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Energy Loss of Charged Particles in a Medium of Resonant
Atoms in the Presence of an Electromagnetic Field

by S. P. Andreiev1)

Department de Physique Théorique, Université de Genève,
CH-1211 Genève 4, Switzerland

(3. H. 1976)

Abstract. The process of the energy loss of a massive charged particle in a medium of
independent atoms in the presence of a resonant electromagnetic field is investigated. It is shown that
the field changes radically the character of the movement of the particle, from elastic to inelastic.
The sign of the energetic losses depends on the sign of the difference between the frequency of
the field and transition frequency of atoms.

1. The Description of an Atom Interacting with a Resonant Electromagnetic
Field in the Language of Compound Systems. The System of Equations

A number of workers have recently considered photon absorption by atoms
colliding in a strong electromagnetic field [1-4]. We shall say that an electromagnetic
field e0 cos cot is strong if it effectively changes the densities of the atomic levels during
the time of an atomic collision.

For such a field V. S. Lisitsa and S. I. Yakovlenko have solved the problem of
absorption of light due to collisions between resonant atoms and charged
particles [1, 2].

S. P. Andreiev and V. S. Lisitsa have solved the same problem for a system of
identical resonant atoms [4]. But the question of the energy loss of charged particles
(or atoms) in such collisions is still open. This question is especially interesting
because:

1. For slow particles the energy loss is zero when the electromagnetic field is
absent.

2. It is not evident what the sign of the energy loss will be in the presence of the
field.

3. A more complete experimental investigation of the interatomic interaction
is possible by measuring the energy loss of massive particles in gases [2].

We shall investigate the energy loss of a massive charged particle moving in a
medium of independent identical atoms, excited by an electromagnetic field e0 cos cot.

The hamiltonian describipg the interaction between an atom of the medium and a
charged particle in the presence of the electromagnetic field is

Ê=fxe+V (1.1)

») Permanent address : Department of theoretical physics, Moscow Engineering Physics Institute.
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where

Vxe — 3xe0 COS cot

interaction hamiltonian between the electromagnetic field and the atom (x).

dx dipole moment operator of the atomic electron.

V interaction hamiltonian between the atom and the charged particle.

We shall assume that the distance between the atomic energy levels (E2 — Ef)
is close to the energy of the quanta of the field, i.e.

eo - (E2 - Ex)/h Aco « eo. (1.2)

If the effective impact parameter between the particle and the atom pe[I is larger
than the atomic size d0(pet{ » d0) and the velocity of the particle vQ is small enough

v0/pett«(E2-Ex)/h (1.3)

then the hamiltonian V can be written in the form :

V=-%r (1.4)
r%(t)

Here e is the charge of the electron of the atom; r its radius-vector; q is the charge
of the massive particle; r0(t) is the trajectory of the particle, which for a massive
particle can be assumed to be of the form

hit) ß + vot, -p-vo 0 (1.5)

and p is the impact parameter.
In the resonant situation the wave-function of the atomic electron can be written

as a combination [5] :

^ d^6"'^ + C2e-i(Affl"2V2 (1.6)

in which tb, is a wave-function with energy level E, (i 1, 2). It is very simple to
obtain a system of equations for the coefficients Ct from the Schrödinger equation.
The result is:

i(cx + i^Cx} - VCC2 + VXXCX, (1.7a)

(1.7b)

k=l,2

bx \b.Cx + rpJïè+C2] exp[-/^ r + i j" Ux(t') dt'] (1.8a)

bn [-è+Cx + XIb_C2] cxpli^- + ij' Un(t') dt'l (1.8b)

11 C2 1 —~- C2h -v*cx + v22c

where

v (dx)i2E0
V* 2h ' vkk

<>bk\v\ibky
h

now we shall make a change of variables
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^72-V^' "o VA„2 + W,
Ut bl Vxx + b\ V22, Un b% VX1 + bl V22.

