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Decay electron spectra of bound muons

by F. Herzog and K. Alder
Institut für Physik, Universität Basel, CH-4956 Basel, Switzerland

(20. II. 1980)

Abstract. The decay electron spectrum for a bound muon in the ls1/2 state is calculated for
several elements and for the (V-A), S, P and T weak interactions. Dirac wave functions have been
used for the muon and the electron. The finite nuclear size and the nuclear recoil as well as the
vacuum polarization are included in our computations. The influence of the bremsstrahlung emitted by
the final electron on the electron energy spectrum is discussed.

I. Introduction

In the framework of modern gauge models for the electroweak interaction
attempts have been made to estimate the strength of possible muon number
violating processes [1]. In connection with the lepton quark generation problem
the question of lepton number conservation is crucial. Thus, experiments looking
for lepton processes which are strictly forbidden in the widely accepted scheme of
lepton number conservation (additive lepton number conservation) have been
proposed recently again. One possible test, where the additive muon number law
is violated, is the study of the muon electron conversion. Experiments to investigate

this type of process have been performed several times. The best known
upper limit for the branching ratio of the muon number violating process relative
to the ordinary muon capture was measured by the Bern group at SIN and found
to be for sulphur [2]:

o-ili- 32S -± e~ 32S)/o-(^- 32S -* capture) <7x 10-n(90% C.L.)

In order to interpret a possible signal for muon electron conversion correctly one
has to know the backgrounds very accurately. Besides radiative muon capture
followed by internal or external 7-conversion, bound muon decay is the most
important background entering into muon electron conversion experiments.

The decay process of a negative muon bound in the ground state of an atom
is known to be modified relative to the free muon decay. The first difference arises
from the momentum distribution of the bound muon and results in a reduction of
the phase space accessible to the particles in the final state as well as in Doppler
broadening of the bound muon deday electron spectrum (BOMES). This phase
space effect diminishes the decay rate of bound muons relative to that of free
muons. A second reduction takes place because of the time dilatation of the muon
lifetime in the restframe of the muonic atom. The Coulomb force acting on the
outgoing electron is responsible for the third difference; this final state interaction
leads to an increase of the bound muon decay relative to the free decay rate,



54 F. Herzog and K. Alder H. P. A.

because of the greater overlap of the muonic and electronic wave functions in the
case of bound muon decay. For a more qualitative treatment of bound muon
decay physics the reader is referred to Refs. [3], [4], [5] and [6].

From an experimental point of view it is still impossible to exclude satisfac-
torialy few precent admixtures of scalar (S), pseudoscalar (P) and tensor (T)
couplings to the well-known V-A weak interaction [7]. Therefore, we have
calculated the BOMES also with these couplings, in the hope that future experiments

on this subject will give more exact information.
In section II we derive expressions for the BOMES assuming (V-A), SiP)

and T Fermi couplings. Numerical results of the BOMES for several elements
which have been and are in discussion for muon electron conversion experiments
([8], [9], [10]) are listed in Section III. Section IV is devoted to an estimate of the
bremsstrahlung effect of the emitted electron on the shape of BOMES. The
discussion of our results is the content of the last section.

The notation as well as the electron- and muon-wavefunctions used in our
calculations are presented in appendices.

II. Exact expressions for the electron spectrum resulting from muon decay in the
ground state of an atom with charge number Z.

We are looking at the process shown in Fig. 1. The bubble therein means an
effective electromagnetic as well as weak coupling. Since the ratio of the muon to
W-boson mass is thought to be very small, we take as weak effective coupling the
Fermi four fermion interaction. The contributions to the effective electromagnetic
coupling are given graphically in Fig. 2.

In order to derive BOMES expressions for the (V-A), S, P and Tinteraction,

the general starting point is the weak charge retention ordered Lagrangian
Lfr ([7], [11] and appendix A).

Lf -^iptix)y0Oiif/^ix)iljt^x)y0Oidj-eix) + hermitian conjugate (1).

The g; are the coupling constants where the index i refers to the four different

.e"(Pe.§e)
^B1s,,P(Pj.!^)

ve(ke,xe)

ZlpV(r).pi) Z(PfWz)
Figure 1

Diagram of the weak decay of a ls1/2 muon. The muon p. is characterized by its momentum
distribution p(p^), its energy eigenvalue in the ground state -Bum and its polarization s^. The other
leptons are all characterized by their four-momentum (pe for e~, k^ for v^ and fce for ï>e) and their
polarization (se for e~, t^ for v^ and tb for ve). We treat the nucleus with charge number Z as spinless
particle, parametrized by a Fermi charge distribution pp'(r) (c, t Fermi parameters), with initial
four-momentum p'z and final four-momentum pfz.



