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Hamiltonian Dynamics for Einstein Relativistic Particles: The
Classical Particle and the Quantal Particles of Spin 0 and _-

by Terje Aaberge1)

Département de Physique Théorique, Université de Genève, CH—1211 Genève 4, Suisse

(16. XII. 74)

Abstract. In this paper we present a new Hamiltonian dynamics for the description of Einstein
relativistic particles. The theory is based on the idea of passivity in the Einstein relativistic case and is
constructed by following a scheme similar to that followed by Piron in his study of the Galilei relativistic
particles. The results obtained and presented indicate that the present theory may be considered as a
natural generalization ofthe Galilean-Hamilton dynamics, as well as the Wigner theory for free Einstein
relativistic quantal particles.

1. Introduction

In this paper we propose a Hamiltonian formalism for the description of Einstein
relativistic particles in interaction with external fields, treating in particular the classical
particle and the quantal particles of spin 0 and '_¦'.

In constructing the theory, we have followed a programme similar to the one
followed by C. Piron [1, 2] in his analysis of the Galilean-Hamilton dynamics:

i) first to try to understand what is the passive point of view in Einstein relativity [3]
and to construct the passive action of the Lorentz group on the 'measuring apparatuses'

such that each of the observables characterizing the Einstein particle is
defined by a system of imprimitivity;

ii) then to construct solutions of these imprimitivity systems corresponding to the
classical particle and the quantal particles ;

iii) and finally to calculate the most general Hamiltonian compatible with the given
definitions of observables.

In addition to constructing the general theory, we also study the free particles of
the type mentioned, showing that in this case we obtain (except for notation and
interpretation) the usual description. We also show that the Galilean limit (c -*¦ œ) for the
free classical Einstein relativistic particle is the free classical Galilei relativistic particle
from the passive point of view, i.e. compatible with being in interaction. The theory is

being written out as a one-particle theory only, however, it is generalizable to an n-
particle theory in the same way as the corresponding Galilean theory. Thus, the theory

This paper contains results from the author's Ph.D. thesis. The research has been partially
supported by the Fonds National Suisse.
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presented may be considered as a generalization of the present theory for free Einstein
relativistic particles and of the Galilean-Hamilton dynamics.

Remarks
In the following, p" and q" must not be confused with the four-momentum and

four-position of special relativity; both mathematically and conceptually they are
different from these (pp. 182-183). One should also be aware of the fact that the time x,
being the only notion of time entering the theory, is an observable, and that the Hamiltonian

generating the time evolution of the particle in the time x has the same relation to
energy as in the Galilean case. Moreover, q" is a fictive 'spatial' observable in which the
interactions are local ; the position observable denoting the 'real' position of the particle
in three-dimensional space is qs if — [q/(q° + c)]q° for the classical particle, and qs
A — i[9l(q° + c), q°]+ for the quantal particles.

2. Einstein Relativistic Particles

An Einsteinian particle is by definition a physical system characterized by a
constant m > 0 (the rest mass), and for which the observables 'momentum' p", 'position'
q" and time x are defined.

The study of the symmetry properties of the measuring apparatuses for these
observables lead us to define the following action of the symmetry group G (which is
the inhomogeneous Lorentz group G0 times (direct product) the translations of R, F,
i.e. G G0xT= {(u~0,au,x')}) on their spectra, i.e. on the nine-dimensional space [4]:

{(/>*,9*,t)|/>* eR4,?" e R4,r e R};
the 'special Lorentz transformations' {u} :

p» i-> A(tT)\py + mu"

q» i-> A(ïï)\qy

where A(u) is the usual representation of the special Lorentz transformations on R4

and u" (y - 1, yu) for y (1 - u2/c2y1/2 ; the rotations 0} :

p»^A0yypy (po/c,R0)p-)

q» h> A(9)\q" (qo/c,R0)<ì)

x r->x;
the spatial translations {a"} :

p" r^p"
q" ^q" + a11

X h+x;
the time translations {t'} :

