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A new proof of the asymptotic nature of perturbation
theory in P(<f>)2 models

Stephen J. Summers1)

Centre de Physique Théorique, CNRS, Marseille

(7. I. 1980)

Abstract. A new method of proving the asymptotic nature of perturbation theory (for Schwinger
and generalized Schwinger functions) in P(<t>)2 quantum field models, which does not presume the
convergence of a cluster expansion, is presented. The method recaptures all previous such results and,
also, results (in application to certain models [Su 1,2]) not yet attainable by previous methods. An
explicit proof is given for (4>A)2 in the two phase region to illustrate the essential points. Application to
all P(<t>)2 models with mean field limits is discussed.

I. Introduction

In the light of the fundamental importance of perturbation expansions in
providing calculable links between quantum field theories and the experimental
data they seek to explain, it is necessary to determine the mathematical status of
these expansions and their relation to the exact, nonperturbative field theory. In
recent years, important progress has been achieved. For weakly coupled \P(cb)2
models (or for sufficiently large external field), the perturbation expansions for the
Schwinger functions [Di] and for the generalized Schwinger functions [EEF, OSe]
have been shown to be asymptotic to arbitrary order in the coupling constant A.2)
In fact, the perturbation expansions in (Ac/>4)2 for the Schwinger functions [EMS]
and the mass and the two-body S-matrix [EE2] are known to be Borel summable,
thus enabling the unique reconstruction of the exact quantum theory from the
perturbation series. Similar results on the asymptotic nature of perturbation
theory [FO, MS 1, EE 1] and its Borel summability [MS2,EE2] are known for
weakly coupled (Ac/>4)3. Moreover, it has been shown in [GJS4] that for (A</>4)2

deep in the two-phase region (i.e., very large A), the perturbation series for the
generalized Schwinger functions in variables centered at the appropriate classical
means are asymptotic to arbitrary order in A"1/2.

However, the knowledge of the convergence of some sort of cluster expansion

(see, e.g. [GJS 1, Sp, FO, GJS 4]) is a basic assumption in all of these results.
And the definition of and the proof of convergence of cluster expansions are
extremely complicated enterprises. Thus, we believe it will be of interest to
present a new method of proving the asymptotic nature of perturbation theory
(for Schwinger and generalized Schwinger functions) in P(d>)2 models that recaptures

the result in all of the models mentioned above and permits the proof in
models where the technical problems of proving the convergence of a cluster
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2) It is known [J] that the perturbation series is divergent.
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expansion are not yet solved (see [Su 1,2]). This method has the advantage of
being, we believe, substantially simpler than the earlier one, with a minimal
amount of technical complications. We mention, however, if it actually be

necessary, that cluster expansions are designed to answer many more questions
than simply the asymptotic nature of perturbation theory - questions that cannot
be answered through the arguments of this paper: what is the particle spectrum, is

perturbation theory Borel summable, etc
In order to suggest the range of application of our approach, it is necessary to

recall a property emphasized in [GJS 2]. If a semibounded polynomial P(x) has n
(n may be infinite, e.g., when P(x) cos x) local minima §, and if one rewrites the
polynomial in terms of variables centered at these minima,

PU) f a{(x -0 + (minx - §)2/2 + E„

where d degree of P, then if, as the dominant coupling constant a'd becomes
small, one has

|a<|«(m[,)2, V(.>3,V;,

P(x) is said to have a mean field limit. Of course, AP(x) (and P(x) — hx, when \h\ is

large enough) trivially has a mean field limit and only one global minimum.
Because the interaction parameters are small with respect to the classical mass
m'c, heuristically one expects that the quantum corrections to the classical picture
will be small. Thus, corresponding to the global minima of the polynomial will be
(pure) states with means given approximately by the (classical) field values
yielding the minima. If there are more than one global minima, the corresponding
states will coexist, and the expectations of at least some physical observables in
these states will differ. Thus, the quantum field model will manifest phase
transitions. Polynomials with mean field limits and (infinitely) many global minima
may be manufactured, and their study has already yielded interesting results [GJS
3, GJS 4, Fr. 2, FSS, CR, Ga, Su 1, 2].

The natural context of application of the arguments of this paper is the set of
P(<f})2 models whose interaction polynomials possess a mean field limit and for
whose associated (pure) states one can prove that the expectation that the average
value of the field lies near any 'wrong' minimum § of the polynomial, i.e., any
minimum other than the one determining the mean of the state, is suitably small.

To briefly (and crudely) anticipate the argument to be presented, let us
consider a polynomial with n global minima § such that

a\=0(ad)^0(a), d i 3. (1.1)

Then integration by parts entails that, for example,

(cp(x) -£>'" C(x-y)lia[:(ct>-0-1:(y)dy), (1.2)
i 3 '

where (¦)' is the (pure) state corresponding to the minimum §, and

C(x-y) (-A + (m'c)TI(x,y)
is the covariance of the free Euclidean field with mass m'c. The space-time
integration is controlled by the exponential decay of the free covariance C(x-y).
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Thus, we concentrate on

<:(<!>-0-1:(y)y, i>3. (1.3)

If one knows that the probability (in the /-state) that the average value of the field
lies near the "correct" minimum £; is suitably large, one expects that (1.3) is

small, uniformly in a. Thus, the assumed smallness of the interaction parameters
(1.1) entails with (1.2) that

(<b(x)y ei + 0(a);
that is to say, one has an asymptotic expansion to zero'th order in a. Further
integration by parts yields an expansion

(cb(x)y -$+t ala* +1 (Rk(ct>-£)>',
i=l k

where the constants {aj} are given simply by perturbation theory in the interaction
(with bare mass m'c)

i 3

and the remainders (Rk(<f>-§))' contain at least r + 1 (derivatives of the) interaction

polynomials, and, thus, are 0(ar+1). The main point of the paper is that one
can prove the necessary bounds on the remainders, uniform in the coupling
constant, without grinding through a cluster expansion.

We shall return to the generality of the approach in Chapter VI, but in order
to present the essential elements of the argument in as transparent a manner as

possible, we shall carry out the proof in detail for (cf>4)2 in the two-phase region.
This will illustrate how to handle phase transitions and coexisting states in the
simplest possible example. The proof in the weak coupling (single-phase) limit is
trivial (see [Su 1]). The balance of the paper is organized as follows: Chapter II
establishes the technical context and isolates the crucial estimate to be proven,
i.e., the uniform estimate on the remainder. Chapter III presents the proof of this
estimate, assuming two other bounds. The first bound is proven in Chapter IV,
using chessboard estimates and vacuum energy bounds. The second is proven,
using a Peierls' argument and convexity properties of the vacuum energy density,
in Chapter V.

II. Existence and integration by parts

There is presently a reasonably large number of devices to construct a state
corresponding to a semibounded interaction polynomial in two space-time dimensions

(see, e.g., [GJ 2] for a brief overview). There are essentially two methods
that are valid for arbitrary coupling parameters: a compactness argument (going
back to [GJ 1]), applicable to arbitrary semibounded polynomial, and arguments
employing correlation inequalities and upper bounds (the correlation inequalities
providing monotone convergence), applicable to even P(4>)2 models with half-
Dirichlet boundary conditions [GRS 1] and to arbitrary semibounded polynomials
[FS] (the latter provides a construction that coincides with the above compactness
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construction for 'almost all' values of the external field). The argument that will
be presented is applicable to states constructed by any of these methods. We shall
explicitly consider states obtained through the most general construction - the
compactness argument - and shall at the appropriate places in the proof comment
on the applicability to states obtained through the other means of construction.
Furthermore, although we shall work only with Euclidean quantum fields, all
results will have a natural translation into physical (Minkowski) space through the
Osterwalder-Schrader reconstruction theorem [OS].