The system of equations for the coefficients bx and bn becomes [2] :

ibi bn-x(t)LA-exp

ibxl bx-x(t)'-A--exp\i

Ü.0t --A x(t')dt' 1,

&0t --A- \ x(t') dt'
"0 J -oo

x(t) C[p2 + v2ot2]-3'2, C -qj(r22 - r2), r2 <&!/•%>.

(1.9)

(1.10)

For further calculations it is necessary to know the wave function of the atom in
the resonant electromagnetic field. We can use directly the expression for the wave
function of the atomic electron from Ref. [5] and supposing that at time tx the electron

occupies the lowest energy level, we can write:

4>
On s

Act) Qn
cos -^ (t - tx) - i jr- sin -j(t- tf) ,«Aca/2)t,/

V* Qn
+ *^2sin-^(f- tx)e' i(Aœl2)t:

Causing eIjir-coefficients it is not difficult to rewrite the last formula as:

j, by^oi2»!/,, + bne-m°l2)tipn,

bl b-e-«noi2\ bn -b+ei(n°l2*x-

(1.11)

(1.12)

The functions ipItU axe normalized, orthogonal and they describe the two-level
compound system, with average quantum-mechanical energies Ex bl x Ex +
b2+ x E2 and En b2+ x Ex + bl x E2, as it is shown below:

ibx b-tbié,V,Al0l2)t V*
b+<b2e~ i(Aml2)t Ex blEx + b2+E2;

-An b+ibie™"12* - -frh b-if)2e-™°>'2\ En b2+Ex + blE2

The distance of the energies Ex — En is

Ef)Ex — Eu -rj- (E2 (1.13)

so we can tell from (1.9), (1.12), (1.13) that in the presence of a resonant field we have
interaction not between the particle and an atom, but between the compound system
(the atom + the field) and the particle. Every collision between the compound
system and the charged particle is described by the system of equations (1.9) and leads
to an absorption of light proportional to [4] :

AEabs~^(E2-Ex) (1.14)
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but the energy necessary for such a transition is proportional to hQ0 « (E2 — Ef)
as can be seen from equations (1.9). From this it is possible to conclude that, in a
resonant field, the energy loss of charged particles will take place, though it will not
in a non-excited medium. The energy necessary for a transition of the atomic electron
in the absence of the field is proportional to (E2 — Ef) » Q.0h.

2. Energy Loss of the Charged Particle Interacting with the Compound System

For further calculations it is necessary to obtain a general expression for the
energy loss of the particle in terms of the density amplitudes of the compound system
states bi, bn-

The atomic potential of every point of space can be written as:

9(?).!d + c|jMrfV. d»
Making the same assumption which has been used to obtain (1.4), and using the

expression for the wave-function (1.6) we can rewrite the last formula in the form:

fir) -?-3{\Ci(t)\2r2 + \C2(t)\2r%7}. (2.2)

Hence for the intensity of the electric field at the point where the charged
particle is, we shall have:

Êoit) -^é£{\Ciit)\2rl<+ \C2(t)\2rl}. (2.3)
rov)

The work done by the field in unit time, i.e. the rate of change of energy of the
particle is :

dA dE -
Tt - Tt qEoit)vo

and by integrating this expression in time, we obtain the change of energy of the
charged particle:

AE -3eqv\ J+J
[p2

+'^,a]B/a [|Ci(0l"rï + ^(Ol2'!]- (2-4)

With the help of expression (1.8), it is not difficult to write the formula for energy
loss of the particle in terms of the coefficients bx, bu, which characterize the compound
system. But we shall not consider the energy loss of the particle due to the individual
act of collision, but the energy loss of the particle in the medium of the resonant atoms.
So, multiplying (2.4) by 2nn0p dpv0 and integrating over the impact parameter p,
we have

dE
dt

6nn0hCv3o £ p dp J+J
[p2 I Ipp ¦{—¦ [|M012 - l*n(0|2]

+ 2\V2[£l Re\bx(t)b&t) exp(-2/^ HO + i'Qof (2.5)
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m-H x(t')dt'
C

2v0p2
1 +

v0t

Vv%t2 + p2

541

(2.6)

and n0 density of the resonant atoms.
The system of equations (1.9) and the last formula (2.5) describe completely the

process of energy loss of massive charged particles in a medium of resonant atoms
in the presence of an electromagnetic field. But in general it is impossible to solve the
system of equations (1.9) for the compound system coefficients. However, we can
investigate some special cases and in this way obtain a rather full picture of the
process. It is evident from (1.9) and (2.5) that in the absence of the electromagnetic field
the energy loss of the particle is zero, i.e. the movement has an elastic character.