P" t-+pu

q" i->9*
X M> T + t'.
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The Boolean CROCs J>, simulating the measuring apparatuses for momentum and
position, are both constructed by starting from subsets of R4, the one for time is
constructed from the subsets of R. In each case we have two possibilities, either SS contains
all the subsets in question, or 08 is the CROC ofBorei sets modulo the subsets ofmeasure
zero. In any case, G acts in a natural way on the elements A e (78 and we obtain the following

systems of imprimitivity:
for the momentum :

S(ju) p«(zC) $>(A(ÏÏ)\ Av + muu)

S0)y(A») =r(A0yyAy)

S(au)^(Au) pu(A")

s(x')r(A»)=r(A»y
for the position :

S(t7)q\A") =q"(A(tiyyAy)

S0)qu(A») =q"(A0)\Av)

S(a")qu(A") q''(Au + a'1)

S(x')qu(A")=q"(A");

for the time:

S(Z)x(A) =x(A)

S0)x(A) =x(A)

S(a")x(A) x(A)

S(x')x(A) =x(A + x').

We can now make the definition of an Einsteinian particle more precise :

Definition 1. By an Einsteinian particle we mean every propositional system S£

for which there is defined a representation S of G of Autif, which admits observables
p", q" and x satisfying the above systems of imprimitivity.

2.1. The classical particle
The propositional system 7£ for the classical particle is realized by
SA &(Q) ^({(/>",?",t)|/>'' e R4,?" e R4, x e R}),

the set of subsets of Q, in which G {(u0,a",x')} acts in a canonical way. Moreover,
since all classical observables have a purely discrete spectrum [5], one has to identify 38

with the set ofsubsets of R4 or R. With these choices, it is easy to verify that the following
observables satisfy the imprimitivity relations :

r(A) {(p\q»,x)\p»eA c:R4}

q»(A) {(p»,q»,x)\q'>eA c R4}

x(A) {(p",q",x)\xeA e R}.
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These observables may be defined as the inverse images of the following functions :

(p",q",x) r->p»

(p",q",x) r+q»

(/>",</«,t) ^t;
i.e. by the functions:

pu(p",q", x)=p"

q"(p",q",x) q''

x(p",q",x) x.

2.2. The quantal particle ofspin 0
In the quantum case time is a superselection rule [6,7] and the propositional system

S£ is to be constructed from a family of isomorphic Hilbert spaces Hx, indexed with
respect to x e R, i.e. :

<£ V 0>(HJ
i€BS

Under these circumstances, the symmetry S(x') defines for each value ofx a unitary
transformation UJx') between the spaces HT and Hz+Z., and one can identify the spaces
Hx in such a way as to have UJx') I. In this way the representation S(g) of G is
reduced in each Hz to a representation up to a phase of the subgroup G0 {(u, 9, a")}.

For a given x we let the Hilbert space Hz he represented by the space F2(R4, dAx) of
square-integrable functions _> defined on R4, with the Lorentz invariant scalar product

($,¥) J dA^*(x")W(x'1),
re*

and the group G0 {(u, @, a")} by the unitary representation U

(U(ti) <P)(*") exp j ijü'xA ^(AAuYvX")

(U0) <P)(x») ^(A-^Y^x")

(U((P) <?)(*") <*>(** - a»),

for m" (y — 1,-yS); or by the space F2(R4,drp), the Fourier transform F of F2(R4,
dAx), i.e.

F:L2(U*,d4x)^L2(U\d*p)
is defined by

R4 V '
and the group G0 by the representation V= EUE-1,

(V(u) $)(/?") $(A-\uYvpv + mû")
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(V0) <*>)(/>«) 4>(A-1(9yypy)

(V(a")<*>)(/>") exp/- l-avPvU(p»).

The two representations thus defined will be referred to as the *-representation and the
/»-representation, respectively.

For the given choices, the following observables satisfy the imprimitivity relations :

for the momentum :

i) in the /»-representation :

Pu(A) {Pz xÄP")),

with the corresponding family of Hermitean operators,

{At =prP);

ii) in the ^-representation the family of Hermitean operators is :

{Az=-ihdXfJ;

for the position:
i) in the *-representation :

q»(A) {Pz xJx»)},

with the corresponding family of Hermitean operators,

{A* *"/};
ii) in the /»-representation the family of Hermitean operators is :

{At ihdPu};

for the time :

x(A) {Pz xJx)},

with the corresponding family of Hermitean operators,
{Az xl}.

