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Exact time dependent probability density for a non-linear
non-markovian stochastic process

by M.-0. Hongler*

Département de Physique Théorique, Université de Genève, 1211 Genève 4, Switzerland

(23. IV. 1979)

Abstract. The influence of an external colored noise on the evolution of non-linear stochastic
processes is studied by means of a model. We obtain analytically the time dependent probability
density of the process and discuss the evolution as a function of the covariance parameter À of the
applied noise. It is shown that the parameter A plays a major role (bifurcation parameter) and,
depending on its value, drives the system into markedly different stationary states.

1. Introduction

The phase transitions induced by the presence of fluctuating surroundings
have recently gained much interest in the study of simple dynamical models. It is
known that systems subject to white noise, the amplitude of which is itself
controlled by the macro-variables, exhibit probabilistic behaviours not predictable

from a deterministic analysis [1, 2]. The white noise process, being very erratic
in its nature, may not, in certain cases, provide a good modelization of the real
world. It is then worthwhile to study the dynamics of systems in the presence of
colored noise stochastic processes, characterized by a finite correlation time A"1.
The parameter A can play a determinant role in the evolution of the system. This
point has recently been discussed by Horsthemke [3]. In this paper, the stationary
state reached by the system is approximately calculated and is shown to be
drastically dependent on A. We address ourselves to this question and provide a
non-linear model for which the exact time dependent probability density can be
calculated. In our example, the stationary state exhibits qualitatively the same
behaviour than the model used by Horsthemke. The coincidence is in fact not
accidental since, in the vicinity of the origin, the two models are identical.

We finally consider the white noise limit (A _-» °°) and remark that the
stationary probability density is the same as the one found when the Stratonovich
prescription is used to calculate the stochastic integrals. This last property can be
seen as an explicit illustration of the Wong, Zakai and Clark's theorem [4].

* In part supported by the Swiss National Science Foundation.
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2. The model

The model we propose to study reads:

dx ß- -atgh(yx)-^i^-;wt, xeR, w.eR (1)

where a, ß, y are positive constants and wt is the colored noise stochastic process
defined by:

(wt) 0; <w(,w,) ^exp{-A|(-t'|} (2)

p and A are fixed positive constants.
When ß 0, we can write the general deterministic solution of equation (1)

in the form:

x(t) y"1 arsinh {(sinh yxo)e~onrt} (3)

where x0 is the initial value. We conclude immediately from (3) that x 0 is a
stable solution for any initial value x0.

When ß^O, the stochastic process (1) is non-markovian. This property is due
to the finite correlations of w,.

It is very useful to note that w, can itself be generated by a stochastic
differential equation [4];

dw -Aw dt + pA der, w e R (4)

The notation der, stands for the formal differential of the Wiener process o-_t

and models therefore a white noise stochastic process. In order to get (2), we
impose in (4) the initial value w0 to be normally distributed with zero mean and
variance p2A/2. We adopt the notation:

w0 Jv(o,^) (5)

According to equation (4), we now rewrite the stochastic process (1) in the
form*:

^

dx y - a tgh (yx) ——- wt) dt (6a)

dw —Aw dt + pA der,, (6b)

The pair (x, w) appearing in the equations (6a, b) constitutes now a marko-
vian process whose realizations take place in R2.

Owing to the markovicity, we can write the Fokker-Planck equation (F.P.E.)
associated to (6a, b). This equation reads:

3P(x, W, Q

dt
$T(x, w, t); \\ P(x, w, 0 dx dw 1 (7)

Apart from its degeneracy, the diffusion process (6) is closely related to San-Miguel's class of
models [6].
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and 3> stands for the F.-P. operator which in this case takes the form:

3 [ ßw I 3 r 4 n
p2A2 d2T-atgh(yx) ^]--L[-Aw]

L cosh (yx) J awdx L cosh(yx)J aw 2 dw^
(8)

In order to solve (6), we introduce, following Chandrasekar [5], a one to one
mapping T from R2 into R2;

T:(x,w)^(Ix,I2), (9)

where,

Ix eayt [sinh (yx)+
ßy w]

L ay —A J

I2 ek'w

Ix and I2 are two integrals of the deterministic (p 0) system (6a, b).
In terms of the new coordinates (I1; I2) we have:

J
f P(x, w, t)dxdw= JI P(Ix, I2, t) dix dl2

R2 R2

f f P(Ix(x, w, t), I2(w, t), t)^^ dx dw 1 (10)
J J d(x, w)
R2

where

^Äycosh(yx)e^«
d(x, W)

stands for the Jacobian of the mapping T.
From (10), we deduce straightforwardly:

T:P(x,w,t)^P(Ix,I2,t)d^^- (11)
3(x, w)

and the differential operators appearing in (7) transform like:

m d B B r 3
T — •-> — + ayl1 —r + AZ2—-

at of òli 3I2

r:A^ Jl + (e-^Ix ^rhe^e^—
dx > \ ay-A BIx

t é) ßy aM 3 kt B
T: —1-> ——— e v he —

dw ay —A dZj dl2

T.Ji«, (_ßi_)2e2ayt^L+2ßye^+^ d2 +e2xtf_
'Bw2 Kay-kl 3I\ ay-A Blx Bl2 Bl\

(12)
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Introducing (11) and (12) in the F.-P.E. (7) we end up with:

BP(Ix,h,t)^2k2 17 ßy y 32
|

2ßy »
d2

dt 2 lAay-A/ BÏ\ ay-A BIxdI2
d2

+ e2kt^\p(Ix,I2,t) (13)

The readily normalized solution of (13) reads [5]:

Pdx, I2, t) (27TVÄ)-1 exp {-A (Jl _jlo)2-a (Il _iio)(j2_j2o)

-^a2--r20)2} (14)

where:

"2A=^(e2^ + C1)

B ^_^P\,2(e2^+C3)
p2A2ß2y2

2ay(ay-A)2
(15)

H (^?(e"+X),+ C2)

A AB-H2
and Z10, Z20, Cl5 C2, C3 are constants to be fixed by the particular initial conditions
of the problem.

The general, normalized solution of (7) then reads:

P(x, w, t) (2WÄ)-1y cosh (yx)e(oLy+K)'

xexp{-A[^(sinMTxH^)_(sinh(7Xo)+J^)p

-f[e-(sinh(yx)+-^)-(sinh(yx0)+^-)][we--w0]

~[weK'-wor} (16)

Beside (5), which is fixed, we shall choose the following initial conditions:

x 0 at time t 0 (17)

and

P(x, w,t 0) 8(x)Jf (o, ^~j PMx(x, t 0)PMw(w, t 0) (18)

where we have introduced the marginal densities PMx, PMw defined by:

PMYx,t)=\ Pix,w,t)dw
(19)

Pmw(w, Ol P(x,w,t)dx
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According to (9), the conditions (5) and (17) reduce to

Z10 0 and Z2O 0 (20)

With (20), the total density (16) simplifies somewhat to finally give:

P(x, w,t) y cosh (yx)e(ay+k),(liry/Ä)--1 exp j - £ (sinh (yx))2

-Isinh(yx)w-I(w)2] (21)
2 3 J

where

X (2A)-1Ae2o,i" (22a)
i
X [A(ay -A)]-1Aßye2^'+ (A)-1He(^+x)t (22b)
2

X [2A(ay - A)2]~1Aß2y2e2ayt + [A(ay -X^Hßye*"*** +(2A)-1Be2x'

(22c)

With the help of (21) and (22), we calculate the marginal densities:

Pm* (x, 0 [2ir<MI, t)TV2y cosh (yx) exp{ - [sinh (yx)]2[2d>(l, »XT1} (23)

Pmw (w, f) [2ir«K|, t)T1/2 exp {-w2(ltf,(l t))'1} (24)

where the vector £ stands for the set (a, ß, y, p, A) and:

<p(l t) (ay-k)-2ß2y2e-2k'A + (ay-k)-llßye-iay+K)tH + e-2aytB (25)

MÌt) Ae-2"
2

(26)

According to (26), the condition PMw(w,t 0) Jfio,—-\ takes the simple

form V 2 '

d 0 (27)

Using (27), (18) and (22b) at time t 0, we obtain

<*-=£*-! (28)

Finally PMx(x, f 0) S(x) implies d»(|, f 0) 0 which in view of (25) at
time t 0, gives:

C3 -1+y (29)