Vol. 53, 1980 Decay electron spectra of bounds muons 55
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K

Figure 2

Contributions to the effective electro-magnetic coupling, which are incorporated in our calculations.

interaction types (V-A), S, P and T.1) The O, are the corresponding interaction
operators, given as combinations of Dirac matrices. The iba (x) is the field operator
of particle a at the point x of the spacetime continuum.

We are interested in the matrix elements (e~, ve, v^ |Tjep| /x) of the pure
leptonic decay operator T\sp which can be derived from equation (1):

<efr ve, JV \TLP\ß)

-h j d4X(pîipe,se, x)y0Oi<pIÀ,iBUta, p(pj,s„., x)<ptJ(K. V x)yQOicp^ike, t«, x) (2)

Here ^(B,.^, p(Pp.), s^, x) is the wave function of the groundstate muon characterized

by the energy eigenvalue -BUin the momentum distribution p(pM.) and the
polarization s,,. cpe(pe, se, x) is the electron wave function with asymptotic four-
momentum pe and polarization se. According to Fig. 2 the neutrino wave
functions cp^ik^, r^, x) and cp^ike, re, x) are Dirac plane waves. For plane waves
we choose the standard momentum normalization as in Ref. [12]. With the

(Since we are only interested in the electron energy spectra, there are no mixing terms between
parity conserving and parity non-conserving couplings; therefore parity violation is of no
importance in this connection).
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notation x (t, r) equation (2) results in

ir,- - I-ri I \ gi l /__v_b_V/2
{e >V«V»m^}-72W\E^X)

x <(fc„, T(l)70Oiü5.(/ce, t.) S(_v -E,-Ep, -EVJ

x j"d3r<pe+(pe, se, r)7oQçlt(B1.1_, p(P(i), s., r)e-i(k.+k»)r (3)

From equation (3) one deduces the transition probability per unit time d(3) Wfdt
from the initial muon state to final states (the index 3 in d<3) Wfdt indicates, that in
principle all three final state particles are detectable):

cP'Wj g? 1 mpmv 1

d% d3k„ d3pe 8(3, - Ee - Ep. - EVJdt 4 (2tt)8 EçmE^ E,

X "Ä, TIi)7oO''uP.(fce, Te)

d3np+ipe, se, r)YoOj<pp.(B1Sl/2, p(pj, s„, r)e -i(k +k )r (4)

where E„, a e i^, i>e is the total energy of particle a and E^ the total energy
of the bound muon, E^ m„-B,^ (m„ reduced muon mass«m,,. We use the
fact that the nucleus has a nearly nonrelativistic motion).

Since no neutrinos are dedected in nowadays muon decay experiments, we
sum over t^, t€ and integrate over the two momenta k^, ke (thereby we take both
neutrinos as massless particles):

dmWt
dt

Te,T„ •*

d3K 3. d(3)Wf_ g? d3pe
d3fc,* dt 24(2tt)8 Ee

d3/c„ d3k
- tr {(Oi)X|l..*«(Oi)OT...*(.} Ô(E(1 - E, -E,,. -.BO

x Jo1:-(P., «e, BUii2, p(p„ S|l, P)J5*(p„ se, Bllia, p(pj, s^, P) (5)

We have used the following notation

P ke+k„~e ' ""u.

/c,f-(Pe, se, Blsi;2, p(P(i), S„, P) d3rcpe+(Pe, Se, t)y0O^~^(B_^_, p(Ptata), s,., r)e iPr
Jo

1 S interaction operator
75 P interaction operator

(Q)xm.... iTx(l~75) V-A interaction operator with 75='7o7i7273

crKlx T interaction operator

To proceed in the evaluation of dmW/dt given by equation (5) we have to treat
the calculation for the different coupling types separately.
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ILI. Bound nuon electron spectrum assuming (V — A) — interaction