It follows from the preceding that pM and q" satisfy the commutation relations

[qu,Pv] %HV-

The imprimitivity system for q" thus constructed is the 'canonical imprimitivity
system' for the action of the inhomogeneous Lorentz group GQ on {*^ e R4}. In fact
this action is transitive, with the homogeneous Lorentz group {(u,9)} as isotropy
group (little group), such that the representation U of G0 in F2(R4, d* x) is the representation

induced from the trivial representation ((u, §) i-> /) of the Lorentz group. Thus, the
imprimitivity theorem [8, 9] applies, and the representation of the imprimitivity
system for q" is unique up to a unitary transformation. Moreover, it is irreducible,
only the identity commutes with (U,qu).
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For p" the situation is somewhat different because in this case the action of the
inhomogeneous Lorentz group is non-transitive on {/»" e R4} and the imprimitivity
theorem cannot be applied directly. However, one can decompose {pH e U} into orbits
of G0, apply the inducing construction on each of the orbits and take the direct integral
over the orbits thus obtained. This is the sense of V. It thus follows that the imprimitivity
system constructed for p" is reducible. However, as for the non-uniqueness involved
in taking direct integrals, this is of minor importance since what we are searching for is
the simultaneous specification of the imprimitivity systems for pM and q". Therefore,
since one of them is irreducible, by definition the simultaneous specification is
irreducible, and moreover, since one is essentially unique, it follows in this case that the
other is essentially unique.

2.3. The quantalparticle ofspin i
To construct the imprimitivity systems for the spin i particle we proceed as for

the spin 0 particle. For the ^representation we choose the Hilbert spaceF2(R4, drx) <g> /2
with scalar product:

(*,y) _> fc/4*$*(*")ï"(*").

In this space the unitary representation Uof G0 {(u, 9, a")} is defined by

(U(Ù) _>)'(*») exp j ijüyxy j D(p)'j cpi(A-\U)\x")

(U(9)4>)l(xu) D(9)j cPXAA^Tv x")

(U(a")y(xu)=4>i(x>'-a>'),

for D being the irreducible representation d,ia) in the principal series (a e R) [10].
In the /»-representation, the representation of G0 takes the form:

(V(u)<P)'(x") D(u)lj (PXAAuTvP* + mû")

(V0)<py(x") D0)'j 9V(/1-1(0)\/»Ï)

(V(a")4>y(x") exp (- *-a"py 1 $'(/»").

For the observables p", q" and x we then have the following solutions (we write
down the corresponding families of Hermitean operators only) :

for the momentum :

^representation : {Aï — ih dx (g) /,}

/»-representation : {AC p"IL (g) /,} ;
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for the position :

^representation: {At *"/_ <g) /,}

/»-representation : {At ih dpjS) IJ ;

for the time :

{Az xIL ® /,}.

Similar remarks about irreducibility and uniqueness for the imprimitivity systems
as in the spin 0 case apply here. In fact U is induced from the representation D of
GL {(u, &))¦ Moreover D depends only on (u, 0) because G0 {(u, 9)}xJ(a")} the
semi-direct product between the Lorentz group and the Abelian group F4 of translations
ofR4.

The observables for the additional degrees of freedom, the spin, is by definition
specified by a set of operators on I2 (thus commuting with /»" and q") constituting a
second-rank anti-symmetric tensor Svv transforming according to

S»v r^A(Ji,9)\A(ti,9yeSxß.

They are thus given by the generators of the representation D of the Lorentz group.

3. The Evolution of Einstein Relativistic Particles

It is a postulate that the reversible evolution of a physical system during an interval
of time is described by a symmetry of the propositional system which induces a
representation of the translations of the real line. Thus, for a physical system described by a
propositional system 3? realized by V P (HA, where the Hilbert spaces H„ are all

«en
mutually isomorphic, it follows as a consequence of the generalized Wigner theorem
[11] that the evolution is induced by a permutation of the points of Q

a. -> <v,

and a family {VJx')} of unitary operators,

VJx'):Hx-+Har„

these together satisfying the relations

(«rA2= ctzi+z.

and

Vaz.(x'2)VJx'J=VJx'i + x'J.

