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Spin corrections to the two-body eikonal amplitude1)

by M. Quiros2)

University of Geneva

(22. VI. 76)

Abstract. Using the one-parameter eikonal representation and a-space techniques developed in an
earlier paper, the first-order spin corrections are obtained and its high-energy behaviour proved to be

non-negligible. In the limit where the range of interaction goes to infinity, bound-states, in the electron
positron annihilation region, appear as poles in the ^-channel and Regge trajectories in the f-channel, as in
the usual eikonal model. Spin corrections are associated with double poles.

1. Introduction

The one-parameter-eikonal-approximation (OPEA) has been introduced by
Levy and Sucher [1] as an alternative form of the usual relativistic eikonal approximation

(REA), which has the virtue of involving integration over a real parameter
instead of four-dimensional integration over the whole space-time.

Spin corrections to the eikonal approximation have recently been computed by
Levy and Léger [2], who have considered the scattering of a spin-^ particle by a
Coulomb field.

In this work we shall compute the spin corrections for two-body relativistic
reactions. We consider an interaction between spin-^ fermions and 'scalar' photons,
as £Cj — g\//(x)iji(x)A(x), and the class of ladder Feynman graphs to describe the
elastic fermion-fermion amplitude. We shall use a summation procedure simpler than
Levy and Sucher's [3] one. In fact, it can be easily verified that the most economic way
of taking into account all topologically different diagrams at a given order n is
described in Figure 1, where n means permutations over internal momenta
(Kx,..., K,_x, K,+ 1,..., Kn+f).

Using the OPEA and the summation procedure just described, it can be shown
[4] that the amplitude for the reaction

iPi, K) + iPi, i-i) -» ip'i, Ai) + (p'2, Af)

') In partial fulfilment for the requirement of the Ph. D. Degree at the University of Geneva.
2) Work supported by the C.I.C.P. Foundation. Permanent address : Lab. Fisica de Particulas, Institute

de Estructura de la Materia, C.S.I.C, Serrano, 119 Madrid-6 Spain.
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eikonalizes in the following way

MeììL(s, t)

-W dXexp\_iX(t - p2 + is)] exp\jix(X)] ü^p'^u^pflü^p'Au^pf) (1.1)

and x(X) is the eikonal function

X(X) -i(ux + uf)

where u, u(p,, -p2;X), u2 u(p,,p'2;X) and

' dAK

(1.2)

u(p,p';X) (2 mg)2
(2nf

D(K)exp(-2iXq-K + iXK2)
1 1

2pK + is 2pK + is

(1.3)

n+l
'n+r 2 2

1 1 TT

Pl —*-

^'Kl-1 1+1 n+l

Pi

Figure 1

The class of ladder diagrams.

In a precedent paper [4] we have studied the eikonal approximation in the space of
Feynman parameters, called a-space, and we have seen that the use of Feynman rules
in the a-space [5] was particularly suitable to find some spin corrections to the eikonal
approximation in a trivial way. Linearization offermion propagators implies diagonalization

of the Chrisholm determinant C(<x), and the factorization in a-space is
performed in a similar way to that in AT-space. The final expression for Meik is given by
(1.1) and (1.2), but this time with ux and u2 defined by

u, dp(s, t) u2 dp(u, t)

and the integration measures defined by

dp(s, f) i y~) do dy dß
l

exp — ißp2 + -
b2(s, t)

b(s, t)

(ß + X)2 """*' V 'rrm '

ß + X

X2t + (y2 + b2)m2 - X(y + ò)t - ÔXt - yô(s - 2m2)

(1.4)

(1.5)

The equivalence between (1.3) and (1.4) is easily proved by integration of (1.3).
However the amplitude defined by (1.4) shows explicitly the s — u symmetry.
Throughout this paper we shall use the notations and conventions of I.

Let G(K) be the spinor factor coming from the rationalized fermion propagators.
We shall identify the spin effects of order n with monomials of degree n in yK coming
from the development of G(K).
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In Section 2 we shall study the zero-th order term, which coincides with the
eikonal amplitude (1.1). First for very small scattering angle and then in the limit
where the range of the interaction goes to infinity, R ~ 1/p—roo. The result (2.15)
resembles what one finds in the usual eikonal approximation, showing the Coulomb
phase, the forward (t 0) singularity and simple poles in the complex energy plane
corresponding to bound-states.