In this physically most important case the trace in equation (5) is simple. We
evaluate the integrations over ke and k^ and find

dt
dft(P) d\P\\P\2{PKPp-g,pP2}d(1)Wv_A= g2VA d3pe

6(2tt)7 Ee

X /va(P« Se, BlSl/2, p(P,J, 8».. P)ta/VA(Pe, Se, B.s,,,, p(pj, *„ P) (6)

where P |P| P.
The upper limit of the |P|-integration is given by Pmax E^-Ee= P0. We

insert now the exact muon - and electron wave functions (appendix B) and choose
a coordinate system with P in z-direction, so that the integration over _t(P) can be
done. Since we are not interested in the direction of pc we also perform the fl(pe)
integration. Both integrations can be done analytically. We average over the
initial polarization s^ and sum over the electron polarization states; we get for the
BOMES:

drv H/X- + Z -» e' + Z + v. + vJ
dEe

.gvA"V I (-I)2--"1 dPP2
3(2tt) Ke>(J,e,v

x {(P2 - P2) |J|2 + P21J0\2 + |PJ|2 - P0P Re (J0J*)} (7)

where P |P| and

/0 74^ X H)V2A + 1 drr\iPr)

x{(g^g1 + /,J1)<fce|_JyXo|-l^>-i(gk./i-/K.gi)<KeM- l^xo I K»
J v/4ÏrT{J_1 + J0 + J+1}

/ta-tX^Î a -1 1 a

0 fi. — p
I-i - I or1

X l,...
M.=0,±1

drfj^iPr)^
A v U p

X {[(Ke + 1)(/K,g! + gjl) - A (R..A - /Kegl)](KePe I Vx_J ~1sj
-Ì[(Ke-l)(/K/1-gKeg1)+A(gKeg1+/J1)]<KePe |Vx-J lV»

'0-1 (o-^^e ; _Ajj>^.X l,...
|i.=0,±l

Va(a + i) Vo

fr(«e - l)(X.gl+ gJlX-KeP- |Vx-ftl "1SJ
- «(«. + W-Jl - gK.gt)<-KePe I Vx-^l "IS».»

J+l: (0X
X=0,m.=0

X l,...,(i=0±l

2A + 3/A + 1 1

A + l
A

"P
drr2]k+1iPr)^

0 p

X {[(Ke + 1)(/K.gl + gjl) + (A + l)(gKJ1 - /K,gl)]<KePe I Yk.„ | -1^>
- »[(»_ - WJl - gK.gx) - (A + D(gKegl + /JOlOePe I Yx-J 1V»

with r Irl and Pr |P| Irl.
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The result of the angular matrix element <Kfpf | YXJ KjPj) is given in appendix
C. The formula (7) was already given by Hänggi et al. [13], but it can be
remarkably simplified: Using the triangle relation of the 3/ symbols in the angular
matrix elements, the summations over pe and s^ can be performed:

drv-A(p- + Z^e"-rZ + ye + v>,)

dEe

êrfkl f dPP2{iP20-P2)XKtiP,Ee) + P2YK,iP,Ee) + 2P0PZKSP,Ee)} (8)
3(217) Ke J0

with

X.(P,E.) ^{(f^l(A_,)..P + fl-J£|,A0)..P

+ ^~fr(A.,)J2)(l-S1.,,)+KA.,)J2)

^{^^''--^itrS^^taTï^'»--'2!
1

"(2/c-l)2

2k

(2k

YKe(P,Ee) 2/c[|(a0)KJ2 + |(ß0)KJ2 + (2fc1_i)2|(A+1)Ke-(l-81,fc)(A^1)KJ2

+ (2^l(ß-^-(ß-^l2}

ZK.(P,Ee) 2/c/m{,|^{(B:^^

where k \ne\. The functions (A0±1)K (B0±1)K, (a0)K and (ß0)K are defined in
Table 1.

The expression (8) does not include the recoil 4-momentum of the nucleus.
Hänggi et al. [13] have proposed to include this quite complicated effect in the
following manner: calculate in a first step the BOMES in Born approximation,
once without inclusion of the nuclear recoil and once with inclusion. In a next
state form the ratio of Bornes including to BOMES excluding the nuclear recoil.
With this ratio, called recoil factor, the expression (8) has to be multiplied in
order to get an energy spectrum including the nuclear recoil. Next we calculate
the BOMES in Born approximation excluding the nuclear recoil effect.

