (A. 18)

immediately follows.
Application of equations (A.15), (A.17), (A.18) and (A.12) to the response function

(3.1) yields in the notation (A.13) and labelling vector components,

8QJt,0) JUxJt,0)
8EJt') 8EJt')

Qy

9(t - 0 6(f) UxJt, t')A {Uya(t', 0) QJ

9(t -1') 9(f) UxJt, t') 8QJt', 0)/8Pß. (A.19)

This equation depends on three times but, due to the deterministic nature of the classical
time evolution, only the time of preparation, t 0, and the time of perturbation, t',
are relevant. Thus it is natural to define the classical response function x(t) as the change
in the initial values, induced by the perturbation,

X,ß(t)=iijno8QJt,0)/8EJt')\E=o

9(t)8QJt,0)/8Pß

-9(t)[QJt,0),QJ0,0)] (A.20)

where we have made use of the relation

8AJ8Pß [Qß,Ax] (A.21)

which follows from (A.9).
In order to be physically meaningful the result (A.20) has to be freed from the

particular initial values by taking a statistical average over the fluctuations P,Q.
These fluctuations essentially form a Gaussian distribution around zero with a width
depending on temperature. Hence, as in renormalization group theory [15, 27], the
distribution is that of the canonical ensemble3)

0>o(P,Q) cxp{(Po-H0(P,Q))/kB T). (A.22)

In the case of friction type [30] or Ginzburg-Landau type [15] equations of motion the
distribution function G(u0, u, t) at time t of the variables u with initial values u0 (G is the fundamental
solution, i.e. G(u0, u, 0) S'w — u0), of the associated Fokker-Planck equation) can be constrc-
ted with the device of fluctuating forces [30]. G has the property that (i) G(u0,u, oo) P0(u),
independent of u0, and (ii) jdu0 P0(u0)G(u0,u,t) P0(u), independent of t. Thus the averaging
over the initial values with the equilibrium distribution P0(u) leads to equilibrium values.
Furthermore, P0(u) exp[(oi0 — H0(u)))kB T] is essentially a Gaussian distribution; for a
velocity u (Brownian motion) HJu) is the kinetic energy [30], for a thermodynamic variable u
(diffusion) — H0(u)jkBT is the entropy [31, 15]. The mentioned equations of motion [15, 30]
are all of first order in the time derivative (rate equations). It is the virtue of the canonical
formalism to cast the second order equations of motion of mechanics also into the form of rate
equations. The difference is that the equations of motion mentioned before [15, 30] are essentially

dissipative.. It is therefore important to note that the parameters describing this
dissipation (the friction coefficient/of Ref. [30] or the time scale /*„ of Ref. [15]) do not enter the
equilibrium distribution function P0(u). In fact, the only relevant feature for the above
properties (i) and (ii) to hold is that the equations of motion have the form of rate equations so
that there exists an associated Fokker-Planck equation. This justifies both the use of averages
(A.24) over initial values and the form (A.22) of the equilibrium distribution.
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Here the normalization

+ co

j\dPdQ<?0(P,Q) l (A.23)
— oo

determines the unperturbed 'free energy' p0(T) [27] (p0 of course has nothing to do with
the thermodynamic free energy of the system) and the average is defined as

+ to

<jAy0 jjdPdQ(A^0). (A.24)
— CO

A straightforward application of the definitions (A.8) and (A.9) leads to the
identities

L0(AB) (L0A)B + A(L0B)

L0[A, B] [(L0A), B] + [A, (L0 B)] (A.25)

which by iteration can be generalized into

eL°'(AB) (e'-o'AyeC-o'B)

eLo'[A, B] [(eL«'A), (eL°'B)]. (A.26)

On the other hand it follows by partial integration that for any A bounded by a
polynomial in P,Q

+ CO

fjdPdQLo(A0>o)=O. (A27)
— 00

Since according to (A. 10), (A.25) L0(H$) =0 for n 0,1,... it follows by iteration of
equation (A.25) with B H0> that for any power series/