The existence theorem we shall state and utilize has a long history; see [GJ 2]
for references to the literature. We shall state it in its Euclidean form. To do so,
we must define the following objects. The finite volume interacting measure for
the interaction density P, a semibounded polynomial, is defined by

where dp(<b)c is the Gaussian (probability) measure with support on S'(R2) (the
space of tempered distributions), with mean zero and covariance C
(-A+ m2)"1, m is the bare mass of the model and : : denotes Wick ordering with
respect to dfji(cb).

If we define the following function spaces

L1,p L1(R2)nLp(l?2), p<°c
L1,00,€=L1(R2)n{/|||/|U<e},

we have from [GJ 2]:

Theorem 2.1. The infinite volume Schwinger functions
n

û <M*.) d<f>A

Sn(x.,...,Xn)=Alim

exist and are moments of a unique measure deb on S'(R2). Moreover, they satisfy
the Osterwalder-Schrader axioms [OS], excluding possibly clustering and Euclidean

invariance (however, time-translation invariance holds). Let l mi^d
degree P, 1 < i < n, and e be sufficiently small. The generalized Schwinger functions

ft :<F': (*.) deb

i=l
are continuous as multilinear forms on Y\"=i Lld/d-m.. They are functional
derivatives of

C I d

Z(hu..., hd)- exp(l :<fr':(h,))d<fc

which is bounded and analytic in h; eLlid/d_,-.

Remarks. 1. The above theorem also obtains with Dirichlet boundary conditions

on the state.
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2. The restriction on the degree of the Wick monomials in the generalized
Schwinger functions (which does not, however, restrict the total degree of the
product) will be tacitly assumed in the balance of the paper.

We also have from [GJ 2] the fact that, with the same degree of generality,
one can integrate by parts in the infinite volume state:

Theorem 2.2. The following formula is valid.

:cbd:(h)RX<b)dcb= [ deb dxA(x) ¦£—-R(<b):P'(<b(x)):
-0<b(x)

where

j*(*) / dyC(x-y)h(y) ^_1:(y)

R(cb) Y[:cbmK(hi),
i=t

C=(-A+m2)"1.
The particular model we have chosen in order to illustrate our method is

given by the following interaction polynomial:

P(x) Ax4-^x2-hx-Ec, (2.1)

where 0<A«1, |fi|<A2 and infx P(x) 0. (The limitation on h here is not
essential, but will spare us some calculation.) This polynomial has two local
minima

|± ±(8A)"1/2 + /î + 0(/î2), (2.2)

and we remark that

Ec -[(64A)-1 + fi(8A)-1/2]+ 0(h2). (2.3)

It is important to note that

Ax4-ix2 + (64A)-1 A(x-^±)4±(2A)1/2(x-taf±)3 + |(x-^)2; (2.4)

thus, this polynomial possesses a mean field limit.
The interaction in the (bounded) space-time region A is defined to be

¦ Pi, : P(tb) : (x) dx,

where : : denotes Wick ordering with respect to mass m2= 1. We comment that
by scaling and re-Wick ordering, this interaction is equivalent to [GJS 2]

A0 :</>4:+5 :ch2:, A0»l.
The finite volume interacting measures we shall consider are given by

dtâ é--"*"i**-Uï d^cb-U, (2.5)

where dp(<b-Ç±) is the Gaussian measure with mean |± and covariance C-
(-A +1)_1. We note that the second term in the interaction exponent cancels the
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mass and the mean of the Gaussian measure in A, leaving an external field £±
exterior to A. This term also cancels the quadratic term of the polynomial
expressed in the variable c£-£t 1_'_t. In particular, at h 0,

:P(VJ:=:P(cb):-t.(<b-U2:
A:¥*:±(2A)1/2:¥i:. '

The infinite volume states obtained from the measures (2.5), whose existence are
assured by Theorem 2.1, are both states associated to the polynomial P(x).
Indeed, it is easy to see, using [Fr 1, FS], that both states satisfy the DLR
equations for P(x).

We may now state the theorem to be proven. To minimize unnecessary
repetition, we will generally state results for the 4- state in h>0 and leave tacit
the obvious statement for the — state in h^O.

Theorem 2.3. For all 0<h<A2 and any h, {mj and r positive integers, there
exist coefficients {a^(h)}, such that for all small enough \=0,

ft :(<b-Um<:(x,)dcb+= I at(h)\il2+0(\^'2).
i l i=l

The coefficients {at(h)} are independent of A and continuous in h. They are, in
fact, precisely those given by perturbation theory calculated about the minimum
|+. 0(A(r+1>/2) depends on N(A) Y.?=i m.

Remarks. 1. Thus, perturbation theory about the appropriate minimum is

asymptotic in A1/2 to arbitrary order.
2. The ± state at h 0 will be defined as a limit of ± states as h j 0 (h f 0);

see Chapter V. Results from the convergence of the mean field cluster expansion
in this model suggest that this additional limit should be unnecessary, i.e., that the
± boundary conditions placed on the finite volume measures should suffice in
picking out the correct state at h 0. However, we have not yet been able to
eliminate this step.

3. It should be commented, since our states are not necessarily Euclidean
invariant, that the result is independent of the choice of the {x;}. However, the ±
state at h 0 will be shown to satisfy all of the Osterwalder-Schrader axioms
(including clustering).

Proof. Theorem 2.3 is a statement about distributions, thus to minimize
unnecessary technical complications, we shall "smear" the Wick monomials in
unit lattice squares, as follows. Place a lattice of unit squares A;, centered at the
lattice sites jeZ2, over R2. Let

:^fr(A,) :^?: (x.) dx.

Then we shall actually consider

} fi :(cb-^r-. (A,) dcb+^(f\ :(4>-tafrr.:(A,))+.

The choice of a unit lattice is arbitrary. Any other lattice would suffice as well.
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By Theorem 2.2, we may integrate by parts in the + state. Thus, by repeated
integration by parts, applied to all the linear factors of the original product of
Wick monomials and to the linear factors of the subsequent derivatives of the
interaction polynomial :P(_f+): ((2.6)) brought into the integrand and continued
until each term in the resulting sum either is a constant on path space or contains
at least r+1 (derivatives of the) polynomials :P0_+):, one obtains the following
expansion:

[f[ :(ch-t+)m>: (A;))+= É at(h)y'2 + l <J?fc(¥+)>+, (2.7)
H=l I i l k

where a typical term in the finite sum over (Rk(ip+))+ is of the form

û ..P^dM: (yJMy) dy)

and M>r+1, F*"*-'1 is the a^th derivative of P, and

w(y) v(x, y) û Xa,(x.) dx.

Xa,(xì) denotes the characteristic function for the unit square A„ and v(x, y) is a

product of N> M factors C(xf - Xj), C(x, - y,-), C(yt - yy). It is easy to see that the
constants at(h) are exactly those given by perturbation theory about the
minimum |+. We note that because the interaction coefficients of :P(t//+): are
0(A1/2) (see (2.6)) and because we require that each Rk(>p+) contains at least r+1
(derivatives of the) :P(t/fr):'s, the coefficients of (Rk(if/+))+ are 0(A(r+1)/2).

Theorem 2.3 will be proven if we can prove the following essential bound.

Proposition 2.4. For all 0<h<A2, and any positive integers M, {aM}£_1; one
has for all small enough A > 0,

û :PM<K):(y,j)w(y)dy) 0(AM/2).