BOMES in Born approximation excluding nuclear recoil

We assume that the initial muon is described by a nonrelativistic Is wave
function and that there is no final state interaction between the nucleus and the
outgoing electron, i.e. the electron wave function is a Dirac plane wave. Because
of misprints in formula (13) of Ref. [13] we give the result of this calculation once
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Table 1

Functions (A0 ±1)Ki, (B0.±i)k.> (ao)K, anc* (ßoV, use("l in equation (8).

k \ne\ Ke>0 K„<0

(A_!)K,

(A„)K,

(A+1)K,

(«o)k,

(B-ifr

(Bo)k,

(B+1)k,

(Po)k.

|talrr2/k_2(Pr){2(l-fe)/k/1}

Jd/Tfr^'PrHü-fcXU. + g,/,)}

Jdrr2Jk(Pr){(l-2.c)gkgl-/,/,}

-ijdrr2/k_1(Pr){gk/,-/kg1}

Jta.rr2Jk„1(Pr){(2fc + l)fkgt + gk/1}

|drr2/k(Pr){(l + k)(gkg1-/k/1)}

-Jta.rr2jk + 1(Pr){2(k + l)gk/1}

-i|drr2yk(Pr){gkgl + /kf1}

-i|drr2)k_2(Pr){2(l-k)gk/1}

ijdrr2jk_1(Pr){(l-k)(/k/1-gkg1)}

-Ijta.rr27k(Pr){(2k-l)/kg1-g(c/1}

Jdrr2ik_1(Pr){gkg1+/k/1}

->jdrr2;k_1(Pr){(2k + l)gkg, -fJJ

ijdrr2/k(Pr)«l + fc)(/lcg1 + gJ1)}

-i[c.rr2/k+1(Pr){2(k + l)/l/1}

^drrXiPrW^-gJJ

again:

dTv-Ajix- + Z-* e- + Z+ve + vJ
dE.

2\ZamJg2VA
Born without 327t(27t)3
nuclear recoil

:{3P2{/-;(x)-/-r(x)}+/t(x)-lrW+^U;(x) + /J(x)}

-^{i4(x)-n(x)}[
Zta_e Jx=0

where

Itix) -{ ab*x 2a2\ 1 3ab± /b± + 2x 4 b± + 2x
:— + ——rr^ + —+ —GGrarct

It(x) {

A J2iR±)2 2A V AR* A3/2

}

,1/2

[2a + b±x 3b±(b± + 2x) 6b*
+

b* + 2x
¦2 + '

2A2R
+ "'"*"\?E>± "rA5/2arCtI ^1/2

(9)

ata.±-r(b±2-2a)x (2a + b±2)(-b± + 2x) 4a + 2b±2 b± + 2x

It(x)

2A(R±)2

2a + bfrc 2bd

2A2(R±)

b± + 2xi

- + - arctg 11/2

I AR=
- + ^2 "ctg' Ai/2

with

a (ZamJ2 + p2, b±=±2pe, A (2Zamti.)2,
R± a + b^x + x2 and pe |pe
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In order to calculate the recoil factor R(V_A)(Ee) we have to evaluate the BOMES
in Born approximation including nuclear recoil.

BOMES in Bom approximation including nuclear recoil

Treating the motion of the recoiling nucleus nonrelativistically our starting
equation is

dwWv-
dt

gvA
(2tt);

d3Pe d3pfz
d3K d3k„

X {JvAPe, Se, Blsin, P(JV), S„, P)/^A(Pe, Se, B Ul/2, p(pj, S„, P)}

X{(ke)x(^)lp + (^)x(fee)<p-gx<P(feltafce)

+ UKriKYe^j 8miPtL+Pz- pe - fce - K - pfz)

where p^ is the four-momentum of the nucleus in the intital (j) and final (/) state,
respectively. Evaluating the two neutrino three-momentum integrations one gets

drv-A(jLt- + Z-^e- + Z+i>e + ^) I

(10)

dEe

— \7 IPe

Born with
nuclear recoil

3(2.t)7
dil(Pe)|dVz||d3re-i(p^

X {PÌX+ PtPÌ- PeP^YfJ« - P2gxJ (ID
with Q (Zam.J3/2/tt1/2 and P pz-ipfz + pe).

If we put Pz + Pii =0 and ip^o + ip'zio^ E^+Mz, we arrive after performing
the two solid angle integrations at the final result:

drv~A(|it" +Z^ e~ + Z+i>e + y,J
dE, Born with

nuclear recoil

37t(2tt)
with Pe |Pel, PzHPzl and

2a(Pz)2dpz

25(Zam,.)VVA \hiEJ
~pAmAf2iEe) for E*

A(E)

/2(Ee)

ipfz)2dpfz

o [iZamJ2 + ip'z)2T' J_, [(Zam,J2 + (Pz)2]4

(pf2)2dPz f b
2

b^2(|-l)pePL

1 + E2
_£* (12)

b
a(* + l) + z(cp2-D

?P
a 3P0-(pi)2-P2 + ^p2,

Ee

1+^^. ß 2pe,

Po — E^ Ee
t.2(p_>

2M7

M7 7 pe2-(E.-Ee)2, <p --|(apz+-f)