We have set (ojx'i, t_) 1 because even if the group acts effectively on a the phase-factor
is of trivial type.

If we postulate some conditions of continuity and differentiability we can deduce
the following equations

dz,ccz, x(xz-) and ihdz. ¥_r, ACnz,WXz„



180 Terje Aaberge H. P. A.

i.e. a Schrödinger equation coupled with a system of differential equations defined by a
vector-field x-

For some observable A realized by a family of essentially self-adjoint operators
Ax, there may exist a new observable À realized by the family of operators

i
Aa — [Arx,AJ.

In particular we will postulate that there exists such /»" and q".
After these generalities we return to the Einsteinian particle to make the equations

explicit for the different models by taking into account Einstein relativity.

Definition 2. We shall call Einsteinian evolution a reversible evolution induced by a

group of symmetries V(x') satisfying the following two conditions :

i) the evolution V(x') changes x into t + x',

VJx')xaVA(x') xai.-x'Iat,,

ii) for every special Lorentz transformation Û the observable q" transform according
to (covariance condition)

Ujfôfi U7\u) A-1(Hyvqllt+ ""'*?•

3.1. The classical particle

For the classical particle we have seen that we can take as state-space the differ-
entiable manifold :

Q {(/»",?*,t)|/>w e R4, feR+,te R},

and that the observables are defined by the functions

/»"(/»», q», x)=p»

qu(p",q",x) q''

x(pu,q",x) x.

For such a system, the evolution is represented by a curve in Q, naturally
parametrized with respect to x, and it follows from the relations in Definition 2 which imposes
the conditions

V x + x'

and

q^p^q^x) A-107)\qXA(tiYvpy + mu", A(u)\q\x) + fi«

that the vector field v specifying the evolution (if it is homogeneous) is the generator
of the one-parameter group {V(x')} translating the points along the curve. Since V{ (x')} is
a symmetry group of Q it must respect the symplectic structure imposed on

P {(P".?")l/>" e R4,9" e R4}
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by the definition of/»" and q"; thus v must be a Hamiltonian field, i.e.

l g'ß{(dp.AC)dqli-(dqaAC)dpß),

where the Hamiltonian Jf AC(/»",9") is a differentiable function on F. It follows from
the covariance condition that the most general Hamiltonian (for a conservative system)
which transforms covariantly under the Lorentz transformations is of the form

^(p»,q») — (/»" - A»(q»))(pn - AJq")) + V(q").
2m

To prove this assertion, we first observe that the choice of x implies the Hamilton
equations :

f" ^ -^^(fm,^)
9» Xqu dpuAC(p\q»).

Then putting the covariance condition into the last of these equations, we get

<fV,<,") A~1(tiyjdPvAz)(A(uyypy + mu\ AKuyyq") + fi"

or, since

/Km)"viP -m»,

A$yyciXlA,qu) (dPttAC)(A<7f7Yyp" + mu", A(7iyyq») - u\
i.e.

A^YJd^JfCXp^q^) (dPuJC)(A(ïï)\p* + mu", A(u)"v9y) - «"

(dp„ AC) (0, A(Hyyqy) + - A(Hyvpy." m

Since A operates on q* in an isometric way,

(dPuAC)(0, A(uYvq") A(H)\ (dPvAC)(0,q») - -A(HYyAXqu),

and we get

(dPiiJf)(p",q") -(/»"- A"(q*)),
m

which, integrated with respect to /»", give us the Hamiltonian already referred to.
Au(q") is any four-vector of differentiable functions of q" transforming isometrically
under the Lorentz transformations, and V(q") any differentiable scalar function.

As part of an interpretation we will study the case of the free particle; however,
before doing so, we will introduce a new observable,

* - P o9s 9 5— 9°,
p" + mc
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which describes the position of the particle in three-dimensional space [12]. Its
transformation properties follow from the transformation properties of/»" and q".

