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Charge-Independent Analysis of Low Energy irN Scattering Data

by H. Zimmermann

Institut für theoretische Physik, Universität Zürich, Schönberggasse 9, CH-8001 Zürich, Switzerland

(6.1.75)

Abstract. We investigate the determination of charge-independent phase shifts from low energy
hadron-hadron scattering data. For a many-channel system at low energies we present a simple formulation

of a well-known method, which allows us to calculate an isospin-mixing matrix and the phase
shift corrections due to both the electromagnetic interaction and the electromagnetic mass differences.
A potential model is used together with a relativistically modified Schrödinger equation. In the case of
the nN system, explicit formulae are derived for the phase shift corrections and the mixing parameter.
It results that a charge-independent phase shift analysis is only possible by includingnotjust theCoulomb
corrections but also the electromagnetic mass difference corrections. The results of such an analysis
will here be presented.

1. Introduction

It became evident from the work of Carter et al. [1 ] that, with the usual methods
of calculating the electromagnetic corrections, it was not possible to achieve a charge-
independent partial-wave analysis of pion-nucleon scattering experiments below 300
MeV. The importance of the electromagnetic corrections has also been emphasized
by Woolcock [2], who points out the influence that these effects might have on the
evaluation of/2 and ax-a3.

One of the reasons for the unsatisfactory state of affairs in the analysis of the
experimental data is certainly the neglect of the electromagnetic mass differences of the
nucléons and of the pions. In the present paper we therefore take this effect into account
using the model of Oades and Rasche [3, 4]. The result is that the data can indeed be
analysed with charge-independent strictly nuclear phases.

The complications in the analysis of the data come mainly from the n~p initial
state, which leads to three possible final two-particle states at low energies, namely
n~p, n°n and yn. We therefore have to deal with a coupled three-channel problem.
The general formalism for including the effect of the yn channel on the analysis of the
n~p experiments was worked out for the first time by Rasche and Woolcock [5]. But,
given the experimental accuracy presently attainable, there is no hope of including
the y« channel in the analysis of n~p experiments. We therefore keep to the two-channel
approximation

n~p
n~p
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and neglect the yn channel, except for a phenomenological modification to be described
later.

Even in this approximation it is not easy to extract the charge-independent phases
from the experiments. To achieve this, one has to understand the electromagnetic
corrections, which consist mainly of the Coulomb corrections and the dynamical effect
of the mass difference between the n~p and n°n states. Auvil, in the appendix of Ref.
[6], considers the inclusion of mass difference effects in a two-channel problem. He
arrives at a Schrödinger-like equation, with some relativistic modifications, which
contains terms which take account of mass differences in a very approximate way.
However, he makes no attempt to show how to calculate electromagnetic corrections
from this equation. On the other hand, Oades and Rasche [3] had previously given a
consistent formulation of Coulomb and mass difference corrections in a potential
theory model. They show in detail how to calculate these corrections, and we have
therefore chosen their model as the basis for the numerical calculations in this paper.

One can also try to separate out the electromagnetic effects in a relativistic,
dispersion-theoretic approach. The first steps in this direction were taken by Sauter
[7, 8], who handles the Coulomb corrections in a non-relativistic, dispersion-theoretic
way. Sauter states that the numerical agreement with the potential model of Oades
and Rasche is good in both the one-channel (n+p -> n+p) and the two-channel (n~p ->
n~p,n°n) cases for low energies. Hamilton et al. [9] have pointed out that Sauter's
formulae are useful only for small energies and they have given a different non-relativistic
dispersion-theoretic treatment of the Coulomb corrections for the one- and two-channel
problems. They planned to generalize their method to a relativistic treatment of the
electromagnetic effects. This has been achieved for the one-channel problem by Trom-
borg and Hamilton [10]. But they have not yet treated the coupled-channel case with
mass differences in a dispersion-theoretic way, so that there is at present no alternative
to the potential model of Ref. [3].

In Ref. [3] a distinction is made between 'inner' and 'outer' Coulomb corrections.
There were two reasons for doing this. First, the outer Coulomb corrections are to a
large extent model independent and can be calculated to all orders in the Coulomb
parameter without solving a differential equation. Second, one can apply a prescription
of van Hove [11] to take into account relativistic effects in the outer corrections; this is
not possible for the inner corrections. In the present calculations we do not make
explicit the distinction between inner and outer corrections and try rather to formulate
the problem in a way more suitable for practical calculations. Furthermore, in Ref. [3]
the so-called 'additive electromagnetic amplitude' is that corresponding to a pure
point-charge Coulomb potential. But the analysis in Ref. [1] uses an additive
electromagnetic amplitude corresponding to a form factor for the charge distribution and we
have to adapt the results of Ref. [3] slightly to take this fact into account. In a previous
paper [12] we considered this problem in the single-channel case and pointed out an
inconsistency connected with it in the calculations by Bugg [13] of the Coulomb
corrections which were used in the analysis of Ref. [1].

In Section 2 we therefore describe briefly the general formalism for the coupled-
channel problem, assuming that the given data correspond to an arbitrary additive
electromagnetic amplitude. In Section 3 the electromagnetic corrections to the charge-
independent phase shifts are given. In Section 4 the question of relativistic effects is

considered, while Section 5 gives the perturbation expressions for the one- and two-
channel cases. Section 6 is devoted to a review of the special potentials used in the
numerical calculations and Section 7 describes the details of our phase shift analysis
and gives the corrections for energies up to 250 MeV.
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2. Many-Channel Formalism

2.1. The total scattering amplitude

We present here the general formalism for n coupled two-particle states. We assume
that one of the particles has spin 0 and the other has spin i and we work in the cm.
frame. The scattering and reaction processes are described by a generalized Schrödinger
equation in matrix form, with a separate hadronic potential U(U> for each partial wave
of orbital angular momentum / and total angular momentum j. In what follows we
drop the superscripts (If) and carry the calculations through for the s-wave (OJ). The
generalizations to arbitrary (If) are evident and are stated without derivation. The
hadronic potential C/is then an n*n matrix and the same is true for the electromagnetic
potential, which we call V.