Xj
2
3

:ß:Vß2-4a7

Mz is the mass of the nucleus with charge number Z.
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We define the (V-A) recoil factor R(v-a>(E) as the ratio of equation (12)
and equation (9). In order to eliminate the coupling constant gVA we normalize
equation (8) by the free decay rate

rv-A(|Lt-^e- + ve + v.)
3 • 23(2-n-)3

(13)

The final result for the BOMES, resulting from bound muon decay via (V-A)
interaction including the nuclear recoil is

drv~A(p~ + Z^e- + Z+ve + ^)
dE,

R(v_A)(Ee)rv-A(p-^e- + ve + vj m„

I dPP2{iP2-P2)XK(P,Ee) + P2YAP,Ee) + 2P0PZKtiP,Ee)} (14)

where the functions XK(P, Ee), YKt(P, Ee) and ZK(P, Ee) are given in equation (8).

II.2 Bound muon electron spectra assuming S- and P-interaction

All the arguments used for the calculation of the (V-A) BOMES are also
applicable in this case. Therefore, we do not repeat all steps done earlier, but give
directly the results:

drs(;x~ + Z -> e~ + Z+ve + vIÀ,)_

dE,
Rs(Ee)P(p-^c- + i>e + v(.)

3-26
m3l(mM,+4)

lK„G»0 J0
dPP2iPl-P2) drr%iPr){gK.gi-fJi}

+ I kl
where

P(fi--^e- + i>e + vJ

dPP2iPl-P2)

g2mlJmIL+4)
3 • 27(2i7)3

^27|K«hl(^KgK.gl - /k«/i} (15)

and RsiEe) is the S recoil factor defined by analogy with R(V_A)(E£).
For completeness we give here the formulae relèvent for the determination of

Rs(Ee), using the same arguments as in the (V—A) interaction case:

dTsivL+Z-^ e- + Z+ve + VtL)

dE, Born without
nuclear recoil

2(f*,yy (Ee + IK {PotfiOt) - IJ(x)}+nix) - lTix)}pxZZ (16)
3ir(2.r)



62 F. Herzog and K. Alder H. P. A.

The functions Ifix) and I2ix) are defined in equation (9). For the Born BOMES
including the nuclear recoil we get:

dTsin- + Z^e~ + Z+ve + vlx)

dE, Born with
nuclear recoil

22(ZamJ5g2
17(2tt)3 P.(E,+i)m.{^:; for e.';}1^ (17)

where the functions /i(Ee) and f2(Ee) are the same as in equation (12), but the
expressions for a and b must be changed as follows

a ^o-Pe-(p/z)2, b -2pepz.

The recoil factor RsiEe) is now given as the ratio of the result of equation (17)
and equation (16).
The P interaction leads to the following expression for the BOMES:

drp(p- + Z^e- + Z+ve + iv)
dEe

XJ I «e
^Ke>0

+ I kl

Rs(Ee)rp(p-^e- + i>e + v(1)
3-26

mlim^-4)

dPP2iP20-P2)

dPP2iP20-P2)

drr2^_1(Pr){gK/1 + /Ktg1}

drr2/kJ(Pr){gK/1 + /K.g1} (18)

The free decay rate Tp(p -> e +ve + vIL) is given by

rPGtai--*e--ri.e + v.J
g2,m2(m„-4)

3-27(2tt)3

In formula (18) we have used the fact that RpiEe) and RsiEe) are equal up to the
order of 10~8 in the entire energy range.

II.3. Bound muon electron spectrum assuming T-interaction

In this case equation (5) results in

dmWT g| d3pe fd3ke fd3k.
dt 22(2tt)8 Ee J E^ J

EVr

X Jfipe, Se, B1Sl;2, P(PJ, 8,., P)tal^S*(Pe, Se, BUla, P(PJ, S(i, P)

X {(fc^)a{(ke)xgßs - (/Ce)sg0X}-(fe^)0{(/cjxg„s - (fee)8g„x}+(fcefc,,)

X {g«sgßx - gcxgßsi- ikJAi^ßgcB - (K)agßöi

+ (kJ6{(ke)ßg«X - (keLgßx}}o(E. -Ee -E^ -EVJ (19)



Oo

o

Table 2

Expressions AKi, B^, CK<, DK< and EK< used in equation (19).