This is the crucial estimate, which shall be proven using the facts that at average
values of the field <b in a small neighborhood of £+, the interaction is weak, and,
for h > 0, that the probability that the average value of the field lies outside of this
neighborhood is small.

HI. Estimate of the remainder

In this chapter we will prove Proposition 2.4, assuming two estimates that are
proven in following chapters. Before we state these estimates, however, we need
another definition. Let

fl, xe[a, b]
A[a,b]W= \n ,r uV (3-1)

10, x^[a, b\

and let

X+(x) X[o,o=)(x)

X-(x) Xc--°,o)(x)-
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We define the average field in a unit lattice square A to be

<MA) <b(x) dx.

Then, we will write

X±(A) x±(<MA)). (3.2)

Note that

l X+(A) + x-(A).

We also wish to define a 'spin configuration' function ofr), which is constant on
unit lattice squares and takes only + or - as values. The name arises from the fact
that a product such as

n Ac.(A)(A)
A=R2

'maps' the Euclidean field <b(x), whose average in a square A, <b(A), is an
unbounded random variable, onto a configuration of spins that are either 'up' or
'down', i.e., discrete random variables. We introduce the 'spin' characteristic
functions x±(A) in order to examine separately those regions of path space S'(R2)
whose elements have average values lying close to the correct (wrong) minimum. '

Finally, for a given unit lattice square A, we define

F"(A>(A) Ô q :(cb - Ê,^)». : (A), (3.3)
i l

where {cj"=1 is a set of given coefficients. We denote the total degree of F by

N(F(A))=£m, (3.4)
i l

Then we state the following result.

Proposition 3.1. Let {wjjfr be a collection of localized functions such that
Wj eLta(Aj), for some q>\. Then for any collection

{F^w^JA,.)}^,
there exists a constant K such that for all small enough A and |h|<A2, if
K(N) KNN\, one has the following estimate:

Jl FMw,);W.ty)

s n [(riicjW(N(F;.))i|W,.|n

x [I [A-NfrW2(fÌ|cy|)lC(N(F;.))||wy||pì,

for any p>\.
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To make clear the meaning of this estimate, let us take a simple example. It
informs us that while

\u-è+)(à)x+(à)r\^K, (3.5)

we have

\({<b - £+)(A)x_(A)>1 < 0(A-1/2). (3.6)

This is reasonable, since (3.5) says if one looks in that part of path space where
the average value of the field is near £+, then the expectation of (<b-Ç+)(A) is
'small'. But if one looks where the average value of the field is near £_, (3.6)
asserts that the expectation of <b-Ç+ could be large since |£_-£+| 0(A_1/2).

The following estimate provides a precise statement of the fact that the
probability that the average value of the field actually is close to the wrong
minimum is very small.

Proposition 3.2. There exists a A0 > 0 such that for all 0 -S A s A0 and all
Os/tsA2-, there exists a c>0 such that

<X_(A)>+<e--"\

independently of A.

This is proven via a Peierls' argument and some careful analysis in Chapter V.

Proof of Proposition 2.4. Before we launch into the most general case, let us
return to the simple example of the introduction. To obtain the uniform bound on
the counterpart, in our model, to (1.3), we write first

|< .(«fr-k)'-1: (A))1 |< -O-.-)'-1: (A)x+(A)>++<:(</,-Ita,)'"1: (A)a_(A)>+|.

(3.7)

Proposition 3.1 entails that the absolute value of the first term on the right hand
side is bounded by K(i-1). And application of Holder's inequality yields for the
second term:

|<:(*-_+)'-1: (A)x-(A))+\M(:(<t>-U1-1: (A))2x_(A)>+1/2<X_(A)>+1fr (3.8)

The first factor is estimated through Proposition 3.1 by

K(.-l)A-(i-1)/2,
and the second factor is bounded by e cA"1/2/2, according to Proposition 3.2
(h>0). Thus, (3.7) is bounded by

K(i-l)(l + A-(i-1)/2e-cA"'2),

and the necessary uniform bound is proven.
In the general case (2.7), each term in the sum

I <r_(*+»+
k

can be represented graphically, with the lines of the graph due to the free
covariances C(x — y) and the vertices provided by the derivatives of the original
Wick monomials and of the interaction polynomial. The basic point is to estimate
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the vertices uniformly with respect to A and independent of their position in
space-time and to control the integration over vertex positions by the exponential
decay of the free covariance, as in standard perturbation theory. It will be helpful
to keep the diagrammatic representation in the back of the mind.

In order to avoid some technical problems, we will assume that not only
every linear factor of the original product of Wick monomials has been integrated
out, but that no two vertices with derivatives of the interaction polynomial are
contracted to each other, unless one or both of them have been completely
integrated out, i.e., unless one or both are constants on path space. This
assumption leads to no loss of generality, since, presented by a remainder term
not satisfying this assumption, one simply continues integrating by parts until the
recalcitrant vertices are constants on path space. This only increases M and
produces more terms.

With this assumption a typical term that must be estimated is of the form
M,

0(AMi/2) (fl :P(a*'(>/fr>:(y..))vv(y)<iy)+, (3.9)

where M1 + M2 M and 0(AMi/2) contains the interaction coefficients of the Mt
completely integrated out interaction vertices. Furthermore,

w(y) «(*> y)Il A_,(x,) FI dxt [I dxk,

and v(x, y) is a product of N(=MX + M2) factors C(x,— x,) and C(x;-y,). As a
shorthand we have subsumed by x not only the position variables (xj of the
original product of Wick monomials but also those (xfc) of the completely
integrated interaction vertices. For the xk variables, there are, of course, no
characteristic functions in the expression for w(y). The point of the assumption
we have made is that there are no factors C(yf - y,), joining vertices with
uncontracted fields, in the definition of w(y). The usefulness of this fact will be
clear soon. At each variable y,, and xk we make a localization sum

1= I *_,(•)

(the Xj variables are already localized), which yields for (3.9):

O0-M><2) I Il ¦¦P(a*\*+) ¦¦ (yJ FI xa, (yjvv.(y) dy) (3.10)

where

Wj(y) v(x, y) fi *_,(*.) II Xa, (xk) dx.

Each J {jv}v=i {(jv,i,j„,2)}v=i(jv£Z4) denotes a choice of unit lattice square
localizations for all covariances in v(x, y), and Aj is the localization of the jath
vertex determined by the choice 'of J. (Note: J is chosen so that covariances
contracting to the same vertex must have the same localization in that variable.)
Then, in each term of the sum (3.10) and at each unit lattice square A^, one
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performs the spin configuration expansion

l Av(A,.J + x_(A,.J.

Thus, (3.10) becomes

0(A^2)Zr([ (ri'^M^):(y.))

x FI [AA,(y(ta)A.(A/j(A,J]wJ(y)dy) (3.11)
M. l

where, of course, the sum £_(.> is over the possible 'spin configurations' that can
be formed by o-(AJ, /_ 1,..., M2.

In order to eventually control the sum over localizations, we wish to use the
fact that the free covariances are exponentially decreasing and locally integrable;
indeed, we have for all x and y:

0<C(x-y) (-A+l)-1(x,y)
(1 + c | In |x — y||),-U-8)|x-y| (3.12)

where 6>0 is arbitrary and small. To display the exponential decoupling, we
multiply by 1 in such a way that (3.11) becomes

0(A*V2)XI riexp{-dist(AJ,1,A,2)/2}
J o-(-) v=l

M2

X û -P^^y-iyJxA^y^x^JK)Wy)dy),
n l

where

(3.13)

w'Äy) fi exp {dist (AUi, AU2)/2}wj(y).
v=l

Using the fact that no two y^'s are contracted together, we can rewrite the above
as

0(A*V2)X £ f] exp {-dist (A,. „A,J/2}
J o-(-) v=l

V=i
where, if we define

T;, il I U,i A,v, i 1 or 2},

we have

Ì(y.) AA,„(yjn exp{dist(AKl,AJJ/2} [ R [C(y,,, x,,)*Aj,) dx,,],

and j'v denotes that member of the double (jVtl, j'„,2) that does not index AJ(i
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(except, of course, in the case that A/vl A;v2 AJ. In other words, the expectation

in (3.13) is of smeared fields, the test functions being (essentially) the free
covariances that contract to the corresponding vertex, localized in both variables
of their argument.