Throughout the paper we assume rotation invariance, parity conservation and
time-reversal invariance. The last condition implies that U is a real and symmetric
matrix. It would be possible, without difficulty, to generalize the results to the case of
complex potentials; this would be a phenomenological way to take inelasticities into
account. But in our case the inelasticities are small even at the highest energy considered,
so that it is justified to neglect them in calculating the phase shift corrections.

We assume that the hadronic potential is charge independent. The total potential
U + V thus consists of a part U, which decomposes in the basis of isospin eigenstates
into submatrices with definite isospin, and a part V, which is diagonal in the physical
basis (where each particle in every two-particle state has a definite charge). This is the
basic physical assumption made in [3] and [4] and we refer to [4] and [14] for a more
detailed discussion and for the application to K~p scattering.

It is convenient to assume that

U(r) 0 r>rN

VJr) qiyt(miry1 r>rc. (2.1)

Here VJr) is the diagonal element of V(r) for the /th physical channel, with qt the
corresponding cm. momentum, mt the corresponding reduced mass and yt the corresponding

Coulomb parameter; thus

yi zle2miqr1,

where zt is the product of the charge numbers in the «th channel (e.g. zt —1 for n~p,
Zj 0 for n°n). Equation (2.1) facilitates some general statements and is used throughout

the numerical calculations. We define

r0 max(/;v, rc). (2.2)

For r < rc we assume some spherically symmetric charge distribution for the particles
which takes into account their form factors. The case rc 0 gives the pure Coulomb
potential corresponding to the electromagnetic interaction of point charges.

The radial Schrödinger equation for the j-wave then reads (see e.g. Refs. [3, 4])

(D+Q2-2MU-2MV)\Ry 0, (2.3)

where

0-1.£ (2-4)
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and Q2 and M are diagonal matrices in the physical basis, with diagonal elements q2
and mt respectively. Equation (2.3) has « linearly independent regular solutions |JR>_

(a 1,... «) vanishing at r 0. Calling the vectors of the basis consisting of the physical
states | i> (/ 1,... ri), the components RtJf) of the solution | R >„ are defined by

I*>_ Ïa,.|/> « 1,...». (2.5)
i=i

Vet us now define the functions

Ft(r) (m,/qt)V2 sinfer - y, ln(2qtr))

G,(r) (mfq,)1'2 cos(q, r - y, ln(2_-, /•)). (2.6)

It is well known that, due to the short range of the hadronic potential, the Ri0l can be
expanded asymptotically in terms of the Ft and ôt as

Ri*(r) r~=c ^«W *« + ^ito *<« *, « ¦? 1, •.. »• (2-7)

The matrices k and â corresponding to the expansion coefficients determine the
partial-wave scattering matrix â for the total potential (see e.g. Ref. [14]). The connection

is established most easily in terms of the matrix

K=ak~1. (2.8)

rt is the matrix which transforms the expansion coefficients kia for a given regular
solution of (2.3) into the corresponding <r,_. It is a consequence of time-reversal invariance

that it is a real symmetric matrix. In Appendix I we show explicitly how this
property follows from (2.3) and (2.7). The partial-wave scattering matrix â is given in
terms of È. by

a Qr1'2__¦(. - iky1 Q-1'2. (2.9)

Appendix II gives the differential cross-sections in terms of the elements of the matrix â.

2.2. The additive electromagnetic and the nuclear scattering amplitudes

Let V be any electromagnetic potential with the same behaviour as F for r > rc; V
might differ from V for r < rc. The Schrödinger equation

(D+Q2-2MV)\ky 0 (2.10)

has n regular solutions \Ay„ (ct l,...ri). The components RtJr) (i= l,...n) of these
solutions in the physical basis can be taken to have the asymptotic behaviour

Rta(r) ~_ (m,l9i)V2 sinfo r - y, In (2qt r) + vj) a i

RtJr) 0 a*i. (2.11)

For later reference we define

Ft Ri(. (2.12)
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The irregular solution corresponding to /, we call ôt ; it has the asymptotic behaviour

Gi(r)r~ (rrti/q,)112 cos(q, r - yt ln(2q, r) + vt). (2.13)

In the case rc 0 of a pure Coulomb potential we have

vi(rc 0) argF(l+iyi) (2.14)

and Ft and Gt ate multiples of the usual Coulomb wave functions (as tabulated e.g. in
[15]) or the spherical Bessel and Neumann functions when yt 0.

The functions Rlx can be expanded asymptotically in terms ofFt and ôt. This gives
certain expansion coefficients as in (2.7), the matrices of which we call it and a. Again
we define as in (2.8) and (2.9) the symmetric matrix

K=a-k~1 (2.15)

and the electromagnetic partial-wave scattering matrix

à q-1'2 k(i - iky1 or112. (2.16)

We see from (2.11) that ò and it are diagonal matrices in the physical basis, with matrix
elements

an sinv, Ki, cos Vj. (2.17)

It follows from (2.13) that

Gi(r) -„-Flan+ Gtktt. (2.18)

In view of (2.1) and (2.2) the functions RtJr) can be expanded for r > r0 in terms
oftheFjOOandÖiOO

RtJ(r) F,(r) Kin + GJr) aiXtr> r0. (2.19)

The expansion coefficients are the elements ofnuclear matrices k and a. They are distinct
from the hadronic (purely nuclear), charge-independent matrices k and â to be denned
later. From k and a we define the real symmetric matrix

K=a-K-\ (2.20)

To get the connection between k, it, k, è, a and a we compare (2.7) with (2.19),
using (2.11), (2.12) and (2.18); the result is

k îck — âa

è òk + ka. (2.21)

Using (2.21) we can separate the electromagnetic partial-wave amplitude from the
total partial-wave amplitude; we have

k(ì-iky1 è(K-iòy1
(â + kK) (k-ôK- iâ - ikK)-1

(â + kK) (1 - iK)-1 (k - iô)-1

[à + (kK + iâK) (1 - iK)-1] (k - iô)-1

1(1 - iky1 + (k + iâ) K(l - iK)'1 (k - iô)-1. (2.22)
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Using (2.22), (2.9) and (2.16) we obtain

a â + Q~ll2(k + iâ) KQ - iK)'1 (k - iâ)-1 Q'1'2. (2.23)

Appendix II gives (2.23) in explicit form and shows how to get the electromagnetic
scattering amplitude corresponding to â.