L0(Af(Ho)) (L0A)f(H0). (A.28)

With this result iteration of (A.27) yields, in the notation of (A.24),

<**o»i4>o <4>o. (A.29)

In particular, application of (A.26) results in the time translation invariance [29]

<A(t)B(t')y0 <A(t + T)B(t' + T)y0

<JA(t), B(t')]y0 <JA(t + t), B(f + r)]>0 (A.30)

where the unperturbed time evolution (A. 14) is understood.
Taking the average (A.24) the initial time arguments in equation (A.20) may

obviously be dropped,

<X*e(t)>o - 9(tK[QJt),Qß(0)]y0. (A.31)
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This response function has the correct causal behaviour, so that its Fourier transform

xH=j*«to'<xW>o (A.32)

satisfies the dispersion relation

f dco y"(cu)
X(Z) —AAA- lmz>0. (A.33)

J TT Oi— Z

From (A.31), (A.33) one finds, with (A.30) and the antisymmetry (A.9),

2%'„(cu) - <[(?». Ç,(0)]>o (A.34)

where Ç(cu) is the Fourier transform of Q(t). Making use of (A.21) equation (A.34)
takes the form, after a partial integration and use of (A.22),

1 A .8flo\
2i^=k-f\QMWß/o {AM)

Writing 8H0/8P L0Q and shifting the Liouvillean to Q(co) with the help of (A.27),
(A.28) we obtain

icu
2%"„M — <QJco) QJ0)yo. (A.36)

kBT

Defining the correlation function

S.„(t) =^-QJt,0)QJ0,0) (A.37)

and using for it the analogous definition (A.32) we finally arrive at the classical
fluctuation-dissipation theorem [29]

S(co)=^^x"H (A.38)
7TCU

in agreement with the limit h co 4 kB T of the quantum mechanical case [32].

APPENDIX B

The Elastic or Staggered-Elastic Matrix for Cubic Symmetry

The matrix (3.17) may be written

A2 + (Ai — A2) x2, X3 xy, X3 xz

R(q) \X3yx,X2 + (Xi-X2)y2,X3yz \f (B.l)
A3 zx, X3 zy, X2 + (Xi — XJ z2



Vol. 47, 1974 Coupled Hydrodynamic Modes 773

where

q qlq (x,y,z) (B.2)

and

Ai cn, A2 c44

A3 c12 + c44 (B.3)

are the cubic elastic or staggered-elastic constants.
Introducing the unit polarization vector

ê=(u, v,w) (B.4)

the eigenvalue equation

R(q)ê(q) r(q)ê(q) (B.b)

takes the form

A3 x
s x2 + (vy + wz)

Xi — X2u

y2 +- — - (wz + ux)
Xi — X2 v

Z2+—A—-(UX+Vy) (B.6)
Xx — X2 w

where the eigenvalue is written as

r [A2 + (A1-A2)s]<?2. (B.7)

Defining the quantities

p 1 ^— (B.8)
Ai — A2

t -±?-ie.q) (B.9)
Ai — A2

and making use of (B.2) and (B.4) equations (B.6) can be solved for u, v and w with
the result that

e(q) d-^L-,^—2,—Z—\ (B.10)
l s — px2 s — py2 s — pz2 J

Insertion of (B.10) and (B.8) into (B.9) then leads to the cubic equation in s

s2(s - 1) ^(2 - p)P(q) s - p2(3 - 2p) Q(q) (B.ll)
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where

P(q) x2y2 +y2z2 + z2 x2 < 1/3

Q(q) x2y2 z2 «Sl/27. (B.12)

For given values Xx, X2, X3 equations (B.8), (B.ll) and (B.12) constitute an
elementary determination of the eigenvalues (B.10) in terms of the wave normal (B.2).
The three solutions of (B.ll) can for example be determined graphically as intersections
of the variable straight line on the right hand side with the fixed curve of third degree
on the left hand side. In particular one finds for the symmetry directions one
longitudinal and two transverse solutions as given in Table V.