We focus attention now on

FI DPMiK):(/Ux^)(AJ] (3.14)

If one of the spin characteristic functions is centered at £_, we use Holder's
inequality to bound (3.14) by

hl/2 (3.15)
// m2 ,2 '»2 V +1/2

(n-P^K^y.iftj) Ux^JK)) X<A-(A)>+

If there are only xfrs in the expectation, it is left in peace. If cr(AJii)= + for all
/_ 1,..., M2, then Proposition 3.1 provides the following bound for (3.14):

M2

K.(5M2)n (A + (2A)1/2)K2m(Afr,

with constants Kt independent of J (m(AJ is the number of elements in the set

7J, since

11/L XaJvJ [I exp {dist (A^,, A,J/2}

- j^m(A,il \-C(y^ %)Aa,ì(%) dxjC]
(Ìv)'S".i„ "

K2 independent of the choice of J, by (3.12).
The following worst-case bound (i.e., when all ofrVs^ +) for the first factor

in (3.15) is also given by Proposition 3.1:
M2

*m(5M2) J} [A(A^(4-^)/2)-r(2A)1/2(A-(3'-^)/2)]f_2n(A'u)
>~ i

with constants independent of the choice of J. However, Proposition 3.2 provides
that, when h 0 and A is small enough,

<AfrA))+1 -cA-1'2^ c>0,
independently of A. Observing that

Zm(AJJ<N(A) + 3M,

for all J, we may estimate the absolute value of (3.9) by

0(AM'/2)K5'(A)2M2_:4(M)[AM2/2+e-c^,'2A-M2/2]

*I fi exp {-dist (A,,„A;J/2}.
J v=l

The factor 2M= comes from the sum over spin configurations. The sum over
localizations is easily bounded by K$, and since N N(A) + 3M, the total degree
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of the Wick powers of the field that have been brought into the integrand, we
have

(n:P(^)('A+):(yj)w(y)taiy 0(AM/2).

The 0(AM/2) is, of course, dependent on M and N(A).
This completes the proof of Proposition 2.4, given Propositions 3.1 and 3.2.

It is clear that given these two results (or their counterparts) the argument above
is quite general.

IV. Vacuum energy estimates

In this chapter, Proposition 3.1 and bounds necessary for the proof of
Proposition 3.2 in the next chapter will be demonstrated. The essential bounds
are vacuum energy estimates that are uniform in A, which are attained by
examining the subsets of path space determined by the spin characteristic functions

x±(A). To be more precise, if <bK(x) denotes the ultraviolet cutoff field (we
use the ultraviolet cutoff of [GJS 4], which has the useful property that <b(A)
cbk(A)), we note that the ultraviolet cutoff interaction density

:P(4,K):(x)-è:(4>K-£+)2:(x) (4.1)

is not uniformly bounded from below as A|0. When, in fact, the field is close to
|_, (4.1) is -0(A-1), since

P(|_)«0
(h is small). However, when <bK=0, (4.1) is uniformly bounded from below as
Aj,0. Of course, x+(A) restricts only the average field <b(A), and

cb(x) <b(A) + 8<b(x), xeA,
so it will be necessary to control an error term.

In Chapter V it will be necessary to consider path space in yet smaller pieces.
In fact, we wish to define the 'shrunken' spin characteristic functions that restrain
the average value of the field to lie very close to the minima of the polynomial.

Afr5(A) Xtt+-x"*«+.e++x««+J(*(A)), (4.2)

X-..(A) A[i-x'»ê+,,?_+x"V](^(A)) (4.3)

(see (3.1)). The "peak" characteristic functions are:

X±,p(A) x±(A)-x±,s(A). (4.4)

Lemma 4.1. Let 0<t)<10~3 and 103t}<£. Then there are strictly positive
constants a a(Ç), b b(Ç). such that for all 0<A<10-2, |h|<A2, any A, xeA,
tr(A), and any (large) k,

:P(cbK): (x)-t,/2 :(<bK -4(A))2: (x)-ln^(A)(A)>-a In2 «-Ç :8cb2K: (x), (i)

:P(^K):(x)-V2:(^-4(A))2:W
_1" \o-(A),p'-In x_(A).p(A) s b\-112- a In2 k -1:8cb2K: (x). (ii)
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Remark. 1. Since a/<t(a),p(A) restrains the field to take values where the
polynomial (2.1) is large, (ii) is reasonable.

2. (i) was proven in [GJS 4]. Thus, we will outline only the proof of (ii).

Proof. Define t by:

t(x) :P(<bKy. (x)- t,/2 :(<bK - £a(A))2: (x) + Ç :8<f>2: (x).

Using the fact that the ultraviolet cutoff Wick ordering constants are 0(ln k), one
can easily, as in [GJS 4], show that for any e > 0,

t(x) > (1 - eA)P(tafcXx) - v/2(<bK - Ua))2(x)
+ Ç84>2K(x)-0(e-1)ln2K.

We wish to show that

t(x) - In x„(A),p(A) s bk~m - O(l) In2 k. (4.5)

(4.5) will be demonstrated for cr(A) -. The case cr(A) + is similar.

Case 1: |4.K(x)-£_|-sA1/4|+/2

When eMA)e[£_-A1/4£+, £_ + A1/4£+], x_,p(A) 0, so that this range of average
field values yields (4.5). Because </>K(x) <b(A) + 8cbK(x), we thus must have either
(a) S4>K>A1/4£+/2 or (b) 8<bK <-A1/4£+/2 (i.e., when <HA) < £_ - A 1/4|+ or <b(A)>
£_ + A1/4|+). In both cases

S^2(x)>A1/2^/4.

But, for Case 1 field values (we set e 10~3),

(1 - e\)P(cbK)(x)- r,/2(d>K - U2(x)>i(<k - UHx)- r,f2(<bK - ^)2(x)>0
(follows from (2.4)). Because - In x^Aj.pCA) ;> 0 and A1/2£2/4= 0(A~1/2), (4.5) is
confirmed in this case.

Case 2; |<Mx)-|+|<£+/2
We must have either (a) 8cbK (x) > £+/4 or (b) <b(A) t;J4. However, when
4>(A) 0, x~,p(A) 0, so that (4.5) follows trivially in subcase (b). In Case 2,

(taMx)-|_)2<9£2+

so that

t(x) > (1 - eA)P(<M(x) - T,9cj2/2 + £S4>2(x) - Oie-1) In2 k.

Because P(cbK)(x) 0, in subcase (a) we have

t(x) > -r,9taf2/2 + ££/16- Oie'1) In2 k

> bA"1- Oie'1) In2 k,

for />>0. Thus, (4.5) is proven in Case 2.

Case 3: |_ + A 1/4£+< </>K (x) < £+/2

A straightforward calculation shows that

P(^K) A(^-(8A)-1/2)2(^+(8A)-1/2)2- Hk-SEc, (4.6)
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where 8EC, the difference Ec(h)-Ec(h 0), is (for \h\ X2) 0(A3/2). Thus, in Case
3, a glance at (2.2) makes it clear that there exists a b>0 such that

(l-eA)P(cAK)(x)-T,/2(^(x)-U2>ta>A-1/2. (4.7)

Therefore, (4.5) obtains in Case 3.