The nuclear quantities k, a and K obviously depend on the choice of V; in other
words, they depend on the choice of the additive electromagnetic amplitude used in the
analysis of the experiments. This makes it quite clear that they are not the hadronic
(purely nuclear) quantities k, â and K which we are going to define in the next section.

3. Corrections to Charge-Independent Quantities

We now define the charge-independent quantities k, ä and K. To do this, we start
from the Schrödinger equation

(D+Q2-2MU)\Ry 0. (3.1)

Here again Q and M are diagonal matrices in the physical basis. In addition the matrix
elements corresponding to states belonging to the same isospin multiplet are put
equal; this means that the electromagnetic mass differences have been neglected. From
this and the charge independence of U it follows that, in the basis of isospin eigenstates,
the system of coupled equations (3.1) decomposes into decoupled subsystems
corresponding to definite isospin.

Equation (3.1) has n independent regular solutions \Ryx (<x= 1,...«). Defining

Fi(r) (mtqt)1'2rfo(qir)

Gl(r) -(miqiy'2rn0(qir) (3.2)

we can expand the components Rlx of\Ryx in the charge basis for r ^ r0 in the form

Ria(r) F,(r)kix + Gi(r)ätx r>r0. (3.3)

Again we define a real symmetric matrix K by

K=âk-\ (3.4)

In the basis of isospin eigenstates, â, k and 1decompose into direct sums of submatrices
corresponding to definite isospin.

It is our aim to calculate K from K, thus obtaining the charge-independent (i.e.
purely nuclear) scattering quantities from the nuclear ones. For this purpose we use
the fact that every real symmetric matrix can be diagonalized by a real orthogonal
transformation. Calling the transformation matrices x and f for K and K respectively,
and calling the eigenvalues tanôt and tan5, (i 1,...n), we have

n

Kfi 2 xutan s* *t, w 1 (3-5)
a«l

n

Kfi 2 */« tan ôx xix xx' 11 (3.6)
a=i

Comparing (3.5), (2.19) and (2.20), we see that the most suitable way of fixing
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the n linearly independent column vectors (Rix) is to put

Kix xix cos ôx aix xix sin ôx (3.7)

and correspondingly

kit, */« cos ôx äix xtx sin ôx. (3.8)

The next step consists in rewriting (2.3) for the regular solution |jR>_-in the form

M-1(D+Q2-2MU)\Ryx M~1A\Ryx (3.9)

with

A 2MV + 2(M-M)U-(Q2-£>2) (3-10)

and rewriting (3.1) for the regular solution |7?>e in the form

M-1(D+Q2-2MU)\Ryß 0. (3.11)

Multiplying (3.9) by ß<jR\ and (3.11) by X(R\ and subtracting the resulting equations
from each other gives

ïfhT1-Wr[Rlt,RU] „\R\M-1 A\Ryx (3.12)
i=i ar

where WjRiß,Rlx] is defined as in equation (A2). Integrating (3.12) from 0 to r0 gives

Imr1 rVr0(R,ß,Rix]=(ß<R\M-1A\Ryx. (3.13)
'»i o

Using (2.19) and (3.3), the left-hand side of (3.13) can be expressed in terms of the
known functions Fh Gh Ft, Gh the measured nuclear quantities a and k and the charge-
independent quantities â and k, which are to be determined. Equation (3.13) is the basic
equation which will be used to relate the nuclear quantities to the charge-independent
ones. These relations then depend on some model-dependent integral over the nuclear
region.

The general procedure for calculating Sx and xix can be described as follows. Starting
from the charge-independent parameters ôx and xix, one chooses some hadronic potential
U which reproduces these parameters via equations (3.1), (3.3), (3.4) and (3.6). In the
next step one calculates a set of n linearly independent regular solutions Rix of (2.3)
at r r0 by integrating (2.3) from 0 to r0; one also calculates their derivatives at r r0.
This set of linearly independent regular solutions for r < r0 will match smoothly at
r r0 to the solutions of the form (2.19) for r ^ r0 if Kix and aix are chosen correctly.
This determines ôx and xix via the equations (2.20) and (3.5).

For later reference we define the electromagnetic corrections cx to Sx by

S.= S. + c.. (3.14)

Similarly we define the electromagnetic correction matrix C to x by

t t(1+C). (3.15)

Since x and f are both orthogonal matrices it follows that

C+C' ~C'C. (3.16)
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If one is interested only in electromagnetic perturbation results (3.16) becomes

C -C (3.17)

Because the matrix M~XA is not symmetric it is convenient for later purposes to
derive an antisymmetry relation. Starting from (3.9) and using (2.19) and (3.7), one
finds by calculating __( Wro[Rt„Rtt]

p0

jdrUR\M-1A\Ryß-ß<R\M-1A\Ryx)=sm(ox-oß)2AmlXtxxili (3.18)
0

where

Amt (mt — mi)/mt. (3.19)

4. Relativistic Modifications

It has been pointed out in the introduction, the question of taking into account
relativistic corrections is very delicate. In Ref. [16] the modification of the additive
electromagnetic amplitude is described; if applied correctly it gives this amplitude
non-relativistically up to all orders and relativistically up to first order in the fine structure

constant.
How to make relativistic corrections in order to go from the nuclear to the charge-

independent quantities in a potential model is much more doubtful. This question is
considered in [17] and in the appendix of [6]. Without further justification, we simply
state that we try to take these relativistic effects into account by substituting the relativistic

energy in the lab system of each particle for its non-relativistic mass. This means
that the reduced mass mt is replaced by the reduced energy in the lab system. The somewhat

different procedure proposed in [6] would result only in minute changes (of the
order (qlab)2/s) in our numerical applications to the nN system.