In Section 3 we evaluate the first order correction terms in y - K. At high energy
the leading term behaves as a constant. It is, in this way, comparable to the eikonal
amplitude. In the limit p —> 0 it shows, equation (3.38), the Coulomb phase, the
forward singularity, an additional factor p and double poles in the energy plane
located at the same positions as the former ones. One can interpret [2] this term as
responsible for the fine structure energy levels of positronium. Unfortunately, these
levels would be proportional to p, and so, they would go to zero with p.

Appendix A shows an application of the Mellin transform to compute the
behaviour at t fixed and 5 —> oo of Feynman integral in a-space.

In Appendix B we explicitly compute the terms not considered in Section 3

(non-leading terms). They factorize in a little more complicated way, equation (B. 13).
Levy and Léger [2] have conjectured that these terms did not contribute in the high-
energy region. By application of the methods described in Appendix A we can prove
that this is indeed the case and these terms behave as log s/s2 when s —» co.

2. The zero-th order correction term : the eikonal amplitude

Let us consider the amplitude corresponding to «-loop diagrams, Figure 1. The
spinor factor G(K) coming from the two fermion lines can be written

G(Kyn Gx(K\nG2(K)Un (2.1)

with

GiiK\n üx,(p'f) "fj (P,+m + lx)uXl(Pi) (2-2)
a 1

lot* I)

G2(K\n ûXi(p'2) f] W+m + £ß) EI ip2+m-KJuXl(p2) (2.3)
ß n+l oi l-l

where L„, Ka and Kß axe combinations of internal momenta, defined by equations
(4.4M4.6) of I. The factor G(K) can be developed as

G(K),,n | G<>\K)ln (2.4)

from the partial developments

G(U2,(K\n= t G\»l2)(K)ln (2.5)

when GU) are polynomials of degree y in y-K, in such a way that Gm(K), „ and
G{l)(K), „ give the spin effects of order zero and one, respectively. As to the zero
order terms they are given by

Gm(K\n (2myûx,(pj)uXi(Pi)uAp'2)uX2(p2) (2.6)
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and we get the amplitude (1.1). Because the eikonal approximation is essentially a
small angle approximation, we shall compute the limit of (1.1) for small values of 8 ;

8 being the center-of-mass scattering angle in the ^-channel.
In this way the limit 8 —> 0 is easily considered doing p\ —» p, (i 1, 2). With

regard to q pj — px q + O(02) we only keep the transverse part and we neglect
the rest, O(02).

Let jJo(A) hm #(A), and using the formal identity

P - + in ô(x)
x + is x

we can write

(2.7)

Zo(A)

-(2 mg)2
dffK_

(27t)3
PAK) exp(2/AqK + iXK2) ô(2p2K) IP

2p,K
inô(2p,K)[,

(2.8)

We can integrate over K0 in (2.8) using the function ö(2p2K). Once this is done, 2pxK
becomes an odd function of K3 and, because D(K) remains an even function, the
integral overAT3 of the term containing P(l/2pxK) vanishes. There only remains the
term ô(2p,K). Vet us note that this is a consequence of having extracted in q-K the
transverse part qK which is K0 and A"3-independent. Let us finally remark the origin
of P(l/2p,K) comes from the fact that we have used a summation procedure slightly
different and simpler than Levy and Sucher's one [3]. We have only symmetrized the
lower line but not the upper one. As we have said this is the most economic way of
considering all different configurations at a given order, and the two methods coincide
in the limit 8 —> 0. In this way we can write (2.8) as

Xo(A) -\p(s) exp(iXp2)
da

exp
p2X:

i 1

where the function p(s) is given by
-2 (2m)2

p(s)
9

in ^fs(s — Am2)

From (2.9) we deduce

X
Xo

2p
-p(s)iK0(X) + 0[X

(2.9)

(2.10)

(2.11)

where K0(X) is a modified Bessel function of third kind. In this way the amplitude (1.1)
becomes