3. Perturbation Theory

In the second approximation of perturbation theory the coefficients of the
compound system have the form :

Q0t' -^2A(t'bx(t) bl - ibn^ j" x(t') expi-i Q0t' - ^ 2A(o]j dt'

- bi M j" dt'x(f) expj-/[iV' - ^ 2A(o]}

x f x(t") exp(i\n0t" - ^2A(ojW';

bn(t) bn - ibi^f *(0 exp//[tV' - ^ 2A(r')]} dt'

- bu^ j" dt'x(t') exp{/[Do^' - ^ 2A(r')]}

x x(t")exp\
J — CO

(3.1)

0v"-^2A(O (3.2)

The conditions for the validity of the perturbation theory are different for the cases
of high and low frequencies Aa>. They can be written in the form [2] :

and

\Ve\ « |A«j| if \Aco\ « Q.w

| Ve\ « (Q.wAco2y'3 « | A<u| if | Aüj| » Qn

(3.3)

(3.4)

Qw vll2l\C\112 Vo/pw is the characteristic frequency scale.

It is necessary to mention here that although we have developed the perturbation
theory for the compound system the inequalities (3.3-3.4) automatically lead us to
the perturbation theory for the atom when | Ve\ « \Aco\, i.e. the resonant electromagnetic

field must be small enough so that the probability of finding the atomic electron
on the high energy level will be small compared with one. But the inequality (3.1)
is absent in the usual atomic perturbation theory. By substituting (3.1-3.2) in the
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expression (2.5) for the energy loss of the particle, and by extending this expression
to all possible times tx, and by introducing new integration variables v0t px;
v0t' px', p/pw y: we readily obtain:

dE \Ve\2 1 r dy
-5- 6nti0hCv0 Vi — Adt Aeo2 pwJ0 yi

j_2 f°°_
Z 3 J0 (x

Aeo2 pw<

dx
2 + 1)3

x dx

cos a l x
pyx -VcAa--2-===y Vr + 1

+ 2r,cAaJo (x2 + l)512

dx'

sin ßyx - ricAo, ~2y2 Vx2 + i

j-oo (X72 + l)3
COS

1

ßyX - VcAo) 73y Vx'2 + i
Here

ß \kco\pw/v0; -qcAto sgn(CAco); pw
1/2

(3.5)

(3.6)

From the expression (3.5) it follows that if conditions (3.3) and (3.4) are satisfied,

then the energy loss of the particles is proportional to the square of the resonant
field.

Let us investigate the expression (3.5) for high and low values of the parameter /3.

If the inequality

| Ato| « Vo/pw, i.e. ß « 1 (3.7)

is satisfied, the first terms in the arguments of the sine and cosine in (3.5) are small
and we immediately obtain :

Tt * *g»(M8MChg JL ~ Aco\C\ g.
Now we shall study the expression (3.5) for large values of/3:

| Atu| » Vo/pw, i.e. ß » 1.

(3.8)

(3.9)

This limit is determined by the relative signs of Aeo and C, which determine the
presence or absence of a stationary phase pom* x Aco in the arguments of sine
and cosine in (3.5). In the first case, if we evaluate the integrals in (3.5) by the method
of steepest descent on the real axis [3] we have:

dE ein .._. \VA2 1

-rr n0h\C \Voh-A ß — sgn(Acu)
Ó /A CJ Pwdt

AcolCl ini (CAco) > 0; (3.10)

and in the second case (no stationary phase point) the integrals in (3.5) are
determined by the pole of the function (X2 + l)"3'2, in the upper half plane. The result
of integration is

dE 3
2

-^ -^772«o«|C|M0
| J/ 12 05,3

Aco2 pw
e -3S213 sgn(Aco) ~ exp(- Aco2/3p2f3/vt>3). (3.11)
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4. Resonant Situation (Aco 0)