Using (27), (28) and (29), the time dependent probability density of the
non-markovian process x, defined in (1) reads:

Pm* (x, t) [2i4(|, Or1/2y cosh (yx) exp {- [sinh (yx)]2[2<£(|, O]'1} (30)
and:

Ml 0 [2ay(ay + A)]"V2Aß2y2

+(ay - A)-2p2A2ß2y2{[(2A)-J - (2ay)-1]c-2a^

+[2(ay + A)-1-A-1]c-(^+x)t} (31)
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3. Discussion

We can study the shape of (30) as a function of Ml t). Let us then calculate
the positions of the extrema which are given by the equation.

3PMx(x,t) 2 sinh(yx) f, (cosh(yx))2! f (sinh(yx))2]
y s—a _ 11 *-^= rexpi *-3 f 0 (31)'~ 11 S(£.t) J Fl lé(C.t) JdX ' YlirePil 0

The solutions of (31) are:

xt 0 V*(£r)
x2,3(t) =fy"1 arcosh (JMl 0, if <£(I,0>1
The second derivative indicates if we deal with minima or maxima. We have

(32)

32PM(x, Q

dx2
cosh (yx){[l (cosh (yx)): ]['? l-(cosh(yx))2

V2tt<M£ 0 "" IL" d.(ê 0 -I L" <p(l t)

2[l-(cosh(yx))2]l ' ^-w..^]1 f (sinh(yx))2l
-Jexpr^(fô-I<Kfc 0

So we obtain immediately:

Bx'

d2PM(x, 0
ax2

epilt)>l

-y3(27r)-1/2{2[^(|,0r1-2}<0, for Mlt)>l
(34)

The situation is completely sketched in Fig. 1.
For the stationary state, we have:

lim Ml 0 (2ay[ay + A])"V2Aß2y2 M (35)

Therefore if <£,„>1, we shall have two maxima, corresponding to a bimodal
density and in the contrary only one maximum centered at x 0. When a, ß, y, p
are fixed, A becomes the control parameter of a bifurcation problem and similarly

Figure 1

arcosh(y*(f,t)

—#(|t)

Position x of the extrema of PMx as a function of V<£(f, 0 maximum; minimum).
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to Fig. 1, we can draw, for \ef>„, a global bifurcation diagram. The stationary state
exhibits qualitatively the same behaviour as observed by Horsthemke [3], for the
system:

jt -x + ix2-k)w; xe[-i+|] (36)

This similarity is not accidental. Indeed, the second order expansion of (1) in the
vicinity of x 0 coincides with (36) when a \, ß=\ and y 2.

Let us finally calculate the stationary state of (30) in the white noise limit
(A -* oo). We have immediately:

/ u2vß2\"1/2
lim PMx(x, r)= UE-iü-) y cosh(yx)exp{-a(p2ß2y)-1(sinh(yx))2}
t—>oo

(37)
Dividing both sides of (4) by A and taking the limit gives:

lim wt pder, (38)

Using (38), we rewrite the process (1) in the form of a stochastic differential
equation:

dx=[-«tgh(yx)]dt- g^fr- (39)
cosh (yx)

The diffusion term appearing in (39) is not constant and we therefore have to
specify the interpretation of the stochastic integral.

If (39) is interpreted in its Ito form, the associated stationary F.-P.E. reads:

0
L / in / „ ßV2 ô2 Pj(x)

-(«tgh(yx)Pl(x))+^^(^))20 - (a tgh (yx)Px(x))+^f- — - /v. ;.. 2 (40)

which solution reads:

P,(x) ~ (cosh (yx))2 exp | 2
" (sinh (yx))2|

If (39) is interpreted in the Stratonovich form, we include the fluctuation
induced drift, and the F.-P.E. reads:

9.±[.mv).ef±{ ' )W],62..2 a2d2 F.(x)
V(cosh(yx))2rsv"'J

'

2 ox2 (cosh (yx))2
(41)

which solution reads:

Ps(x)~cosh(yx) exp {-^-(sinh(yx))2} (42)
l ß ß y J

The solution (42) is identical with (37) which shows that the Stratonovich
interpretation has to be used in this case. This situation provides an illustration of
the Wong, Zakai and Clark's theorem [4].
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