5. Perturbation Expressions for nN Scattering

5.7. n+p Scattering

At low energies the n+p problem is a one-channel case, the physical state being
identical with the isospin state with total isospin 3/2. Obviously x f'= 1. We label
the scattering phases by the subscript 3 to indicate the isospin quantum number.
From (2.19), (3.3), (3.7) and (3.8) we have

R h= F cos ô3 +G sin ô3 r^r0 (5.1)

R h cos c3 + (G cos ô3 — F sin <53) sin c3 r^r0 (5.2)

where

h F cos d3 + G sin ô3

o3 ô3 + c3. (5.3)
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There is no need to label the functions, since everything is self-evident. The prime on c3
distinguishes it from the corresponding correction in the n~p case.

To get the perturbation result for c3 to first order in the Coulomb parameter we use
(3.13). Obviously A is of first order and so we can replace R by R in the integral on the
right side of (3.13). Furthermore, we can neglect all terms of higher order in the Wron-
skian determinant of (3.13). This means that in (5.2) we can replace

cos(c_) by 1

(G cos(<53) - Fsinßj) sin(c^) by (Gcos(ô3) - F sin (<53))c3.

Inserting all this into (3.13) and using

Wro[G,F] m m (5.4)

where m is the reduced mass of the n+p system, we arrive at the result

c'3 mr1WrJh,h]-X (5.5)

where

X=2 \v(r)R2(r)dr. (5.6)
o

Equations (5.5) and (5.6) give explicitly the perturbation result for c_. They contain the
Coulomb potential via Fand the special choice of the additive electromagnetic amplitude

via h.

5.2. n~p Scattering

Neglecting the yn state we have two channels for low energies. We label the physical
states by

|->H*-j>> (5.7)

|0> |tt°«>. (5.8)

The isospin eigenstates for total isospin i and 3/2 we label

|1> and |3> (5.9)

respectively. We always assume that the hadronic interaction conserves isospin, so
that K is diagonal in the isospin basis. Consequently x is the transformation matrix
between the physical basis and the isospin basis :

x-3=VT/3 x.x -V2{3

t03 V273 Xoi VTj3. (5.10)

The corresponding phases are denoted by S3 and Sx. Isospin conservation implies that
S3 is the same as in n+p scattering.

We now have to make a choice for M. In the n+p system this problem does not
arise, because it is natural to take the n+p reduced mass m equal to m in the Schrödinger
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equation. For the two-channel system we define

M m-\. (5.11)

Again this choice seems natural, since the n~p reduced mass is equal to m. We also define

Q=q\. (5.12)

Two further useful definitions are

hx F cosôx+Gsinôx r^r0 (5.13)

hix F, cos 5, + Gt sin ôx r > r0 (5.14)

where i 0,- and a 3,1. One should note that because of (3.2) and m_ m0 m,
in our two-channel case /, and Gt do not depend on the index i. Due to charge-independence,

h3 has defined in (5.1). Using (2.19), (3.3), (3.7), (3.8), (3.14) and (3.15) we then
write

Ä|_ t,wÄ„ r^r0 (5.15)

Rix (xtx + (xC)ix)(h,x cos cx + (Gt cos ôx-Ft sin ÔJ sin cx) r^r0. (5.16)

To first order we have

Rtx Ti««*« + t„c_(Gcos J« -Ësinôx) + (xC)ixhx. (5.17)

We replace \Ryx by \Ryx in the right-hand side of (3.13) and define

Xßcc \drßa\M-1A\Ryx. (5.18)

0

Inserting (5.17) for Rix on the left-hand side of (3.13) and using (5.4) as well as the
orthogonality of x we arrive at

mr1 _> t„ xta Kßß,h*] - c.<j8|1 |a> - C„. sin(5_ - 6,) X„. (5.19)

Taking a ß in (5.19) and using (5.10) we get

c3 -X33 + (1 /3m) Wro[h3, h_3] + (213m) WrJh3, h03] (5.20)

cx -Xu + (2/3m) f^jM-ij + (l/3»i) Wrßuhoil (5.21)

Taking a 1 and ß 3 we get

C31 sinfo - ÔJ X31 + (V2/3m) WrJh3, h_x) - (V5/3m) Wrfi3,hox]. (5.22)

From (3.17) we know that

C31 -C13. (5.23)

Equations (5.20)-(5.23) give the electromagnetic corrections in perturbation theory.
We now calculate the quantities X33, Ju and X3X more explicitly. To this end we

N?ut
?WIVEK.TE^ \R>x ~hx^«> ^3'1 '<'«• (5-24)

O NEUCHATEL .<•/<



Vol. 48,1975 Charge-Independent Analysis of Low Energy nN Scattering Data 201

It is seen that h3 and hx are the regular solutions of (3.1) in the isospin basis. Due to
charge-independence the system of equations (3.1) decouples in this basis. The hx as
defined in (5.24) have to fit smoothly at r r0 to the /_ as defined in (5.13). We put

Am m0-m Aq2 =q\-q2 (5.25)

F_ <-|F|->. (5.26)

One should note that F_ is minus the potential going into (5.6). Collecting all the
definitions and using (5.10) we get

X33 2/3m j dr(h3)2 (m F_ + 2Am U33 - Aq2) (5.27)
o

A-n=l/3mj dr(hj2 (AmV_ + 2AmUa-Aq2) (5.28)
o

X3i V2/3m \ drhi h3(-2mV__ + 2AmUn - Aq2). (5.29)
0

In order to give the nuclear scattering amplitudes a and a0- in terms of the
charge-independent quantities Sx and the corrections cx, Cxß we define

ax sin(i5a + cx) exp(iôx + icj. (5.30)

Using (5.10) we get from (AIO) and (3.5) in perturbation theory

a__ (3q)~1 exp(2iv)[a3 + 2ax + 2V2C3Ja3 - aj] (5.31)

a0- (9qq0y1/2 exp(iv) [(a3 - aj (V2 + C3J] (5.32)

where v v_. Note that the exponential functions in (5.31) and (5.32) corresponding
to the additive electromagnetic amplitude have not been approximated by an expansion.