M(0)(s,t) -ig
1

2/\/-Oo

¦expi-ipK0(X)]

dX exp iX V-f
2p 2sf~A

+ ÌE

i + ou (2.12)
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where we have factorized the helicity conservation factor Sx,lXlöx,2X2, which we do not

write, and performed the transformation of variables X —* l/(2pAAi)X. In the limit

p -> 0, p/yj — t is negligible with respect to yj - tjp, which grows indefinitely. The
factor exp{iX(yJ~Atj2pi)} oscillates very quickly and the integral (2.12) is dominated
by the values X ~ 0. In this way, using the behaviour K0(X) ~ — log X, when X —» 0,
we can write (2.12) as

dXX'p expMm(s,t) -ig7
2/x

iX | X—L + ie
2u

+ R(p) (2.13)

Let us note the presence of s' s/(2py/ — t) which is necessary to assure the
convergence of the integral. One must take the limit s' —> 0 after the integration. Using
the integral [6]

exp(-ax) xs 1 dx a sV(s), Re a > 0; Re s > 0

one gets

M<%, t) ~ g2 — exp l-p\T(l + ip)
li^O -t

-t
Âp2

-amp

(2.14)

(2.15)

This formula is slightly different from the one obtained by Levy and Sucher [1] in the
usual eikonal approximation, but it keeps the main attributes: behaviour as l/ — t,
infinite Coulomb phase and poles at p — in (n 1,2...). The terms contained into
R(p) are easy to evaluate.

Using the series representation for K0(X) we can write

exp{ - ipK0(X)} X'»]l + X AJ" logm X

n 2,m=0
(nil 2m)

(2.16)

and R(p) can be written as the series

m z AnmR„
n 2,m 0

(n & 2m)

where

R
1

¦w dXA+n\o%mXexp iX I — h iE
2p

(2.17)

(2.18)

^„o g2

From (2.14) one finds

and

/1 d\m
Rnm \JTp) Rn0

- exp ÌP - in)
4p:

- (>/2)p

V(l +n + ip) (2.19)

(2.20)
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From (2.19)-(2.20) we can see that (2.17) is dominated, at p —> 0, by R2 x which behaves
as p2 log p. So

ÄOi) ~ g2logp (2.21)
ß->0

which proves the statement that the values X ~ 0 dominate the integral (2.12).

3. The first order correction terms

What we name spin corrections of first order is contained in the term G(1)(ÄT),

(2.4). We can keep a fermion propagator on the line 2, a contribution as

G[0)(K)Gil)(K), or on the line 1, a contribution as G{1,(A-)G^2)(Ä"). The two contributions

must be equal because passing from one to the other is only doing the
change 1 <-»• 2, or s <-> s, u <-> u and t *-* t, and the amplitude remains unchanged.
Thus Ga\K) will give rise to the term Mw(s, t) of the decomposition

00

M(s, Z Mu\s, t) (3.1)
3=o

according to (2.4). Let us consider in the following the contribution of G(10)(AT)G21)(Ar)

to M(1)(s, t), that is to say the spin effects on the line 2. Explicitly from (2.3),

G£\K)ln G2L(K),n + G«(K),n (3.2)

where G L corresponds to keep Ä"to the left from Ku and GR to the right. In this way

Gi(K),n £ GA, G,i (2my-l+%,(p'2)(P2 + m)1'1^^t)uXl(p2)
i=1 (3.3)

G§(K),„ £ Gl; Gl (2my-,+iüxi(p'2)K!if2+ mr^-'u^pf) (3.4)
i I + 1

or graphically in Figure 2.

Accordingly, the amplitude is decomposed as

\Mw(s, t) M\j\s, t) + MffXs, t) (3.5)

with

M\j\s, t) M'L(s, t) + ML(s, t)

MtfXs, t) MR(s, t) + MR(s, t)

where
OD CO I — 2

M'L(s, t) Y. I I iMLl))un
„=2 1=3 i=l

oo n+l
ML(s,t)= x E (^n-i.i.»

n=li=2
(3.7)

oo n-l n+l v '