In the case of exact resonance Aco 0, the formula (2.5) for the energy loss of
the particle can be rewritten in the form:

dE
dt llnnnhCvlf p dp j"+J j^-I^p ReßAVV] (4.1)

and from the system of equations (1.9) in the case of exact resonance we can obtain
very easily that the average value of the integrated function (4.1) is equal to zero
(we have in mind averaging over all the possible times tx). So in the exact resonant
situation we have:

f 0. (4.2)

5. Impact Approximation

If the velocity of the particle is sufficiently high

v0 » (QoAcoC)1'3 (5.1)

the resonant electromagnetic field changes the è-coefficients of the compound system
very little during a collision between the particle and the compound system. In such
a situation we can obtain the solution of the system of equations (1.9) in the form of
a perturbation series with a small parameter

£VPwM>«l. (5-2)

Here pw is a modified Weiskopff radius [2] pw pw(Aco/D0)1'2 characterizing the
collisions in a strong electromagnetic field.

The conditions (5.1) or (5.2) do not mean that the electromagnetic field is small
in the sense of the inequalities (3.3-3.4), i.e. the coefficients of the compound system
levels can have the same order of magnitude bx ~ bn.

The first two terms of the perturbation series for the solution of (1.9) in powers
of Q.opw/v0 is:

bi(t) b?(t) + \ve\etiAc°ICio»* f dt't'x(t')
J— CO

[-*i0i(O')e«A0,no)A cos(A _ A') _ i sin (A _ A')

x ffill bl(t')e-«Ac°ino>* - ^ bUt')-ei(Aa'no»A] ; (5.3)

bn(t) b%t) + | Ve\ • e-«Am'no>A f dt'-t'-x(t')

')-e-i(Aa'W.cos(A - A') + /sin(A - A')

(4^ bni* ') ' e«Aco/n°)A' + ^ bl(t ') • e -«*°>iW} (5.4)

x [&?(?')
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bî(t) e^iwlbï cos A-i bl^- + 2bn ^1 sin a|, (5.5)

60(f) e-wtom^L^ cos A + j- èo |fï _ 2b° i^ij sin a|. (5.6)

A=A(0, A(t')=A'.
By substituting these expressions in the general formula (2.5) we get after some
calculations the following formula for the energy loss of the fast (5.1) particles:

/IF \v\2^ sgn(Aco).8Wi|C|^- D0
ßo- (5.7)

In the limiting case |Aco| » 2\V(\ this expression becomes (3.8). The right-hand
side of (5.7) has a maximum when | Aco| 2| Vf\. For this point we shall have:

dF^ sgn(Aco)2™0«|C| • | V,\. (5.8)

6. Static Approximation

We can solve the system of equations (1.9) in the other case when the velocity
of the particle is rather small (i.e. when the electromagnetic field influences very
strongly the individual collisions between the particle and the compound system) :

»o « (Q0AcoC)1/3. (6.1)

This is the so-called static region [1-4].
We have used in this case the method of an approximate solution proposed by

L. Vainshtein, L. Presnyakov and I. Sobel'man [6].
Let us introduce the new variables ßx and /3n as :

ßx(t) bt-e-™«"0**; ßn(t) bu-e>(Aaiao»\ (6.2)

The system of equations for these coefficients is :

tßl Eo X(t)ßl + fl^ >c(t)ßn-e-ino\

Ißn -^ro *(t)ßn + ^x(t)ßveaA
(6.3)

This system of equations was solved in [6] for the special case of initial conditions

ßi(—oo) 1 ; j8n(—oo) 0. We have other initial conditions

ßr(-cxj) b.-e-^J2; -/V-oo) b+ .e"W2. (6.4)

In this case the solution of (6.3) for slow particles has the form:

A(0 {b_.e-«n<rV2>.cosy(t) - tV ei(£V*'2> • sin y(f)},

ßn(t) iélo*««".{-b+ •ei(n»,*'2)-cos y(t) - b.-e'^o^^-sin y(t)}.
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Here