6. Special Potentials for nN Scattering

We will see in the next section that the numerical calculation of the phase shift
corrections at low energies is not very sensitive to the shape of the potentials. One can
therefore use very simple expressions for U and V.

The electromagnetic potential should take account of the extended charge
distribution of the particles. We take for F the potential of a uniformly charged sphere with
radius rc and a point charge,

F+(r) f±e2(L5-°-^2/^ '*'* (6.1)
[ ±e2/r r 7* rc.

The hadronic potentials must reproduce the charge-independent phase shifts which
are the free parameters in a phase shift analysis. But the complexity of the connection
between a potential and the corresponding phase shift makes it hard to choose directly
a potential with the right property. It is much easier to choose an ansatz for the solutions
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of the purely hadronic equation (3.1) and to determine the parameters of this ansatz
in terms of the charge-independent phase shifts. To test the dependence of the
electromagnetic corrections on the ansatz, two different expressions have been used in the
numerical calculations. We refer to them by I and II and use the following abbreviations

x qr, xN qrN (6.2)

L-.u(x) =fi(x) cos ôxlU - njx) sin ôx.tJ

la-Ax) jt+i(x) cosôx.u - nì+x(x)sinôx.,j. (6.3)

In (6.3) we have made the angular momentum dependence explicit in an obvious way.
Ansatz I consists in taking the simplest polynomial for /_.u(x) in the range x sg xN

which has the behaviour xl+1 for small x to take account of the centrifugal term in the
Schrödinger equation :

K-,u(x)
\mlq)1'2x'+1(Aa.u + Ba.tJx) x^xN
.(ml9)1/2xL;ij x>xN. (-}

The constants A and B are fixed by the requirement of continuity of the function h
and its derivative at x xN. The result is

AX;ij= x^(^.,ij(xN) + xNr)X;ij(xN))

Ra-,lJ -XNlt]X;lj(xN). (6-5)

A typical form_of the potential corresponding to ansatz I is shown in Figure 1. In fact
the quantities h, A, B in (6.4) should carry an index I to indicate their relation to ansatz
I ; for reasons of typographical simplicity we suppress this index and use the same letters
in the following for ansatz II.

Ansatz II consists in taking for hx-ij(x) in the range x < xN a more complicated
polynomial corresponding to a continuous potential at x 0 and x xN:

h
,((ml9)ll2x'+1(Ax;ij + BxlijX2 + Cx;,jX4) x<xN

"lj(X) [(m/qy^x^u x>xN. (6.6)

The constants A, B and C are fixed by the continuity requirements of the function fi,
of its derivative and of the corresponding potential at x xN. The result is

A*;,j (*5'/8) [(8 - x$) L;u(xN) + xN(2l + 7) «„;„¦(*„)]

Km («J,«-1/») [2xN^;,j(xN) - (41+ 10)t/_:Ij.(xy)]

C*-,u - «~3/8) [Xn L-.ij(xn) - (21 + 3)r,x;ij(xN)]. (6.7)
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A typical form of the potential corresponding to ansatz II is shown in Figure 1 ; it is
finite at r 0.

At low energies the potentials are only weakly energy dependent. From the definitions

of rN, rc and r0 it follows that the range r0 in the formulae of thè preceding sections
is equal to the greater of rN and rc. It is not possible to determine both parameters rN

m„ U

Figure 1

The hadronic p33 potential U for ansata I and ansatz II at T&W =191.9 MeV.

and rc together with the charge-independence phase shifts because the data are not
accurate enough. If one chooses a value of the order mA 1) for rc, then the combined
n+p and n~p data determine well a value for rN. For rc 1.42m«1 the phase shift analysis
at the first resonance described in Section 7 gives the values

rN
(1.01 ±0.14) m„
(1.10±0.17)m;

(ansatz I)
(ansatz II).

(6.8)

7. Phase Shift Analysis Below 250 MeV

We now describe the numerical procedure for performing the phase shift analysis,
including the corrections described in the previous sections. As mentioned in the
introduction we can fit the data in a charge-independent way by including the corrections

l) mn is the mass of the charged pion. One fermi corresponds to 0.71m*
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due to the electromagnetic mass differences. This means in particular that we can fit
the n+p and n~p data with the same charge-independent /»33 phase shift.

The data analysed here are the same as in Ref. [1], consisting of measurements of
°'tot('r+F)> crtot(n-p), a(n~p -*¦ n°n), da/dQ(n+p ->¦ n+p) and da/dQ(n~p -> n~p). A
strictly energy-independent analysis of these data is not possible because they are
measured at different energies. Therefore we describe now our procedure for the analysis in
detail.

7.1. Free andfixedparameters

As shown in the first two columns of Table I we divide all the data into sets, each of
which contains the results of either the n+p or the rCp experiments in a small energy
interval. Each data set is fitted separately by minimizing x2, varying the charge-independent

s- and /»-wave phases Sx at two energies Fx and F2. These are the energies of the
differential cross-section measurements. Starting from these phases and including the
corrections we obtain the nuclear 5- and /»-wave phase shifts ôx and the mixing
parameter C31 in the coupled-channel case at the energies Tx and T2.