We then define a free particle to be a particle for which the Hamiltonian is

AC(p»,q») — p"Pv — (T -p02)
2m 2m

and whose momentum and rest-mass are related by

(p° + mc)2 —p2 m2 c2.

This last condition, which by the invariance of the form

(p° + mc)2 -p2
is a Lorentz invariant condition, will be referred to as the free-particle condition.
It follows that the submanifold of {/»" e R4}, on which the free-particle condition is
satisfied, is an orbit of transitivity for the inhomogeneous Lorentz group, and the
condition may be interpreted as saying that for a free particle there always exists a frame
of reference in which the particle is at rest and p° 0, /» 0. It follows also from the
observation that (/»° + mc)2 —p2 is an invariant form, and that our representation AG
of the Lorentz group is conjugate to the usual isometric representation A. In fact, let
Tm e Aut(ß) be defined by

Tm:(p0lc,-ß)r^((p°lc) + m,p)

Tm:(90lc,q)^(9°lc,q)

1 m:x i—>x,

then

AG TA ATm.

With the given choice of Hamiltonian the equations of motion are

1 l2i 2PP°

q»=-

2m \ p° + mc) (p°/c) + m

/»" 0

El
m '

and applying the free-particle condition on the initial conditions we get the solutions :

qs vt + a' for a' a a0
c

A12
Pu m(yt-l,ytv) for y- M--'
q» x(yt-l,y?v) + (a0lc,à).
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We also observe that if we apply the free-particle condition to eliminate p° in
the Hamiltonian, we get

=p°c-- cVf2 + m2 c2 ¦ m(r

which is the expression for the kinetic energy F of a free particle, known from special
relativity. It is easy to show thatthe transform of Fby a special Lorentz transformation
AG(u) gives the kinetic energy T of the particle, in the new frame, according to special
relativity.

We proceed to study the Galilean limit c -» œ. In this limit,

(A(t.)\) —*

1 0 0 0"

"l 1 0 0

u2 0 1 0

"3 0 0 1

u» (y-l,yu) -^-(0,3)
and

a» (a°/c,t) (0,a);

moreover, for the free particle,

9s -^_> 9sg vx + a

P"-7^(0,mv) (0,pG)

9»^z+(0,tx + a) (0,qG).

The action of the contracted transformations on these objects are then :

9sg ^9sG + b

Pg r^-pa + mu

9g^9o + b,

and rotations. It follows that q*SG and cfG can be identified, thus in the Galilean limit the
free Einstein particle is the free Galilei particle from the passive point of view [13].

The preceding discussion indicates that the Hamiltonian in our formalism has the
same relation to energy as in Galilean-Hamilton dynamics; moreover, in the four-
momentum/»",/?0 denotes the difference of mass from the rest mass due to the interaction

and velocity of the particle, and for the free particle we see that this gives the whole
energy of the particle. The observable qu.is to be interpreted by means of the observable
qs, being the real position observable of the particle.

3.2. The quantal particle ofspin 0

For this model each Hilbert space Ht is canonically isomorphic to F2(R4), and Q
identified with R (the r-axis). According to the first condition in the definition of the
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Einsteinian evolution, the reversible evolution is defined by a family of unitary operators

VJx') satisfying

Vt+zJx'JVJx'i)=Vz(x'x + xï),

because the condition mentioned implies that the permutation of the points of the x-
axis is

x i-> Xzi x + x'.

If the evolution is homogeneous in time, the problem is considerably simplified
because in this case Vt is independent of x, and defines a vector representation of a one-
parameter group on F2(R4) :

V(x'2)V(x'i)=V(x'2 + x[).