MR(s, 0=11 I iM(Rl))ii,
n=2 1=1 i=l+2

co n

MR(s,t)= £ Y, iMkA+l.i.r,
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(Mr^un ana< (^R^un being the amplitudes corresponding to the non-crossed
diagrams of Figure 2. The cases i=l—l and i=l+1 have been isolated because they
play a very special role as we shall see later. In fact they are, at high energy, of the same
order as Mi0)(s, t) while the others are dominated by them. Let us compute the left-
amplitude M(f)(s, t) using a-space techniques as we have described in I

(Mr\ln -ig2 dXexp\iX(t - p2)](M)A^)) Un

and

(MLl\X))iln g
2n f] {da2j dcc2j_i dßj exp(-iBj)}L„n

Pili, — Il ll^i exp(-//?A2)[ G?KK(q))Gf(K(q))lln

(3.8)

(3.9)

(3.10)

n ¦ p Tl¦

K,
_. n+l1-1

2 " CT2 04
n+l i=l+li=l

P2 -% IL

Figure 2

First-order correction terms.

The function K(q) is given by

Kj qj + q + 7j

ßj + A ßj + X

X

Pl -

Kj q. + q -

Pi U < i)

p2 ~T~APi (/> l)

ßj + A-
Ti à

ßj + X-1 ßj + X''' ßj + Xyi

and the function B} BfjX}, ß}, X; s, t, p) is given by

Bj ßjic2 + —>
ßj + X

with

bj= -Xq - y}p2 + ôjp, bj(s, t) (j < 1)

bj -Xq + yjP'2 + ôjPx bj(u, t) (j > 1)

We have introduced integral representations

i

x + is
da exp[«'a(x + is)]

(3.11)

(3.12)

(3.13)

(3.14)

for each propagator denominator. The Feynman parameters ßj axe attached to photon
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propagators while a/s are attached to fermion propagators, as is indicated in Figure 3.

The variables yj and ö} axe linear combinations of the variables a,-, as indicated in
equation (4.28) of I.

To get the amplitude (3.8) we have used the a-space approximation

(C(a));, (ßj + X) ô,j

as given in equation (4.24)-(4.27) of I.

(3.15)

a. a 2n-lPi -•

1-1 1+1
n+l

P2 a-, a 2n

+~p;

Figure 3

Definition of Feynman parameters in ladder graphs.

Let us compute now the term corresponding to i l — 1, which we have called
ML(s, t) and which corresponds to the configuration of Figure 2, where IfT., is joined
to K,. This will be the high-energy leading term, comparable to the eikonal approximation

M(0)(s, t), while, as we shall see later, M'L(s, t) will be non-leading and so

negligible at high energy.

3.1. The high-energy leading contribution

From (3.3), (3.8) and (3.13) we get

(M\A\X)), _!,,,„ (-lim a
(2m)"

16tc2

x üAp'f)uXl(pf)üx,2(p'f)

W <da2j da2j_x dß
-iBj

l-l y.

thß, -i -a
m + £

a ßi + A

ißj + A)2J

Pi\ul2(pf) (3.16)

The factorization method we shall use in the following will be the same as the one
described in I, that is we perform the permutations over loop momenta

(M£X*-))i-i,i,n
1 1

EEirm-,,,,, (3.17)(/- i)!(«-/+i)!trt-
The factor in front of the sum is due to the multiple counting of diagrams. The effects
of permutations over the function Bfjy},Òj,X) are to change ôj—r wniU) and

y^l(j), iff < I, or yj —> yKAij) ifj > I. As for the spinor factor we have seen that
also Kj —> Kn2Ü), so that under 7t2-permutations ò} —> ôniU), ßj —> ß„2Ü) and

Vj —>¦ yniniU), foxj < I. In this way n, and 7t4 permutations can be accomplished as in
M(0), leading to
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e n{^23-i}= n^0 j*l Jo j*l
oon+1 /*con+l

n {da2j}= n d7j
n-4 JO j l+l Jo j (+l
Let us perform the transformations of variables

X2i^yj-*y'j y«2U)

with the integration domain defined by oo ^ yx ^ •

n\cAAAA-™{i

(3.18)

;^---9yi-,»0 j=l [ (ßj + A)

> y, _ ^ 0. In this way

/ÏT2H2V
'-1 - .(A)