The same nuclear quantities at other energies within the energy interval are then
obtained according to

2 2

q2l+1ctgôx-q\^1ctgôx,i (q^1ctgbx.2-q2^1ctgôx,i)-^\ (7.1)
9Ì-9Ì

q2-q\
G-1,1 — C31;1 (C31;2 — C31;1)— -. (7.2)

9Ì-9Ì
Here the additional indices 1 and 2 refer to the first and the second energy ofcolumn 4 in
Table I. Column 3 lists explicitly the free parameters for each least-squares fit. Some
small phases near the resonance at 190 MeV, which are omitted from the list, cannot
be determined well by the data and are therefore kept fixed in the corresponding fit.

Table I
Minimized x2 for each least-squares fit in small energy intervals ; a, b and c refer to the three analyses
a), b) and c)

riif_ intervals
(MeV)

Free parameters
Charge-independent
phases

Atr
(MeV)

Number
of data
points

Degrees
of
freedom

X2 at minimum
Experiments a b c

n+p (71.6/118.9) s31,p31,j>33
s3l,p3\,p33

94.5
114.1

11 5 7.7 7.7 7.7

n+p (120.4/155.8) s31,p31,p33
s3l,p31,p33

142.9
124.8

21 15 26.4 26.4 26.4

7i+p (161.2/194.3) p33
p33

166.0
194.3

32 30 24.7 24.6 24.2

iz+p (205.3/236.3) s3l,p3l,p33
s31,p31,p33

214.6
236.3

30 24 22.3 22.3 22.3

n-p (76.7/96.0) sil,pll,pl3 88.5
119.3

6 3 6.2 6.4 9.1

n~p (114.4/144.1) sll,pll,pl3
sU,pll,pl3

119.3
144.1

18 12 24.8 24.8 19.3

n-p (159.6/192.3) sll,pll,pl3
sll, pl3

161.9
191.9

26 21 29.0 29.0 29.5

n-p (208.9/237.9) sll,pll,pl3
sll,pll,pl3

219.6
237.9

24 18 19.8 20.0 22.2



Vol.48, 1975 Charge-Independent Analysis of Low Energy nN Scattering Data 205

In the fifth data set of Table I only the phases at Tx are varied, while the phases at F2
are taken from the fit in the sixth set.

The inelasticities nx and the d- and/-wave phase shifts are fixed parameters included
in the fits. Their values are taken from Ref. [1 ]. The partial-wave isospin amplitudes in
equation (5.30) are now modified by the inelasticities in the usual way,

ax nx sin(<5a + c.) exp(iôx + icx) - (1 - r\x)/(2i). (7.3)

The ranges rN and rc described in Section 6 are two further parameters. They are
needed only for the calculation of the corrections and are therefore kept fixed at some
reasonable values. Fixing rc at typical values of 1 or 2 fm, rN was determined by
independent least-squares fits with different rN to the data in the third and the seventh
sets of Table I. This has to be done because the mass difference corrections are more
dependent on rN than was the case earlier for the Coulomb corrections. After this
preliminary procedure to obtain the right range parameters, all fits in the different energy
intervals were done with fixed values for rc and rN.

7.2. Scattering amplitudes from the parameters
To calculate the nuclear quantities from the charge-independent phase shifts 5X

we use the electromagnetic phase shift corrections described in the previous sections.
In all the numerical calculations of this section we have done this only for the si and/»3
partial waves. For the other phases the corrections are much smaller than the accuracy
to which these phases can be determined from the existing data.

The inclusion of the corrections by means of our computer program does not
follow equations (5.5) and (5.20-5.22). The nuclear quantities are calculated from the
potentials of Section 6 by integrating the Schrödinger equation (2.3) from 0 to r0
max(rc,rN), followed by expanding the solutions at r0 according to equation (2.19).
We have checked that the perturbation expressions of Section 5 give the same phase
shift corrections within 1 %.

The functions Ft and Gt and the corresponding Coulomb phases v, depend on the
choice of the additive electromagnetic amplitudes, which are those of Ref. [16] multiplied

by form factors (1 — t/m2„)~4, where mp a Smn. For the phase shift analysis of the
existing data it is well justified to use first-order expressions in the Coulomb parameter
for v,, Ft and Gt. Therefore the Coulomb phases to be used in equation (AIO) are (see
Ref. [12])

v,., arg F(/+ 1 + iyj + Avi;t (7.4)

where

Avt,o y(/2[ln(l + e) + e/6 (1 + e)"3 (18 + 27e + 1 le2)]

AVi;i y(/2[ln(l + e) - e/6(l + e)'3 (6 + 5e + e2)]

s Aqf/m2 x, 0.16qf m~2.

Since we had a computer program for the usual Coulomb wave functions Ft and G,,
the functions Fi;( and (ji;, used for the expansion (2.19) at r0 are approximated by
(see Appendix III)

Ki(ro) FJq, r0, y,) + G,(qt r0, yj Avui

Gi:i(r0) GJqir0, yj) - FJqt rq, y() Avi;l. (7.5)
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7.3. Results

To determine the charge-independent /= 3/2 s- and/»-wave phase shifts, a least-

squares fit was made for each of the four n+p data sets defined in Table I. The
corresponding / 3/2 phases at energies needed for analysing the n~p data sets were obtained
by using equation (7.1) for the charge-independent phase shifts. With these fixed values
of the /= 3/2 phases, a fit was made for each of the four n~p data sets to determine the
charge-independent I is- and /»-wave phase shifts.

Three independent analyses were done, labelled by a), b) and c). They are characterized

by the following features :

a) ansatz II (see Section 6) rc 1.42m;1

b) ansatz I rc 1.42m«1

c) ansatz II rc 0.71m;1.

As described above, each analysis was started by fixing a value for rN. From the
preliminary fits to the third and seventh data set, we obtained

[" 1.10 ± 0.17m-«1 a)

rN= 1.01 ±0.14 b)
ll.34±0.13 c)

Changing the given values by the standard errors quoted results in an increase of 1 in
the x2 for the seventh data set. The minimized x2 for all the fits with the above range
parameters is presented in the last three columns ofTable I. It can be seen that a reasonably

good fit is possible with charge-independent phase shifts if one includes not only
the Coulomb corrections, but also the mass difference corrections according to the
method described in this work.