Vit) ^f œ
"it') dt' cos £ J^ì0-^x(t)}2 + ^-x2(t) dr; (6.6)

d(r) n0-J(ü0-^ x(r)}2 + 3EE X2(r). (6.7)

As has been shown in Ref. [6], the expressions (6.5) should be accurately expanded
to second order in \Vt\. It is more convenient, however, to carry out the expansion
at a later stage. By substituting (6.5) into (2.5) we shall have after some transformations:

dF \v\2 rm r+0°^ 24nn0ftCv30l-^-j pdpj dt

2 Aco x(t) f',_ „x XMiToWTWr'-^L (i2° "d{r))dr

+ sin£(A, - d(r))dr^n - ^2)5/2j£x(f')^'-COs£ (Oo - d{r)) dr.

(6.8)

The second term in the brackets in (6.8), divided by the first, is of the order of
(r0/(ü0AcoC)1/3)2 « 1, and can be neglected. After that, by introducing the variables
v0t px; Vnt' px'; v0t" px"; p pv-y, we can rewrite (6.8) in the form:

* flo piv Jo /J.. ix2 + i)3

r+ °° dx'
x cos a(x; y; ß) J - cos «(a;'; >>; ß), (6.9)

f* /7 î \2 4|F|2 1 1

<x;y;ß) jQ J[ß ~ wra(-p + 1)W) + -^p-ÇPTl?yÄ;
^caco sgn(CAco). (6.10)

In (6.10) when ijAü)C > 0, the main contribution to the integrals (6.9) occurs in
the region where /3 — [y~2/(x2 + l)312] is small. (This is the so-called case of Landau
and Zener [7].) For this case, we have:

dE n2n0h\C\3 \VA2 \AeoPw\v0\213 2 4|F£|2,.
It 4 -^Ì7WJ pi "exP -3'Ì^-IA^ I -ol-sgn(Aco).

(6.11)
Here

ß \Acopw | v0| » 1; |Aco| » \Ve\.

In the second case, when -qCAa> < 0 (this case was considered by Stueckelberg [7])
the estimate of the integrals in (6.10) gives us:

2
*. 2 /|F£|.|C|.Aco\l/3 t-.~-^n0hvlpw-exp -I1 l_j 1 .Sgn(Aco). (6.12)
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Here

|K,| » |Aco|. ß ^(|Fc|Aco)1/2 » 1.
vo

So we can conclude that in the case (Aco - C) > 0 the sign of the energy loss of a
charged particle in the medium of resonant atoms depends only on the sign of Aco.

If Aco > 0, the particle moving in the medium gains the energy of the field through
interaction with the compound system. If Aco < 0, the particle loses its energy. For
the fast particles the same conclusions can be drawn if (CAco) is negative.

In both cases (CAco $ 0) the change of energy is exponentially small for slow
particles. In the exact resonant situation (Aco 0) the movement of the particle has

an elastic character.
The above effects are of direct interest because they can be seen even in fields

e0 much lower than the characteristic atomic field eat 0.5-1010 v/cm. We estimate
the order of magnitude for the characteristic parameters used above for the point
of maximum energy loss | Vf\pw/v0 ~ 1. For v0 x IO5 cm/sec, C ~ 10 at. units (1.16)
dxjh ~ 2 at. units, we obtain pw ~ 10~7 cm, e0 x 10* V/cm « eat [1].

Variable-frequency laser beams with a power per pulse of ~ 1 MW are now
available. By focusing this beam into a spot of radius 10 "2 cm it is possible to achieve
e0 ~ 104 V/cm [8]. Such an experiment would provide a test for the theory presented
in this paper.

We have not investigated in this paper the dependence of the excited atomic
level on the different projections of the angular momentum. In the case of fast
particles, it leads to a negligible change of the results, but for slow particles such dependence

can be more important.
The author is grateful to V. S. Lisitsa and C. P. Enz for useful discussions, and

to V. Jones and E. Gerelle for the attention to style in their careful reading of the
manuscript.
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