't2(K)+ /il(£ß +)\k l Pn2(K) + A

1 (^ + A)2 ^

E

t=i />jt2(K)

i-i
+ X

n (3.19)
H2

(-1
-m

V*

\K=1 ßx. + A

and being the integrand 7t2-independent

i-i
+ >i( IK 1 ^K + A

E
I-l (*O0 (-1
n ^ n ^JO 7=1

(3.20)

Using (3.18H3.20) it is evident how (M(fX^))i-i,i,n factorizes and the sum over /
and n results in an exponential. The result can be written as

M,(s, t) - ig2 dX exp\jiX(t - p2)] ML(X)

and

ML(X) \ax(X) exp\jiX(X)] ûx.(pj)uXi(Pi)ûx-2(p'2)uX2(p2)

+ ^"èi(A) exp[/z(A)] uXi(p'f)uXl(Pi)üx2(p'2WiuAP2)

where the functions ax and b, axe defined by

ax(X)
o /5 + A

dp(s, t) bx(X) -
o /5 + A

dp(s, t)

The amplitude MR(s, i) can be calculated in the same way. One gets

MR(X) ^a2(X) exp\fx(X)] üx,1(p\)uXl(pf)ux.2(p'f)uk2(p2)

- jjjj b2(X) exp[ix(X)] üXi(p'f)uXi(pf)üx,2(p'2)pxuX2(pf)

with

a2(X)
y

o /5 + A
dp(u, t) b2(X)

o /5 + A
dp(u, t)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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In the region of very high energy we have

ML(X) + MR(X)

where we have used

bx(X) - b2(X)

*oo (2m)

g2 (2m)2

(bi(X)-b2(X))exp[ix(X)]ôx,xAn'22À2

G3(X, t)

(3.26)

(3.27)
s->oo 871 S

and we have that ML(X) + MR(X) ~ constant, while the other terms from (3.22)
S-* OG

and (3.24) are very strongly dominated at high energy because ax(X) + a2(X) ~ 1/s2.
The value of Mjfs, t) + M'R(s, t) can be found in Appendix B. In the high energy
region it is shown that it behaves as log s/s2 so we shall neglect this contribution in
the following. From (3.5) and (3.26-28) one can write

Mw(s, t) ~ -

and, Appendix A,

G3(X, t)

— exp[/l^2]

*47t2
dX exp[iX(t - p2)] G3(X, t) exp{ix(X)} ômiôXiXl (3.28)

dy exp ¦i I1
iX — yt

m

,co dß
-7-exp

i,2Ä P

i,2}2-iAAt_m+y2} (3.29)

3.2. Application to electrodynamics

Vet us compute the limit (p/yf—t) —> 0 in (3.28) transforming X —> (X/lpyf-t)
and writing for 0 small, XoßfiPyf^t) -p(s){K0(X) + 0[(p/'yJA)X]}.

The development of the function exp{iX(^A^~t/2m)y) in a power series, and the
integral [6]

r2p+l
Kv{a(*2 + z2)1'2)

{xl + z2yl2
dx — _j_, K,

a" ' 'z

(Re a, Re z > 0 Re p > -1)
give an expression of the amplitude M(1)(s, /) as

1

with

.p + l-si-p- 1 "v-p - i(az) (3.30)

Mw(s, t) -- 1

An2 mA
X Cn(t)In(s,t)

— t n 0

(3.31)

C^ h(i^ 2<n--tvar(»
+ l)V 2m J (3.32)

In(s, t)
*GO

dX exp
0

iX\fJ-t p

i AT^ +
v 2p 2yJ-t

is X(nm--(1/2) + ipjy 1/2)(A)

(3.33)

where we have already supposed that the integral (3.33) is dominated at p—* 0 by
small values of X and we have written exp[ — ipK0(X)] X'p. The other terms of the
series (2.16) will be negligible in the limit p —> 0 and this statement will be proved after
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having analyzed the integral (3.33). This integral can be explicitly calculated and
one gets

Us, t)

sm<J7c|- + ip --]\T(ip)
sin {n(n + ip)}

(3.34)