Let us impose the continuity condition

lim \\(V(ôx') -1) _>|( 0 <PeL2(U*),
ÖZ'-rO

we can then apply the Stone theorem [14] which affirms the existence of a self-adjoint
operator AC such that

V(x') exp[-l-ACx'

The domain of AC is by definition the set of cp e L2(R4) for which the limit

exists. For these vectors the Schrödinger equation

ihdz<Pz ACcpz

is defined.
According to the definition of the Einsteinian evolution, the Hamiltonian must be

such that the covariance condition

U(u) q" U-'iu) A-1(uYvqv + fi«

is satisfied for

n

Now since

U(u)p" U-^u) A-i&YvP* + mû",

it follows that /»« — mq" transform isometrically as a four-vector under the special
Lorentz transformations, i.e. it can at most be a vector-valued function of q",

/»" - mqH A\q%
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or
1

if - (p» - A^q»)).
m

By means of the commutation relations between /»" and q* it is then easy to verify that

AC — (/»" - A%q"))(jA - A»(q»)) + V(q"),
2m

where V(q") is a scalar function of q".
As an example we will again treat the free particle but, before doing so, we introduce

the position observable qs represented by

9s 9~- p° + mc
9"

which describes the position of the particle in three-dimensional space. It is Hermitean,
it has commuting components, and its transformation properties are given by those of
/»" and q"; in the/»-representation it has the form

qs ih 9j -

p° + mc
—ih dpt) ih\ dj +

p° + mc
SnO —

2(p° + mc)2

A free quantal particle of spin 0 is a particle whose Hamiltonian is

TV- P Pi,2m

and for which the Lorentz invariant operator AM,

AM - V(p° + mc)2-p2 - m
c

has value zero.
Consider the restriction of AM to the non-negative spectrum; then, to interpret

this operator, we observe that the boost LrG defined by

LeJ(puY
(p°lc) + m

takes /»" to (AM,(5),

/»" k

c-G1
* A-

(p°/c) + m
p" +mû

(p°lc) + m
(AM,0),

i.e. to the frame where ß 0*. Thus it follows that AM is the difference of mass from the
rest mass in this frame, and the free particle condition may be interpreted as saying
that in the rest frame of the particle this difference is zero, thus giving meaning to the
notion of rest mass.
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To see what all this means let us consider the subspace HAM>0 of F2(R4, d3p dp0)
on which AM ^ 0. HAMi0 is isomorphic to

/ (AM + m)1'*
L2[R3xR+,d3pdAM '

v ((AM+m+p/c2)1'2!'

with the Lorentz invariant scalar product

r d3pdAM(AM + m)1'4
fe/) J

((AM + mY+T/c2)1'2 S*VM>W{AM^

and the isomorphism is explicitly given by

P
0 —,/» h-> f(AM,p) 4>(V(AM + m)2+^2/c2 - m,p).

In this space the observable q"s is represented by (see also Ref. [15])

qs ih[d
2(AM + m)2c2+p2y

since

M h+-r^—dp0 ~4
o - v)A — >p

p0 + mc 2(p° + mc)2 \c - y<.AM+ m)2 +jt2/c2 - m

ih I dp - ; m, —2 2__^2 I * I (V(AM + m)2+f2/c2 - m,f),
1

2 (zlM + w)2c2+^

and the Hamiltonian AC reads
1

AC cVp2 + (AM + m)2c2 ((AM + m)2 c2 + m2 c2).
2m

As AM is invariant under the inhomogeneous Lorentz group, it commutes with
VHam>0 (i.e. F restricted to HAM>0) for any (iî0,au) and thus determines an integral
decomposition of VHjM>0,

vu

y**u>= \V^MUAM,

acting in

HAM>0= \ HlAM>dAM.

Moreover, qs and Af commute with AM also, and can be decomposed :

9s =j 9siAM)dAM
R
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®

_f J 2rfCAMs,dAM

K

Vet us consider Vm, 7/(0>, |<°>, and AC(0): It follows from the preceding that Hm
may be represented by

3,d3p-
((p2/c2) + m2))

in which Vi0» act in the following fashion :

(Vi0Xu)f)(p, =f(A~10)\py - my«') (i 1,2,3)

(Vi,n(O)f)(p')=f(R-10yjpJ)

(F(0V)/)(p«)= exp| -IaV, )/(/>');

moreover

o (o)= ,-fe | a- _!