Case 4: 4>K>3£+/2 or <bK £|_-A1/4|+

Referring once again to (4.6), one sees that there exists a b > 0 such that for all
<bKix) in Case 4, (4.7) holds. This completes the proof of Lemma 4.1.

If we define

W*(x) :PO): (x)-t,/2 :(d>-|±)2: (x),

W*(x) by the substitution <b-*<bK and SW^(x) W*(x)- W^(x), we have

Lemma 4.2. There are positive constants K and 8 such that if {m(A) | AcR2}
is a set of nonnegative integers and {«(A) | A <= Y^lR2} is a set of positive numbers,
then

'
FI SWt(A)(A)m(A) df-(</_) =£ Il [(4m(A))! (Kk(A)-8)-(a)].
a<=y A=y

K and 8 are uniform in A as A |0.
Proof. As in [DG].

It is now possible to prove the vacuum energy bounds that are necessary.

Proposition 4.3. For tj > 0 sufficiently small, all A sufficiently small, all
|h|^A2, there are strictly positive constants air}), fo(-n) such that for l<p<
1 + t)/30,

exp{-p(:PA(c£):-!:(<£-U2:)} R x±iA)° d^(^-|±)<ea|A|. (i)

and

exp{-p(:PA(ta7S):-i:(ta7S-|J2:)} fi A±lP(A)pd^-U^^'fr (ii)
•" A<=A

Remark. In (i) it is actually possible to replace a by aA1/2 (see [GJS 4]).

Proof. By Holder's inequality,

exp{-p(:PA(</,):-§:(4>-£±)!:)} û x±(A)pd|_(</>-£j
A<=A

\ W
exp{-pq'(:PA(^): + £:S^i:-n/2:(*-^)î:)} _1 x±(A)«'dji(<fr--fJ

A=A

| exp jqp^ :6ta>2 : +^ :(<*> - Ul:)} d/4* - fj)"'. (4-8)
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By conditioning with respect to Neumann boundary conditions [GJS 4, GRS 1],
the second factor is estimated by

\ |A|/q|A|

d/x^-tafX)exp pq C-.Scbl-.+^-.icb-tJl--

(A is not necessarily a unit lattice square). A standard calculation yields for this
factor (note 8ch 8ip±):3)

(det2 [1 - pq(2£(l -P_) + (l - t,))(-Aaj+ l)-1])-^^, (4.9)

where PA is the projection in L2(A) onto xA, AA is the Laplacian with Neumann
boundary conditions on ôA, the boundary of the lattice square A. But because
(1-Pa)Aa 0, and because -AA [ {xAY 7r2/|A|, we have

l-pta?(2£(l-PA) + (l-T,))(-AAJ+l)-1>l-pta7((l-T?) + 2£|A|/772)>0

if we choose 17 10~6, qf=l + Tj/30, £=1, |A| 10 6 (these have been chosen,
also, so that the hypothesis of Lemma 4.1 is satisfied). Thus (4.9) is finite and is
bounded by

eK,|A|

for some constant Kt.
Lemmas 4.1 and 4.2 and standard arguments [DG] yield the following bound

for the first factor of (4.8):

gK2|A|

for a constant uniform in A. Of course, Lemma 4.1(h) entails that if ]1a=a A+(A) is

replaced by ]1a=a X+,p(A), the above bound is replaced by

e-K2A-"2|A|_

This completes the proof of Proposition 4.3.

Before proceeding further, we must pause for further definitions. The
vacuum energy density is defined to be

at lim at lim 7— In dot
AtR2 A AÎR2|A| J VA

(see (2.5)). This limit is known to exist [Gu 1]. It is, in fact, not difficult to prove
directly (see [Su 1, 2] for a somewhat more complicated example) that at a™',

thus, we shall drop the superscript. We wish to recall the chessboard estimate
[FS]. If Fa is a measurable function of the fields with support in the lattice square
Aa, then

û fY <exp { X (aZ(Fa)-aJ |A|), (4.10)

3) det2[l + A] exp[trln(l + A)-tr A].
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where N is some index set and

«»(F_)= hm rriln"' AtR2|A| n (Fa)ßd<bt (4.11)

(Fa)ß is the function with support in Aß obtained by a series of reflections in
lattice lines and translations of the function Fa (see [FS]). We comment that the
chessboard estimates are valid for all states constructed by the methods
mentioned at the outset of Chapter II.

We shall, thus, be interested in a lower bound on the infinite volume vacuum
energy density:

Lemma 4.4. For arbitrary parameter values, «„> 0.

Proof. By Jensen's inequality, if "t>0,

al |^| In | exp {- :PA(4,): + §:(«/> - £+)A:} d^cb - £+)

j- In | exp {- :PA(4> + £+): +i^2 :} d/x(</>)

>t^7 In exp {| - :PA(<^ +1+):+i:c>A: dM<f>)}

-P(cfr) + Ec=0.
Thus, for h 0, ai>0. Similarly, one can show that for 7i<0, a~>0. But
a» a_ a„, completing the proof.

Proof of Proposition 3.1. By the chessboard inequality,

(4.12)

(4.13)

(il ^'(^X^irV ^expfE (aUF-i-.x„2)-ar

For arbitrary A,

a„(F^J -Lln | C (F<7''(wJ))AXa2](A) d<^,

and we have a spin configuration throughout A with the single spin <x2,. If
°"2,, +> we estimate (4.13) through Holder's inequality:

ÎA|Plnl (nA(^^)V(*-e.)
+^r-ln [exp{-p[>PA(4>):-±:(4>-É+)A:]} I] A.2I(A) d(_(<^-|+). (4.14)

lAl P J A=A

By Proposition 4.3, the second term is estimated by In a, if we choose p 1 +10~7
(and so that p' is even). The first term can be estimated by the checkerboard
estimate [GRS 1,2]:

iii -h £ ln f (¦F°<wMq d/^(rf> -u),
\i\\ p q \A=A j /
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where q is independent of |A| and has been chosen even. If ctj +, (recall,
a2 j +), then this is bounded by

In (nicw|)i-(N(F;.))||W/||p], (4.15)

p>l (see (3.3) and (3.4)), using a standard argument [DG]. This bound is

uniform in A and A. If, however, altj -, because ||_ — £+|= 0(A~1/2), the same
argument on Gaussian integrals leads to the bound

In (ftlcj K(N(F;)))a-n<f«W2||w;||p]. (4.16)

This bound is uniform in A.
If cj2j -, we must shift the mean of the Gaussian measure (as well as that of

the second term of the interaction exponent) in order to use the uniform bound of
Proposition 4.3. The Gaussian measure is S-quasi-invariant [e.g., Fr 1] and its
Radon-Nikodym derivative is given by

dixjcb + f) _ ^_<(>((_A+1)fì_(1/2)<f>(_A+1)f>
dy.{<b)

where (•, •) signifies the real L2 inner product.
In order to define an admissible shift that will also accomplish the desired

translation from £+ to £_ in A, we define:

g(x) tj„ (-

where

[0, if

A+l)-1(x-y)l,(^)My)dy,

v(x)
1, if

|x|>2
lxl<f

0 vix) l, v(x)eCo,

Vv

hiiy)-

(-A+l)-1(y)v(y/L)dy,

|+, y€R2\(AUN(ôA))
£_, yeAUN(ôA)

N(dA) {Ac:R2|dist(A,dA)<L}, l<L<oo and fixed. What is important to
notice is that g \ A £_ and g(x) |+ for x e R2\A such that dist (x, ôA) > 2L.