2p 2J-t
-(l/2)((n/2) + (l/2) + ip)

s, /0(n/2) + (l/2)
î(n/2)-(l/2) + ip

2p 2J-L

2p

1/2

where ß'A/li-a/ii+ip is a Legendre function of second kind. In the limit (p/yj— t) —> 0
the argument of this function behaves as — 1 + (pr/t) and using well-known properties
of Legendre functions we can write

,,2\
/n(n/2) + (l/2) I _ 1

XZtnPi-tl 171 + in 1 » I£(»/2)-(l/2) + ip

exp i^(n + 1) -¦p-(i/4)(n+i) r_ Tin + ÌP + 1) P
V V((n/2) + ip + l)\-t

2\ l/4(n+l)

„In i n \ ì n

xF{2 + 1+2P'2 +
2

+ 2PÀ + l+lp;1
From the point of view of ^-dependence

CI ~ u"+1^n'n P

and the amplitude M(1)(s, t) can be written in a series as

00

M(1>(M)= ldPH+1Mt,p)F„(s,t)

(3.35)

(3.36)

(3.37)

The term n 0 will dominate the amplitude in the limit p —> 0. The other terms of the
series (2.16) will give contributions as Xp log9 X with p 2, 3,... and p > 2q. The
result will be to change n by n + 2p in (3.33) and their contribution to M(1)(i, t)
will be

lf+2'+1fbi,s,t)lotr-nFj(s,t)

The leading term of M(1)(y, f), in the limit 0V\/ t)-*0, will be

M(1)(M) -1V2^(1Wexp
4n2p

x V2(l + ip)

n n
'4 + 2P

1 j" cosh (np)V(l — ip)
— tm

'»(i?)-"'2" (3.38)
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This result shows double poles at p in (n 1,2,...) coming from the function
r2(l + ip). It is similar to the result obtained by Levy and Léger, analyzing the first
order correction terms, in the scattering of a spin-^ particle by a Yukawa potential in
the limit where the range of the interaction goes to infinity.

4. Conclusion

The validity of the eikonal approximation for theories where scalar ^-particles
(mass m) exchange scalar 0-photons (mass p) have been studied by Tiktopoulos and
Treiman [9] and also by Cheng and Wu [10]. These authors find that Feynman
integrals are not dominated, at high energy, by eikonal paths of integration. This is
called the breakdown of the eikonal approximation in the theory ip2(x)cp(x). More
recently Banerjee and Mallik [11] have studied in more detail the contributions
coming from 3-loop diagrams and shown that non-eikonal terms cancel in the very
special (not too interesting) case where the masses m and p are equal.

Our result, equation (3.28), shows that the inclusion of fermion spin produces
also a breaking of the eikonal approximation which will even dominate it from the
order gA. In other words, while the eikonal amplitude give, at an order n, an asymptotic

contribution as g2nsl ~"(n 1, 2,... the first order spin corrections contribute
as g2ns2~" (n 2, 3,... In the limit s —> oo the leading terms are the #2-Born term
coming from the eikonal amplitude, and the #4-term coming from first order spin
corrections.

It is an open problem to know whether higher order spin correction will behave
asymptotically as a constant term g2(N+1\ N being the corresponding order, and
whether the sum over N can be performed in a formal way. This would be in a close
relation to the validity of the eikonal approximation in the theory ip(x)ip(x)cp(x). One
would need to prove that the behaviour at t fixed, s —> oo ofA-loop Feynman integrals
agrees with /V-order spin corrections.
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Appendix A. An application of the Mellin transformation

We shall use the Mellin transformation to compute the asymptotic behaviour in
the s-variable of the Feynman integrals

1

An(s, t)

Bn(s, t)

o
dydödß\JTJcfexp

0
dyd0dßW+V«exp

yô
[lß + xs\

yô
A—ssß + X

exp[ -U] exp[ - s(ß + y + ô)]
(A.l)

exp[ - U] exp[ — s(ß + y + ô)]

(A.2)
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where the function /is obtained from (1.5) as

1

J(ß, y, ô, t) ßp2 +
ß + X

F(y, s, t)

F(y, ô, t) {X2 - X(y + ô)}t + m2(y + ô) + 2m2y ô

and the factors exp[—e(j + ô + ßj] assure the convergence of the integrals. Let us
take the Mellin, M, transform of the function An(s, t), over the variable s, as