Table V
Eigenvalue parameters of the elastic or staggered elastic matrix for the longitudinal and transverse
modes along symmetry axes, for cubic symmetry. The labels are those of Refs. [17] and [6],
respectively

Const, q r,lq2 Label r,jq2 Label Const, ê,

(1,0,0) A, An X2 A5,T (0,1,0)
(0, 0, 1)

(1, 1,0) J(A, + A2 + A3) 2i A2 22. T2 (0,0, 1)

i(X, + X2-XJ J.3,T, (1,-1,0)
(1,1,1) }(A1 + 2A2 + 2A3) An |(A1 + 2A2-A3) /43 (1,-1,0)

(1,0, -I)

From Table 2 of Ref. [17] we deduce, for the high temperature phase of SrTi03,
Ai 8 + 2, A2 205±27, Xx + X2 + X3 224 + 44 and Xx + 2X2 - X3 393 ± 69 in
units of 108 cm2/sec2. The last two values combined with the first two yield, in the same
units, A3 11 +52 and 25 + 88 which both are compatible with A3 0 or, according
to (B.8), with p l.ln this case the solutions of equation (B.ll) are trivial, namely
s x2, y2, z2, so that the eigenvalues (B.7) reduce to the expressions given in Ref. [1],

r,(q) X2[l-(l-A)qf]q2 (B.14)

where

A XJX2 (BAS)

is the anisotropy parameter of Schwabl [9] and has the value 0.039 ± 0.015 [17].
In equation (3.33) we need the inverse of the matrix R(q). Introducing the abbreviations

«i [A2 + (Ai - A2) x2] q2, etc. (B.16)

for the diagonal elements of R and

bx X3yzq2, etc. (B.17)

for the off-diagonal elements the corresponding elements of R_1 are

A1 (a2a3-b2)/\\R\\, etc. (B.18)
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and

Bx (b2b3-axbJI\\R\\, etc.

where

PH «ia2a3 + 2bxb2b3~2 «¦ tf
i

is the determinant of R. With equations (B.16) to (B.20) the evaluation of

(q, RAqAq) I Atq2 + 2(Bxq2q3 + cycl.)

775

is straightforward and yields

xXJq,R-1(q)q)=N(q)
O 1 o

N(q)+?- + A ^Q(q)
et x

Here we have introduced two new parameters

a=(Ai-A2 + A3)/(2A2)

and

j8 Oo7A2 (Ai + A2-A3)/(2A2)

and the function

N(q) 1-4(1-/3) P(q) + 12(1 - ß)2Q(q)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

where P(q), Q(q) are defined in (B.12).
The parameters a and ß are chosen such that a is to a good approximation

independent of temperature while ß becomes soft as

/3 &,€'• (B.26)

With the identification of the modes in Table V we have extracted from Figure 1 of
Ref. [18] x 5.88 + 1.6, valid for Tc ^ T < 2 Tc, ß0 VOb, y 1.35 and A2 3.17 x
IO10 cm2/sec2.

It is then obvious that the right hand side of (B.22) is never larger than one. And
from (B.25) one finds that the numerator N(q) > min (£, /3). Hence the expression (B.22)
is always between zero and one and the angular average

§(e)=-±-jdQSocX2(q,R-1(q)q) (B.27)

is a slowly varying function of order one.
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APPENDIX C

Evaluation of Wave number sums

In equations (3.32), (3.36) and (3.37) expressions of the form

In (2TrlK)3V-1Z(cof(q)/co2)" (C.l)
«

occur where integration is restricted by a cutoff. The simplest form of cutoff is obtained
with the ellipsoid defined in (B.14),

rAA)IX2 q2x + qf + A-q2z<qm (C.2)

or in terms of the variable x defined in (4.7),

""¦MS/wS-f + r,2 + t.2<x-2 (C.3)

where, according to (4.2),

è qjK, r, qJK, tn=VAqJK. (C.4)