Then we can write (4.13) as

1

|A|
In

1

rr. In

û (F<Tl<w;))AAfCT2y(A)e-^(*):+1/2:<*-8)-
1=A

xexp{[ (<b-g)(g-U+l\ (g-e+)2}dßicb-C+)
l Ja Ja J

n (f^k^^a)*-^*^1^*-^
exp{[ (^-g)(g-.+)+èf (g-|+)2}d/_(ta^-g), (4.17)

A=A

X
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using the above-mentioned properties of g. Now apply Holder's inequality to
estimate (4.17) by

1 *.
W\7'ln EI (FMw,))i'exp P'

A=A l
1 1,+ ui~ln|A|p

[(^-g)(g-|+)+l(g-^)2])d/-(ta>-g)
R2\A >

'

e-*W-™*-'-M f] x^Ydfiicb-g).

The second term is estimated as before, using Proposition 4.3. (It is easy to see
that because g [ A £_ and g is continuous, we may indeed directly apply
Proposition 4.3.) Holder's inequality applied again estimates the first term by

1 1

TW" fi iF^iw^dnicb-g)
1 1

|A| pq
exp pq

R2\A
l(<t> - g)(g - _+)+à(g - U2]} dni<p - g).

Because, in R2\A, g differs from £+ only in a strip along dA, it is easy to see the
second term is dominated by

W\LCm
where C depends on A. And the first term is estimated, using the arguments
utilized previously, by

In nMWWj))Ni
if aUj -, or by

In û |Cì,|)k(n(f;.))a -N(F,)/2 MlpJ>

if crtJ +. These estimates, with (4.15), (4.16) and Lemma 4.4, in the limit A|R2,
yield the proposition.

The arguments in the proof of this proposition are directly applicable to
states constructed by the means mentioned previously. In particular, if one
considers (half) Dirichlet boundary conditions, one must replace A in the definition

of g (and the shift formulas) by AA, the Laplacian operator with (zero)
Dirichlet boundary conditions on ôA. Then, it is possible to push the arguments
through (note that because

(-AA'+l)-1(x,y) 0

when x edA, g(x) 0 if x eöA, so it is clear that g(x) is in the domain of -AA +1
and is an admissible shift).

We will conclude this chapter by stating two results that will be of use in the
proof of Proposition 3.2.

Lemma 4.5. For all sufficiently small A, all |fi|;£A2, and any set Y^R2
composed of unit lattice squares A, there exists a constant b>0 independent of A, h,
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Y) such that

(û Afrp(A))<e--bX-»«|Y|

XA<=Y

Remark. The expectation is in either the + or - state.

Proof. Follows trivially from the chessboard estimates, Proposition 4.3 and
Lemma 4.4.

Lemma 4.6. There exist strictly positive constants K, c, such that for all
sufficiently small A, all |h|<A2 and any collection

{FMA,)}}-..!

of functions defined in (3.3), one has the following estimate:

Il F°uiA.)x^jAi)y| <n {(il |cj)K(N(F,))A-Nfr>/2e^-,/2}.

Remark. We recall that _T(N(FJ)) K^N^l. See also (3.4). We
emphasize that only peak spin characteristic functions are in the expectation.

Proof. Follows readily from the argument of the proof of Proposition 3.1,
Lemma 4.4 and Proposition 4.3(ii).

V. Peierls' estimates

The aim of this chapter is to prove Proposition 3.2. We will first sketch the
argument. A Peierls' argument will yield the estimate

<X+(AJxfrAß)>+<e-^"2, (5.1)

for some c>0, uniformly in Aa, Aß, and |/î|==A2. The vacuum energy density
a_(A, h) is convex in h and, thus, is differentiable in h at all but countably many
values of h. Thus, we can pick a sequence (for A small but fixed) {hn}, that
converges from above to 0, at every point of which da„(A, h)/dh exists. But
whenever da~(A, h)/dh exists, the state is pure [Gu 2, Si], i.e., for any function
F(</>),

lim <F(c>(x))F(ta|>(y)))+-<F(^(x)))+<F(ta^,(y)))+ 0.

Because the bound in (5.1) is uniform in Aa, Aß, we have

_.
lim (^(Ajr^-'A^r^e-^1'2 (5.2)

dist(A„,0)-*=°

at the external field values hn. Utilization of the convexity in h of the vacuum
energy density and further analysis of the first and second Schwinger functions
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yield the following bound for h 0:

<X+(A)>+>e-K*"4, VA, (5.3)

for some K> 0, and where the + state at h 0 is defined as the limit of the +
state at strictly positive external field h, as /i J. 0. (5.3) and (5.2) clearly yield the
desired result at h 0. The proof is completed when we note that the FKG
inequalities entail that (x-)+ is monotone decreasing in h.

The arguments of this chapter can be readily applied to models with more
complicated phase diagrams (see [Su 1, 2]) and to states constructed via the
methods previously mentioned. Clearly the most difficult step is the proof of (5.3)
or its counterpart. Even in the model considered in detail here, the proof is not
trivial. (Because we have destroyed the cb *r->—<p symmetry of the h 0 model by
the introduction of boundary conditions, i.e., the choice of mean of the Gaussian
measure, one cannot conclude

<X+(A)> <x_(A)> ±.)

But we shall return to the generalizibility of the proof later.
We begin with the proof of (5.1).

Proposition 5.1. There exists a c > 0 such that for all Aa, Aß, all small
enough A and |h|<A2,

<X+(AJAf-(Aß)>±£e-^1'2.

Proof. Using

1 X+(A) + X-(A)

at every AcA0, where A0 is a large square containing Aa and Aß, we have

<X+(Aa)x_(Aß)>+ I (EI ACT(A)(A))+, (5.4)
o-(-) > A '

where £_(•) is the sum over configurations ofr) such that cx(Aa) +, cr(Aß) -.
Following [GJS 3, Fr 2], we estimate (5.4) by

I Il X+(A)x_(A'))+,
7 HA,A')eN(y) '

where N(y) is the set of nearest neighbor pairs of unit lattice squares bordering a
connected contour y, consisting of unit lattice lines, separating Aa and Aß. One
has from [GJS 3, Fr 2] that, once one establishes that

Il x+Wx-(à')Y e-^ah], (5.5)
(A,A')eN(y) '

where 5>0 and |y| length of y (|y|>4), the proposition is proven. We will
follow [Fr 2] in proving the validity of (5.5). We may assume all pairs in N(y) are
mutually disjoint (separating them with Holder's inequality if they are not).

Writing

X+(A) x+jS(A) + x+,p(A)
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(see (4.2)-(4.4)), we have

û X+(A)x-(A'))+
HA,A')eN(7) '

/ \+1/2/ \+l/2
^I( FI Afrp(A)) FI X+,s(A)x-(A')) (5.6)

y' HA,A')sN(y') ' HA,A')eN(-y\-y') '
where Xy runs over the subsets of y (regarded as a set of unit lattice lines).
However,

X+AA)x-(à')-^e^-*^-^-^^, (5.7)

since

X+,s(A)<e<«*--<^"4W

and

X_(A)<e-*(A).

If we choose functions hAA. as in [Fr 2], such that

«MA) - «MA') I <p0.hU'),
i=0

we have, using (5.7) and the Gaussian domination bound [FSS, Fr 2]

vexp

that

t <p(a4ft')}y^exp{t Hh'lll},
: 0 >• M 0 J

û x+,s(à)X-(à')) se*w^n (5.8)
(A,A')eN(7\7') '

S>0. Thus, with Lemma 4.5, (5.6) and (5.8) imply (5.5) and the proposition.