An(x, t) A„(s, t)s z 1 ds (A.3)

The ^-dependent part of A„(s, t) is given by exp[i(yo/ß + X)s], and the integral over s

in (A.3) can be performed with the result

T( — t) exp
n

(7o)\ß + xy*

In this way, the integral defining Än(x, t) has an end-point singularity at x — 1,

corresponding to the point y — ô 0. This singularity can be extracted by a double
integration by parts, over y and ô, so that

Â„(x,t) (x + l)-2r(-T)exp
7t

l2X dß(ß + xy

dy dô(y of
d2

dy do exp[ — U] (A.4)

One expands the factor multiplying (t + 1) 2 in a power series around x — 1 as

(t + iy2f(x) (x + iy2f(-i) + (x + i)-y(-i) + 2-/"(-i) + oo + t)
Taking the inverse Mellin transformation [8]

(logs)" 1

M~\(x + a)-"-1]
V(b + 1)

(A.5)

one can see the asymptotic s behaviour of An(s, t) is dominated by the singularity of
Ä„(x, t) at t 1, so that

ÄnAt)x ~_^(1 +A2Kn(t)
and

An(s, t)
logs

Kn(t)

with

Kit) dß(ß + xy-"exp -i[ßP2 + 7,
ß + X

(A.6)

(A.7)

(A.8)

In the same way one can compute the asymptotic behaviour of Bn(s, t). This time,
due to the presence of the extra factor y, we have a simple pole at t — 1, coming
from ô\ and from (A.5) we have



94 M. Quiros H.P.A.

Bn(s,t) ~ i-G„(t)
with

Gn(t) dy dß(ß + X)1-" expl-iJ(ô=0, y, t)]

(A.9)

(A. 10)

Appendix B. The non-leading contribution

We shall compute in this Appendix the contribution to the first order correction
given by M'L(s, t) + M'R(s, t) which has not been considered in Section 3. We shall get
factorization using a new permutation scheme, not used in Section 3 and in Ref. (I).
Also the results from Appendix A will be used to study the high energy behaviour
of this contribution. In fact, we shall find it will be non-leading and negligible with
respect to ML(s, t) + MR(s, t).

Let us compute first the amplitude M'L(s, t). From the definition (3.8) we have
for i < I — 1

(MjJX^itn -2im r
16n'

x U(t)[ X

+ C(s) Y

(Im)""2

1

Ai TT+ a

ôk

Yl\da2jda2j_.dßj
ißj + A

+ B E
7k

k i Pk + Ay

Üx',iP'l)UAPl)ÜdP'2)UX2iP2) (B.I)

where A(t)
\k=i Pk + Ay

-2Xp2q, B —2m2 and C(s) 2p,p2, and we have used the identity
(P2 + m)h (2m)h-1(p2 + m) for h > 1, and

ûr2(p'A(i>2 + m%iUl2(pA 2p2K,ùx.2(p'2)uX2(p2)

We must sum over permutations nx, to consider the different topologies, and 7t2,7t'2,7t4
to get factorization, and divide by the number of times one has counted each
diagram. As in the scalar case

E Y\{do
0 j*l

21-1) Yldôj
10 j*l

and the same thing happens with 7i4-permutations because they do not affect the
spinor factor.

To factorize the part corresponding to K,,..., K,_x we perform the following
transformation of variables

(a2, a4, ...,a2(,_1)) {y\, ii, yn ?,+i» yi-ii
defined by

i
y'K E

1=K
I- 1

7k E
3 K

and the integration domain yj ^

K2,

K2j

(K < 0

(K > i)
(B.2)

> yjiyi+i s* ••• >yi-
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From (B.2) we have

yK y'K + yi+i (K<i) (b.3)

and where yK, K ^ i, are the old variables we handled in Section 3. As it is indicated
in Figure 2, n2 axe permutations over (K,,..., Kf) while n'2 axe permutations over
(Ki+1,---,Kl-1).ltis simple to see that

bj(y'j + y, +1)=*• bj(y'n2(f) + yl+1), j=V...,i (B.4)