2p2 + m2 c

and

jf (w cVp2 + w2c2 - mc2.

m1/4
3,^3F;

((p2/c2) + m2)1/2y

is the Hilbert space of square integrable functions on the transitive orbit,

(p° + mc)2-p2 m2c2,

of the Lorentz group, with the Lorentz invariant measure

m1/4d3p
d^P)

((p2lc2) + m2y2 '

V(0> is an irreducible representation of G0 in this space, the representation induced from a
representation of the stability group T4xsSO(3) being trivial for SO (3), and qf' is the
Newton-Wigner position observable [16].

Thus, for the free quantal particle of spin 0, we obtain the same description as

Wigner [17], except for notation. In fact, the reader might verify that

(AG(u)(V(p2/c2) + m2 - m,?))1 (A(u) (V(p2/c2) + m2,M 0" =1,2,3),

when AG is our representation of the special Lorentz transformations, and A is the
usual isometric representation.
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3.3. The quantalparticle ofspin i
The evolution of the spin _¦ particle is described in a way similar to that of the spin

0 particle, only the form of the most general covariant Hamiltonian is different. In
fact, in this case,

/»« - met A"(q") + Sx0Bx0»(q») + SxßSnCxßy6"(q") +

the right-hand side being the most general function of observables transforming iso-
metrically as a four-vector under the special Lorentz transformation. Now, instead of
writing the most general covariant Hamiltonian, we will be content with giving the one
expressing a minimal coupling between the external field and the spin. It takes the form

*=hi(p" ~ ^9** ~ s"b«*u*>)(p* - ^«(<rt - s"b«m*))

+ SxßDxß(q")+V(q").

As an example, we again treat the free particle : A free quantal particle of spin _
is a particle whose Hamiltonian is

AC^fp.,
the operator AM has value zero, and for which there exists a frame in which it has spin
i-

Proceeding as for the spin 0 case, AM 0 implies that Hi0» may be represented by

((P2/c2) + m2)112)

in which the inhomogeneous Lorentz transformations are represented by Vm

(VCo»(Z)fy(p, D(ZyjfJ(A-1(uyvp" - myu1)

(V«»0)fy(pC) D0yjfJ(R-1(O)ljPJ)

(V(m(a»)fy(pj exp I - - d>py !/'(/»').

To be able to apply the last condition characterizing the free particle of spin _
we have to make a change ofbasis. For this purpose let Fbe the unitary operator defined
by

(Ffy(p)=F(pyjfJ(p)

for

P
F(p) D

((p2/c2) + m2y
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In this new basis, V(0» is defined by

(Vw(u)f)l(pl) D0eljfXA-1$yypy - myu1)

(Vm(9)f)Xpj D0yJf\R-i0yjP»)

(K(o,(„*)/)<(;,/) expl--^ ayp]/'(/»'),

where $* is a rotation (i.e. Wigner rotation) defined by

A07f)\ LAP)"* A^y^A-Xu)'^ - myu')",.

It is possible to choose a basis {£s,m} in P in which [18]

D(9) 2 _5<»)(ÉT),
5 1/2,3/2,...

for D(s) being an irreducible representation of the rotation group; thus

D(h)= 2 D(°»0u>),
S l/2,3/2,...

which shows that the inhomogeneous Lorentz group acts reducibly on

ry,U*

L\^dip ((?/c2)+m2r2)®12-

The last condition characterizing the free particle of spin _
then implies that it is

associated with the Hilbert space,

LTV3f,((^)+^2)0C2'
in which the representation K(0,1/2),

(F(0'1/2)(«)/)' (/»') Da/2)0i)tjfJ(A-10)\pv - myu1)

{Vio,i,2,$)f)l{pi) _ D^&jfiR-Wjrt
(K(°^2>(a«)/)<(/»<) exp I- l- a"py j /V),

of G0 is irreducible.
Again, this is, except for notation, a description of the free particle of spin i

corresponding to the usual one [19], thus justifying our name.

Remark
It follows from the preceding that in the general case, when the particle is in

interaction and the free particle conditions cannot be applied, there is a certain probability
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that we have states of spin _¦,_¦,.... The natural interpretation of this is to say that these
states denote the particle + pairs of particle/anti-particle.
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