The higher y2 values for the fits to the n~p data sets is not surprising if one recalls
the fact that the / 3/2 phases must first be provided by equation (7.1) from the values
obtained from the n+p fits. It would be desirable to have the n+p and %~p measurements
at the same energy.

The differences between the corrections using ansatz I and ansatz II are unimportant
(analysis a) and b)). This is illustrated in Table II for the most important/»3 corrections.

Table II
p3 corrections in degrees for n+p(c') and n~p(c3,CuC3i) scattering for the three different analyses a),
b) and c).

T\?,\ £jl+ C3;l+ Cl;l+
(MeV) abcabcabcabc
88.5 -0.38 -0.38 -0.38 0.42 0.42 0.40 -0.02 -0.02 -0.02 -0.17 -0.17 -0.12

119.3 -0.56 -0.55 -0.55 0.35 0.36 0.32 -0.03 -0.03 -0.02 -0.05 -O.05 -0.01
144.1 -0.56 -0.55 -0.52 0.14 0.14 0.01 -0.02 -0.02 -0.01 0.01 0.01 0.05
161.9 -0.39 -0.39 -0.35 -0.09 -0.10 -0.14 -0.02 -0.02 0
191.9 -0.01 -0.01 0.09 -0.36 -0.35 -0.38 -0.03 -0.03 0
219.6 0.24 0.24 0.29 -0.40 -0.39 -0.42 -0.03 -O.03 0
237.9 0.31 0.32 0.35 -0.36 -0.36 -0.36 -0.03 -0.03 0.01

0.04 0.04 0.07
0.06 0.06 0.09
0.08 0.08 0.10
0.09 0.09 0.10
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0.4

0.3

0.2
C3i,i+(mrmi)

31.1

»J kin

200 MeV

cxi+tm.-m,)

150100

-0.1

-0.2

0.3

0.4

Figure 2
/»33 phase shift corrections c3;l+ and mixing parameters C3U1+ (solid lines); the dashed lines are the
corresponding corrections without any mass differences (m, m,).

This is again a confirmation that the corrections are only weakly dependent on the shape
of the hadronic potentials, provided that they have a suitable range. Comparison of
columns a and c shows that the corrections are more dependent on the choice of rc.
The fits below 100 MeV prefer for rc a value about 1.4m;1 rather than about 0.7. This
fact has no physical meaning because the chosen electromagnetic potential is not
expected to describe exactly the actual physical situation within the nuclear range.

Figure 2 shows the decomposition of the corrections c3;1+ and C31;1+ into Coulomb
and mass difference corrections. From this illustration it is clear that in analysing nN
data at low energies mass difference corrections and Coulomb corrections play equally
important roles.

Tables III and IV contain the charge-independent phase shifts and the corrections
for the s- and /»-waves resulting from the phase shift analysis a).

Table III
Charge-independent nN phase shifts in degrees

7*lab* kin
(MeV) S3;0+ £l;0+ S3;l- S,;,- ^3;1+ £l;l+

88.5 -8.70 + 0.12 8.59 + 0.14 -1.74 + 0.22 -1.68 + 0.08 16.97 + 0.06 -0.99 + 0.13
119.3 -8.15 + 0.19 9.77 + 0.16 -3.41 + 0.24 -1.05 + 0.28 32.94 + 0.06 -1.71 ±0.12
144.1 -12.94 + 0.28 9.64 ±0.17 -3.66 + 0.34 -0.55 ± 0.22 51.35 ±0.07 -1.44 + 0.12
161.9 -12.50 10.19 + 0.23 -4.36 0.72 ± 0.42 67.33 + 0.16 -1.23 ±0.25
191.9 -14.78 10.62 + 0.50 -5.18 1.96 91.68 ±0.55 -2.79 + 0.29
219.6 -17.30 ± 0.29 13.13 + 0.26 -5.97 + 0.54 3.20 + 0.37 109.78 ± 0.22 -2.96 + 0.13
237.9 -18.40 + 0.32 13.11 ±0.34 -6.22 + 0.48 5.13 ±0.30 117.20 ±0.21 -3.22 + 0.11
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Table IV
Electromagnetic corrections to nN phase shifts (c' for n*p, c3 and cx for n~p scattering) and mixing
parameter C3, in degrees for partial waves si and/»3 corresponding to a form factor (1 - tjm2)-* in the
electromagnetic amplitude

rplab* kin
(MeV) C;0+ C3;0+ Cl;0+ C31;0+ C;'l + C3;l+ Cl;l+ C3,;l+

88.5 0.12 -0.07 0 0.10 -0.38 0.42 -0.02 -0.17
119.3 0.11 -0.04 -0.03 0.10 -0.56 0.35 -0.03 -0.05
144.1 0.13 -0.04 -0.05 0.10 -0.56 0.14 -0.02 0.01
161.9 0.12 -0.03 -0.07 0.10 -0.39 -0.09 -0.02 0.04
191.9 0.12 -0.02 -0.09 0.10 -0.01 -0.36 -0.03 0.06
219.6 0.12 -0.01 -0.11 0.08 0.24 -0.40 -0.03 0.08
237.9 0.12 -0.01 -0.12 0.08 0.31 -0.36 -0.03 0.09

7.4. Conclusion

It should be mentioned that the phase shift corrections and with them the phase shift
analysis are influenced by the choice of the hypothetical charge-independent masses.
If for example we choose mt ^ mx, we have mass difference corrections in the single-
channel case also. But with the present accuracy of the experimental data there is no
hope of determining a value for m by fitting the data.