With (4.4), (C.3) and (C.4) the integral (C.l) becomes

Ux

IJx) (AirI VA) J (1 + v2)" v2 dv (C.5)
o

or

V-1 | cofQ) (kI2tt)3c20"IJx). (C.6)
9

The functions needed in Section 3 are

I_Jx) (Air/VA)l--tan'1-\ (C.7)

and

I_Jx) (2ttjVA) (tan-1 - - -?— |. (C.8)
y x l + x2 j

The average defined in (4.22) is also best evaluated in the coordinates (C.3),
(C.4). Writing q2 *2v2[l + ((1/4)-l)*2] where t IJv one finds

+1 Ux l/x

(K/q)2=- [ [ (l + v2)-2dv [ (l + ^A^dv2 J 1 + ((1/Zl)-1)/2 J
V ' I J

-1 0 0

1 X
tan-1 - +tan-VU/J) -1 x l+x2

(C.9)^2^ tan-I-^-
x l+x2
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or

'?Ytan-V(l/J)-l \l+0(x2)
V(ljA) - 1 ^(l/3*2)(l+0(*-2)).

Note that with other forms of the cutoff the integrals (C.7) to (C.9) become more
complicated expressions which, however, vary little numerically. An exception is the
integral in equation (3.33) which in terms of the angular integral (B.27) is simpler with a

spherical cutoff |<7|2 < <72 instead of (B.2),

V'1 2 (q, R-^q) q) (qi/Qrr2) ê(e). (CU)

APPENDIX D

The Three-Pole Structure of the Response Function

Equations (1.1), (1.2) may be written as

PXi (Vo - io7)/D(co) (D.l)

where the denominator is factorizable,

D(cu) (cu2 - cu2 - l'cu.r0) (y0 - iou) - leuS2,

(cu'2 - cu2 - icuTo) (y0 - leu). (D-2)

The last equality leads to the following three conditions for the renormalized coefficients
tu,', roandy0:

yo + Pô yo + Po

yiri + w'2 yoro + eo2 + 82o
q

y6cui2 y0cu2. (D.3)

Expressing the numerator of (D.l) in terms of the factors of D(co),

y0 — ico= (at + icob,) (y(, - ico) + bjco'2 — co2 — icu.To) (D.4)

the real coefficients at and b( axe determined by the conditions

a, + bjro' - y0) 1, at y' + b, co'2 y0. (D.5)

With these decompositions (D.2) and (D.4) the response function (D.l) splits into a
central peak part and a soft mode part

Xi X?+XT (D-6)
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where

PXf"= biKyl - ico)

PXlm K + icobt)j(co'2 - eu2 - icuTo) (D.7)

explicitly exhibit the three-pole structure of y,.
The iterative solution of equations (D.3) used in Ref. [1] is

co'2 Qf + yoro82olQ2 + 0(y2)

y6 yocof/Qf + 0(y2)

ro ro + y082/ß2 + 0(y2) (D.8)

where

Qf(q)=cof(q) + 82. (D.9)

Substituting into (D.5) we also find

at l-yoro82o/Qt + 0(y2)

bi y082/Qt + 0(y2). (D.10)

The fluctuation-dissipation theorem (3.29) then yields, to lowest order in y0,

" S^q,co) -^--^- (D.ll)
kBT ' Qfcofy'o + co2

and

" A7(qM --= £°. r= (D.12)
£BT ' "" ' (ßJ-cu^ + ^To2

in accord with equations (6) and (7), respectively of Ref. [4] (except for the wrong factor
y'2 in the numerator of equation (6) of Ref. [4]). The integrated intensities of the two
parts are (equation (8) of Ref. [4])

oo

i? (q) -^zf \ sfiq, a») dco -?f-2 (D. 13)
kBl J Qf cu.

and

00

iriq)=~f\ S7(q, ">)<*" ^ (°-14)
o

which lead to the sum rule (equation (5) of Ref. [4])

OO

I? + F ~ [SJq, co)dco ^. (D.15)
kBT J wf
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