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On the impossibility of a finite propositional lattice
for quantum mechanics

by P.-A. Ivert and T. Sjödin1)

Matematiska Institutionen, Universitetet, Linköping, Sweden

(17. IV. 1978)

Abstract. We give a simplified proof of the impossibility of defining an orthogonality relation in
vector spaces (of dimension > 3) over finite fields.

In a previous issue [1] of this journal, Eckmann and Zabey showed 'that the
lattice of propositions of a quantum mechanical system cannot be represented as

subspaces of Hilbert Space with coefficients from a finite field' (with exception of the
dimension two), employing arguments from the theory of such fields and ofquadratic
forms. We here intend to show that this follows in a simple way already from the
axiom system for lattices of subspaces of Hilbert spaces.

The axioms needed are :

(1) L is a complete lattice with 0 and 1.

(2) Atomicity: Every non-zero element in L majorizes an atom, i.e. a non-zero
element p e L with 0 < x <, p only if x p.

(3) Atomic covering property : If p is an atom, then x < y < x v p only if
y xory xvp.

(A) Atomic bisection property (irreducibility) : If p and q are atoms, p # q,
then there exists an atom r with r ^ p,r ^ q and r < p v q.

(5) L is orthocomplemented : An orthocomplementation is an involutive
mapping Lax\-^-x' e L, with x v x' — 1, x a x' 0 and x < y iff
y' < x'.

(6) Orthomodularity: If x < y, then y x v (x' a y).

It is known that if L is of dimension >4 there exist a division ring K with an
involutorial anti-automorphism X i-> X* and a vector space E over Kwith a Hermitian
form /such that L is ortho-isomorphic to the lattice LE(E) of is-closed subspaces
of E [21

We define the dimension of an element x e L as the minimum number of atoms
Pi with x V;P;. It follows from an elementary combinatorial argument [3] that
every two-dimensional element majorizes the same number of atoms.
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We will show that in an orthomodular lattice of dimension > 3 this number cannot

be finite. It is sufficient to prove this for three-dimensional lattices, i.e. lattices for
which 1 is three-dimensional, since if the dimension is larger, we may pick a three-
dimensional element x and consider the lattice of all elements of L majorized by x.
In view of the orthomodularity, y i-> x a y' is an orthocomplementation on this
lattice.

In the following we will consequently assume that L is a three-dimensional
lattice satisfying axioms 1-5, where each two-dimensional element majorizes n + 1

atoms (as would be the case in a Hilbert space over a field of order ri).
It follows from axioms 1-4 that the total number of atoms in L is N n2 +

n + 1 [3].
We define the N x TV-matrix A (oy) !<;,.,•<# by

1 if et and e} are orthogonal, i.e. if e{ < e'j

[0 otherwise

A is then a symmetric matrix with zeros in the diagonal, exactly n + 1 1 : s in
each row, and for any two rows there is exactly one column where both rows have a 1.

Consequently^2 nE + U-where E is the identity matrix of order N and every
element of U is 1.

One easily finds that A2 has the eigenvector \ ] J with eigenvalue n + N

(n + I)2 and the orthogonal complement in RN of this vector is an eigenspace of A
with eigenvalue n. We conclude that A, apart from the eigenvalue n + 1, has
eigenvalues £1n/m, e2y/n,..., en_ ly/n, where e; + 1.

Since the trace of A (i.e. the sum of the diagonal elements) equals the sum of its
eigenvalues, we obtain : n + 1 + mjn 0, where m Yü=?i st is an integer. Clearly
m # 0, so yjn — (n + \)/m is a rational number, that is an integer, since the square
root of an integer is either irrational or an integer. Setting y/n k gives :

m~--r-"-{k + k) -k -{m + k)-

But this means that i/k is an integer, and we get our desired contradiction, since
axiom 4 implies n > 2. «

We have thus shown that there exist no 'Hilbert lattices' ofdimension > 3 with
a finite number of atoms under each two-dimensional element, from which the
nonexistence of Hilbert spaces of dimension > 3 over finite fields follows.
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