We do not claim that the model-dependent calculation of the electromagnetic
corrections presented here predicts exact numbers. Nevertheless it shows two things.
Firstly, it gives for the first time a rough estimate of the mass difference corrections to the
phase shifts. These corrections cannot be neglected any longer in a phase shift analysis
of precise low energy nN experiments. Secondly, a charge-independent analysis of the
present low energy nN scattering data is possible with the inclusion of mass difference
corrections using even a very simple potential model.

Acknowledgments

I wish to express my gratitude to Prof. G. Rasche, under whose direction the
present work has been done, and to Prof. G. C. Oades and Dr. W. S. Woolcock for their
advice and discussions.

APPENDIX I
We show that the matrix K defined by (2.20) is real and symmetric. The arguments

given here apply equally well to the matrices Ê7, R and K defined in Sections 2 and 3.

The reality of AT is a simple consequence of the fact that all the matrices in (2.3) are
real and so we can choose the Rix to be real functions.

The symmetry of K is a consequence of the fact that M"1 Q2, U and V are
symmetric in the physical basis. We therefore have from (2.3) the symbolic relation

ß<R IM"1 D\Ryx - ARIM-1 D\Ryß 0.

This equation reads explicitly

-^m71W,[R,ß,Rix) 0 (Al)
t=i
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where

d d
WJRtu, Rlx] Ri,—Rt. - R,a—R,ß. (A2)

dr dr

Because rVr=o[Rni,RtJi 0 for two regular solutions, we have from (Al)

2 ml1Wr[Rtß,RtJ 0 r>0. (A3)
i=i

Inserting the asymptotic expansion (2.19) and using the relation

Wr[Gi,Fi) mi (A4)

we have
n

2(Kiecrlx-aißKix) 0
t=i

or, in matrix form,

Kla a' k.

We therefore have

K' (aK-1)' (k-1)' a' (k-J a' kk'1 (k"1)' k' aiC1 an'1 K. (AS)

Thus the transpose K' of .Kcoincides with AT and we have established that Kis symmetric

APPENDIX n
The total scattering amplitudes / and g in the cm. system for the process i ->/

are given by

fn 2 Ü+i)P,(cos 9) âfi,ij (A6)
u

gft 2 (-îy-'-^Pi1 (cos9)âft;lJ. (A7)
i,i

Here we have introduced explicitly the partial-wave indices (If). It is clear how the
formulae of Sections 2 and 3 have to be modified to apply to arbitrary /. It should be

particularly noted that in practical calculations one might need a different potential
U(ii) for each partial wave. The differential cross-section for the process i ->/is

d-~=9f97\\ffi\2+\gft\2)- (A8)

The explicit form of (2.23) is, for general (If),

atun 9T1 sin v,„ exp(/vi:l) </|11 j> + a/i;lJ (A9)

where

afuij (qtqf)-112 exp(ivi;, + ivf.,t)(f\K^»{l - iK«»)-1^. (AIO)
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Insertion of (A9) and (AIO) into (A6) and (A7) shows the influence of the choice of V
on the nuclear quantities K<lJ). Defining the additive electromagnetic amplitude fit as

fit 2 (J+ i)pi (cos 9)q71 sinvj., exp(rvJ:I) (All)
u

we have, more explicitly,

ffi </|1 \i>/„ + 20'+ i) Pi(cos 9)afUtj (A12)
i,j

gfi 2 (-l)J-l-1/2Pi(cos9)afi:ij. (A13)

APPENDIX m
We consider the two equations for x > 0

d2 \
— + l-2yjx\R(x) 0

— + 1 - 2y/x + 2yD(x)\ R(x) 0 (A14)

where D(x) is continuous

|*F>(;c)| < Ci 0 < x s; 1

|*2F>(x:)| <c2 x> 1

Ci and c2 axe two constants. We show the connection between their solutions, neglecting
terms of order y2 and higher.

F and G are the regular and irregular solutions respectively of the first equation,
F and G the corresponding solutions of the second. The Wronskians are, by definition
of the normalization,

WX[F,G]=WX(F,G] -1. (A15)

According to equation (2.11) we have asymptotically

F(x) x~x F(x) cosAv + G (x) sin Av

G(x) ~KG(x)cosAv-F(x)sinAv (A16)

where Av is the difference between the phases of F and F.
From the equation (A14) we get the derivative of the Wronskian of any two

solutions R and R,

— WX[R, R] -2yD(x)R(x)R(x) (A17)
dx

and, by integration, we have
00

WX[R,R]= Wa,(R,R] + 2yjdyD(y)R(y)R(y). (A18)
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We now set R P and obtain two integral equations by replacing R by either F or G.

CO

rVx[F,F] -sinAv + 2y J dyD(y)F(y)F(y)
X

CO

WX[G,F] cos Av + 2y J dyD(y) G(y)F(y). (A19)
X

The terms involving Av result from the Wronskians for x -> °o, using equation (A16).
Replacing the functions in the integrand by the corresponding functions for y 0,
(A19) becomes a linear system to determine Fand the derivative F' up to the first order
in y. We immediately arrive at the first order results

oo oo

F(x) F(x) + G(x)Av + sin;c f dy2yD(y)siny cosy - cos* [ dy2yD(y)sin2y
I * (A20)

CO 00

F'(x) F'(x) + G'(x)Av + cosx f dy2yD(y) siny cosy + sinx [c?}'2y.D(j')sin2.y.

(A21)

Because Av is, in lowest order, proportional to y we have replaced cos Av by 1 and sinAv
by Av. We obtain similar expressions for ô and ô'.

To save computer time we have neglected the integral terms in the equations (A20)
and (A21 in our actual calculations, where x is equal qr0, F and G axe the usual Coulomb
wave functions, and Fand G are the wave functions at r0. In our calculations q is within
the range mn-2mn and r0 « 1.4m;1. The neglected integrals are about 5% of the phase
difference Av, which is equal to the integral

00

Av dy2yD(y) sin2y.
o

As we have pointed out in Ref. [12], the effect of Av itself on the phase shift corrections is
small for / 0 and negligible for / > 0. Therefore the approximation (7.5) is well justified.
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