Remark. Any polynomial with a mean field limit, such that the polynomial
forms a relatively large potential barrier between the positions of any two minima
(and thus excluding, with high probability, field values between the minima), is
amenable to this argument.

We wish to recall a beautiful extension of Guerra's theorem on the consequences

of the differentiability of the vacuum energy density. This will be the
formulation used.

Theorem 5.2 [FS]. If a_(A, h) is differentiable in h, then the state at that set of
interaction parameter values satisfies the Osterwalder-Schrader axioms, including
clustering, and is independent of the classical boundary conditions (free, Dirichlet,
periodic, Neumann, half-Dirichlet, etc.).

Remark. The proof of the independence of boundary conditions in [FS] uses
a cluster expansion (whose convergence is independent of the range of coupling
constants in the semibounded polynomial P(x) determining the state). However,
to conform rigorously to our claim that our proof uses no cluster expansion, it
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should be remarked that the proof of the property that is of interest to us here,
the clustering of the state, depends only on the validity of the chessboard
estimates, and utilizes no cluster expansion (see Theorems 4.2 and 4.4 of [FS]).

We begin the proof of (5.3) by showing its validity for h>0. The limit h|0
will be discussed directly thereafter.

Proposition 5.3. There exists a strictly positive constant K such that for all
sufficiently small A, all 0<li<A2 and any unit lattice square A,

<x+(A)r>c-K*"\
Proof. We note that for any Aa, Aß,

A<taMAJ<MAß)>+ A<^(AJA;+(AJ<f,(Aß)x+(Aß))+

+ A<<MAJxfrAJcMAß).YfrAß)>+

+ A X <c/>(AJ^(A<,)(AJ^(Aß)A;tr(AB)(Af3)>+. (5.9)
cr(Aa)#o-(Afi)

We may estimate the last terms in (5.9) by

A I <c/»(Aa)A:(.(A<>)(AJ^(Aß)^(r(As)(Aß)>+
o-(A„)#o-(Ap)

< I i\2(<biA)r)U2(X^JK)XrrlAA^)>+m- (5-1())
tr(A«)^cr(Ae)

But, by Proposition 3.1, since

A2<<MA)T A2<cMA)4x+(A)>+ + A2<<MA)V(A)>+,

we have (A2<<^)(A)4)+)1/2<K1, for K1 a constant uniform in small A. Thus, by
Proposition 5.1, (5.10) is estimated by

K2^"\
Therefore,

A<<MAJ<MAß)>+ X(cl>iAa)x+(K)chiAß)x+i\)r
+ X(cbiAa)x-(K)M^)X-(aß)r - K2e-^-"2.

Recalling

X±(A) x*,.(A) + x±>p(A),

and using Lemma 4.6, one has

A<ta>(AJta>(Aß))+>A<^(AJA:+,s(AJta^(Aß)A:+,s(Aß))+

+ A<c^(AJA:_,s(AJta^(Aß)x_>s(Aß)>+-K3e-^1'2

=\(l-\1/4)2e+<x+AK)x+,s(*ß))+
+ A(|_ + A1/4ta,+)2(X_,s(AJX_,s(Aß)>+-K3e^"2 (5.11)

(see (4.2)-(4.4)). Because *_,s(Aß) l-^(Aß)-x±,p(Aß), one concludes from
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(5.11) that

A<^(AJtaf»(Aß))+>A(l-A1/4)2e2(A+,s(AJ>+

-A(l-A1/4)taf2<A:+,s(AJX_(Aß)>+

-A(l-A1/4)2^<A+,s(AJx+,P(Aß))+
+ A(^ + A1/4!+)2<x_,s(AJ>+

-A(^ + A1/4taf+)2<X_>s(AJX+(Aß))+

- A(£_ + A 1/4f+)2<x-,,(Aa)x-.p(Aß)>+

-K3e-"2
>A(1-A1/4)2^<A+,S(AJ)+

+ A(^_ + A1/4ê+)2<A:-,s(AJ)+-K4e-CÀ",/2, (5.12)

where we have used Lemma 4.6 and Proposition 5.1 in the last inequality. By
(2.2), for |h|<A2,

A(^ + A1/4^)2 A(|+-A1/4ta;+)2+0(A5/2),

and by Lemma 4.5,

<X+,s(A)>+ + <x_,s(A)>+ 1-,x+,p(A)>+-<;Y-,p(A)>+
>l-2e-CÀ_"2;

therefore, (5.12) implies

A<<KAJ<MAß)>+ > A(l - A1/4)2f+ - 0(A5/2)

>ü.2-_:5A1/4 (5.13)

(a,+ -A1/2ta,+).
As previously mentioned, a„(A, h) is differentiate in h almost everywhere,

so we can choose a sequence {hn} of external field values converging to 0 from
above such that

3a_(A, h)
dh h h„

exists for each n. Because (5.13) is independent of Aa and Aß, we have from
Theorem 5.2 that

A1/2(taf»(A)>:>a,+ -K6A1/4, VA, (5.14)

where (¦)„ denotes the state evaluated at h h„. It is easy to see that the FKG
inequalities (see, e.g. [GRS 1]) entail that (cf>iA))+ is monotone increasing in h.

Thus, (5.14) implies

A1/2<<MA)>+>co+-_:6A1/4 (5.15)

for all h > 0. (We note that because the state for id>4)2 is known to be pure for
hj= 0 [Si], we could conclude (5.15) directly from (5.13). But we wish to maintain
the arguments as general as possible, and the FKG inequalities as used are
applicable to arbitrary semibounded polynomials.)
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Further, one has that

A 1/2<cMA)>+ -£ A m(d-(A)X+,s (A)>+ + A 1/2<<MA)x_,s (A)>+ + K7e~^'ia

-<(l + A1/4)û,+<^+>s(A)>+-(l-A1/4)w+(.x-,s(A))+ + K8As'2.

Noting that

<X+>s(A)>+<l-<x_s(A)>,

this yields

A1/2(^(A))+<(1 + A1/4)W+-(1 + A1/4)W+<X-,S(A))+

-il-\ll4)co+(X-AA)r + Ksk5'2.

Therefore, by using (5.15), we conclude that for all h>0,

<A-,S(A)>+:
,(1 + A1/4)cü+-6>+ + K9A1/4

(l + A1/4)w+ + (l-A1/4)û.+
;K10A1/4.•¦io'

This entails that

<X+(A)>+ l-(x-iA))+ * 1 -<A-,S(A))+ - e-"-"2
al-iCnA1'4,

whenever h > 0, which yields the desired conclusion.
Propositions 5.1 and 5.3 yield Proposition 3.2 for h >0, as already described.

To extend the result to h 0, we must define the + state at h 0 (resp., - state)
through a limit of + (-) states as h [ 0 (h y 0). In particular, we define the + state
at h 0 by

By the monotonicity of the Schwinger functions in h (second Griffiths' inequality
[GRS 1]), this limit exists and is independent of the particular choice of sequence
{hn}J,0. We show in the appendix, furthermore, that this limit defines a unique
probability measure for which the functional Z(f^ (see Theorem 2.1) is bounded
and analytic in f1 e L1>4/3, and for which the generalized Schwinger functions exist
and are continuous on II i_22:"">II S(R2) (see Appendix). The Schwinger functions
of this measure satisfy all the Osterwalder-Schrader axioms (including clustering)
and are independent of the classical boundary conditions. (The remark following
Theorem 5.2 is applicable here.) We comment that although the second Griffiths'
inequality is known only for even polynomial interaction, the independence of the
choice of sequence {hn} can be, to a large extent, recovered for arbitrary
semibounded polynomials (see Appendix).