Let us write

™ln{da2jda2j_.dßj^-+A)2()A(t)(Z^T-:) + B(Ì 7K

k=i ßn. + A/ \k=i ßx A- X

+ C(s)[ x
<5k

K=l ^K + A
Vî+i >¦¦¦ >V!-1 3 1+1

n K^.,^ g - iBjlVj)

(ßi + A

v'i>— s/i 3=1

-iBj().) + ).j + 1)-) r / i

+ s illii^Vcwfi ä*

k=i ßx A X K=l ^K + A

(B.5)

Under 7t2-permutations, .8, changes as yj —> y'K2Ü) while the spinor factor changes
as yj -» y;a,2Ü), ft -» /J„ï0) and ^ -» öni(J) and

X Yldf^dojdßj-
/i> — >ri 1=1 (ßj + A)2

Ait) (i
+ b(£ y'n2;2{Ki + 7\+l) + c(s)(i Jn2(K)

VK=1 ßn2(K) V X

1

i!vk i ^2(K) + A / Vk=i ßxiiK) + VJ O'-l)!
x {A(t)co\(yi+l) + BZ'x(yl+1) + C(s)Y'l(yi+x)}u'x(y,+ x) - G(yi+1)

and the functions

1

«i(y) 4p'(*> ', y) toi(y)
o iS' + A

J//(s, t, y)

Zjiy)

and

dp'(s, t, y)

'°° y' + y

o
/>' + A

1

dp'fo r, y) T;(y)

(B.6)

(B.7)

o ^' + A

2- er/ do' dß' exp[ — iB(s, t, y' + y)]

dp'(s, t, y)

iß' +A)2

The factorization of 7t2-permutations is accomplished in the following way
1

(B.8)

(1-/- 1)!£.
1

" (1 - i - 2)!

Il {dyjdojdßj .2[gC;,h)
yf+i? — »yi-i 3=1+1 U\j + ^

-iB(s,(,v)
dydßdo- 2 G(y)(vj(y))>
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V'lif) dy'
'oo -iB(s,t,y-)

H. P. A.

(B.10)

The sum over i, I and n is now straightforward, and the result

M'L(X) «
1

(2m)'
exp[-w2] <*>(*, 0M(0o>i(y) + *Zi(y) + c^y^y)}

x exp[-(«,(y) + t;1(y))MM(/>i)«Al(p1)öi4(/>'2)MA2{>2) (B.ll)
where the functions a>l5 Zls w1; Yx and t>j are given by (B.7), but with the measure of
integration changed to

dp(s, t, y) i TO dp'(s, t, y) (B. 12)

Let us note that dp(s, t, 0) dp(s, t) and ux(y) + vx(y) ux, so that

-u2 - ux(y) - v,(y) ix(X).

The calculation of M'R(X) follows along the same lines, and the sum M'(X)
Mj(X) + M'R(X) can be written as

M'(X) (2m7exp[/z(A)] dp(s, t)lA(t)coAy) + BZx(y) + C(s)Yx(y)]

+ dp(u, t)[A(t)co2(y) + BZ2(y) + C(u)Y2(y)] (B.I 3)

x ûx,(p'i)uXl(px)ûx.2(p'2)uX2(p2)

where the functions X2(y) are obtained from X,(y) by the change s -> u.
In this way the formula (B.I3) is the result we were looking for. As we have said

these terms are negligible at high energy. To prove this assertion, let us compute the
s—r co behaviour of (B.I3). We have seen that x(A) ~ IA ùi such a way that
e'x 1 + 0(1 /s). The behaviour of the integral whichi multiplies this exponential can
be computed following the methods described in Appendix A. It is found in the region
at t fixed and s —» oo, that

(M)
git)-

coiii)
dp(s,t)\ Zx(y)

C(s)Yx(y)^

where K2(t) is given by (A.8) and

s
h(t)

(B.14)

f(t)
g(t)

gm
2%

dydß expl-iJ(ô 0,y,ß,t)]

1 1

y iß + A)2

i
(ß + A)2

1 1

{fVÄA

(B.15)
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The behaviour of the other piece in (B.I3) is given by (B.14) with the substitution
s —> u. It is proven, in this way, the statement that the amplitude M' is dominated at
high energy by the amplitude M, and

M'(X) ~ -5|i (B.16)
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