Therefore, Propositions 5.1 and 5.3 entail Proposition 3.2 at h 0. The proof
of Theorem 2.3 is, thus, complete.

VI. Discussion

We have seen, in the simplest possible case evincing a phase transition, a new
proof of the asymptotic nature of the perturbation expansions for the generalized
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Schwinger functions. We would now like to discuss in a bit more detail its
application to all P(</>)2 models with mean field limits.

In weakly coupled AP(</>)2, since the Wick ordering lower bounds are uniform
as A JO, one has, as analog to Proposition 3.1, the estimate

riF'(A,)) <n inicyi jaw,»
where K is uniformly bounded as A|0 and

F(A) f[c, :<F':(A).

Thus, the proof of the asymptotic nature of perturbation theory in such models is

straightforward (see [Su 1]). But in models manifesting phase transitions, the
corresponding Wick lower bounds will not be uniform as the appropriate coupling
constants approach zero, and a counterpart to Proposition 3.2 is necessary.

We shall summarize the argument in the context of a semibounded polynomial

with a mean field limit and n local minima §. A glance at the proof of
Proposition 3.1 suggests that one can prove the following estimate

(6.1)

n p"<«iWAj) - n n k i kxmf,» \\w,
{j|o

* n
=»-..,}

\U,-L |N(F) n|ct/|)X(N(F/))||w/||

where cxli, cr2,j take values in {1,..., n} (see (3.3)), and where the constant K is

uniformly bounded as the dominant coupling constant ad goes to zero (see
discussion in Chapter I). The Peierls' argument in Proposition 5.1 would yield

<Ac,(AJ^2(Aß))<exp{-c \L-U) (6-2)

uniformly in Aa and Aß (see remark following the proof of Proposition 5.1). Thus,
if one can prove the estimate

(x„,iA)r>>K, (6.3)

for K"1 a constant uniformly bounded as adJ,0 when the interaction parameters
{aj}?=3 are restrained in some region of parameter space, then by choosing
appropriate sequences in parameter space (chosen such that the vacuum energy
density is differentiable in the external field at every point in the sequence) one
can show, using (6.2),

0_*(A)r K-1 exp {-c |4, - êj}, (6.4)

with parameters restrained in the (closure of the) aforesaid region of parameter
space (of course, at the boundary of this region the cr1 state is understood to be
the suitable limit state). With (6.1) and (6.4) the argument of Chapter III can be
set in motion to produce the proof of the 'asymptocity' of perturbation theory
about the a1 th minimum. (Strict asymptoticity in the coupling constant aa
requires that the subdominant couplings {af1}?^1 are suitable functions of ad.)

The strongly model-dependent bound (6.3) must be verified in individual
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models. The argument presented in Chapter V can be immediately applied to
models such as

:P(4,): A:R(ta£):-i:4>2:,

where Rid.) is an even polynomial, or

:PO): A :.RO): + Ae ^(^):-^2:,'
where e is a sufficiently small parameter and Qi<b) is an odd polynomial (see
[Fr 2]). The analog to Proposition 3.2 for a model with a more complicated phase
diagram (with phase transition lines for h j= 0 and a triple point) has been proven
in [Su 1,2], and the proof of the asymptotic nature of perturbation theory has
been carried out in detail there.

To conclude the discussion, we wish to remark that although the icf>4)3 model
is much more singular than Pi<b)2 models, one should be able, using arguments of
[FR] and estimates in [FO, MS 1], to verify the validity of Theorems 2.1 and 2.2
without the use of a cluster expansion (a phase-space cell expansion will be
necessary, nevertheless). Then, with arguments of [SS], chessboard estimates can
be proven, and the proof of the asymptotic nature of perturbation theory
presented above could be used.
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Appendix

In this appendix we shall outline the proof of the existence and properties,
which were claimed at the end of Chapter V, of the limit states at h 0. Theorem
2.1 entails that

zih)- g<+-«+w.> d(b+

is bounded and analytic in f1eL1A/3. In particular, this is true at each point hn of
the sequence {h„}|0 chosen to define the + state at h 0. It is easy to see that the
FKG inequalities entail that Zif1)ifi>0) is monotone increasing in h. Therefore,
{Z(/1)hJ is a uniformly bounded family of analytic functions, which, by Vitali's
theorem, converges uniformly on L1A/3 (possibly through a subsequence of {hn})
to an analytic limit Z+if1). And, due to the monotonicity in h, Z+(/i) is

independent of the choice of sequence {hn} that satisfies

(i) RHo
(ii) da„iK h)/dh\h K exists, V„.

Moreover, one sees that the limit determines a unique measure on S'iR2),
which is independent of the choice of sequence {h-JiO and the classical boundary
conditions, and whose Schwinger functions satisfy all of the Osterwalder-Schrader
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axioms, including clustering. The measure is obtained from Minlos' theorem [Mi],
once it is remarked that the uniform convergence Z(/j)h —» Z+(Ji) entails that
J+(/1) Z(i/1) satisfies

(i) J+(0) 1,

(ii) J+ is continuous on L14/3=>S(R2),
(iii) J+ is of positive type.

(i)-(iii) follow from the corresponding properties of the Z(i/i)hn. The measure dd>+

then generated is the unique measure for which

r(/l) e-«tata.f.> e*tf'> dd>+.

The remaining properties are immediate consequences of the following slight
generalization of Theorem 5.2.

Corollary A.l. If the Schwinger functions of a state are continuous from the
right ior the left) in the external field, then the state satisfies the Osterwalder-
Schrader axioms, including clustering, and is independent of the classical boundary
conditions.

Proof. Implicit in the proof of Theorems 4.1, 4.2 and 4.4 of [FS]. See also
[Su 1].

Remark. Again, the proof of the independence of boundary conditions
depends on the convergence of a cluster expansion, but the remainder of the
theorem does not. We further comment that only the one-sided continuity of
(</>(x)) is required.

Since the Schwinger functions of the + state (the functional derivatives of
Z+if1)) at h 0 are, by definition, continuous from the right in h, the desired
result follows at once.

To establish the existence of the generalized Schwinger functions of the limit
state, we note that since Propositions 3.1 and 3.2 have been shown to be valid for
/t>0, the appropriately simplified argument of Chapter III (no integration by
parts is necessary) yields the following bound, for fixed l=j=A and NeZ+, the
positive integers:

\^?%)\= f fi :i<b-U:(k)dcb+

MjN)l KN \fi\», (A.l)
where K is a constant uniform in {hn} and | • |p is given by

I/,Ip= I II/.xaIIp, p>i.
A=R2

Denoting the Banach space defined with this norm by i?p2, one remarks that
i-i,4/4-j3 "S?,,s3S(R2). (A.l) entails that the family {S^N)(/i)hX=i is uniformly
bounded and equicontinuous on ZBjX. Thus, it converges (possibly through a
subsequence) to a limit 5^N)(/;)+ continuous on -5£u%. As there are only countably
many &)N), l</<4, NeZ+, one can find a subsequence so that all 5^N)(/j)+ exist.
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We comment further that, once the existence of the generalized Schwinger
functions has been established, as above, one can copy the argument of [GJ 2] to
prove that one can integrate by parts in the limit states, i.e., Theorem 2.2 is valid
for the limit states. Here the argument simply goes through a sequence of states at
{hn}, for which Theorem 2.2 holds, instead of through a sequence of finite volume
states as the volume grows to infinity.

We remark that none of the arguments above have utilized any property
special to cb4.
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