fe |k,| k>0 k„<0
1 f(G-y (OTl.d-iJ ffrnta,l ,J 1 /(G"1)2.. s i|((l-81,k)(k-l) + )c)(G+')2 (G0)2 ] »

^Tin^+Tfrrj+M)^ïï(G)| 2fcfek^ïb^r(1^)+—â^i —+.^n.) *
b 2J 1 ,(F~,)2n « ì+_l__ì______2±_l_!_!fH <F°>2 ] ,j i f(F-y (F+yi g-6^) i |

(g-'+g*1)2 r i
3

c- 2fc
(2k+ i)2 2k{(^T?{(1-8^)G"1+G+1}:

D- 2k{(2T^{(1-s-)F_1+F+1}2) (F-' + F+1)2

(2k+ 1)2

f 1 JG"1 G+1] q-S.frf^1 ^Mpol ,J i fp+1 F" Vo, (i-gi.fc) [G-1 g+1i i
21^n|frr-^TTr + 2k-i ix-k3TjG 2kteTìfc—r +^ta^i.ta^-frrrl
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Doing analogue steps as in the former cases we find:

drT(p~ + Z^ e~ + Z + ve + vj

xi
dEe

.p"_

U

RT(Ee)rT(p--^c- + vc + ^) 3-m"

dPP2{(P2 + P2){AK. +BKJ-2P2{CKt +DKJ + 4P0PEKJ (20)

where the functions AKe, BK, CK>, DK< and EKe are given in Table 2. The functions
G and F are defined in Table 3.

In formula (20) rT(fx~ —» e~ + ve + i>.J is given by

rT(^ _? e'+i-,+ v„)
24(2tt)3

The recoil factor RT(EC) can be calculated with the help of the two following
expressions:

drT(|_- + Z -> e~ + Z+ve + vJ
dE,

24jZamJ5g2T.
Born without 327t(27t)3
nuclear recoil ^ ^

Eemj3P20{I2ix)

(21)

IJ(x)}+IT(x)-/t(x)
4P n P ->x=P""

-—^{/J(x) + J+(x)} --r{IJ(x)-i:(x)}

The functions If(x), i 1,.... 4 are the same as in equation (9).

drT(|it~ + Z -* e' + Z + i>e + yj
dE, Born with

nuclear recoil

25(Zam,J5g2
3t7(27t)

f/l(Ee)
I/2CE)

^11 + E2
3 PeE.m^pr:: tor Ee\:\^± m)2E„

Table 3
Functions G0±1 and F0-*1 used in the expressions of Table 2.

k |KJ Ke>0 K„<0

G -1

G°

G + 1

F-1

F°

F+1

fdrr2/t_1(Pr){(2fc + l)/lcg1-k/1}

|drr2/k_1(Pr){(k-l)(gk/1-/kg1)}

-2(k + l)jdrr2jk + ,(Pr){gk/1}

-2(k-l)Jdrr2jk_2(Pr){/k/,}

jta.rr2jk(Pr){(fc + l)(gkg1+/k/,)}

-Jdrr2Jk(Pr){(2k-l)gkg,-/k/,}

2(k-l)|drr2/k_2(Pr){gk/,}

jtalrr2,k(Pr){(k +lK/.g^gJ,)}

-^drr\(Pr){(2k-l)fkg, + gkf,}

jdrr2/k_1(Pr){(2fc + l)gkg1 + Jk/1}

-Jdrr2/k_1(Pr){(fc-lKgkg1 + /k/1)}

2(k + l)|ta.rr2/k+1(P>-){/k/1}
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The functions /i(Ee) and /2(Ee) are still the same as in equation (12), but the
expressions for a and b are given now by

a 3P2 + ipz)2-p2 + fp2, b 2J^p+l)p.p_

III. Numerical results

For the numerical evaluation of the BOMES (equations (14), (15), (18) and
(20)) we have chosen the following procedure:

-Calculation of the electron- and muon-wave functions (appendix B).
-Calculation of the spherical bessel functions hiPr) by means of well-known

recursion relations [14].
- Evaluation of the radial integrals.
- Integration over momentum transfer P.

- Summation over Ke : The summation procedure has been finished at the point,
where the amount of relative increase was smaller than 10~5.

-Determination of the recoil factors R;(Ee), where i is the coupling type
index.

In Table 4-Table 9 we present decay electron spectra of various muonic
atoms which are of some importance for present or future muon electron

Table 4
Decay electron energy spectra of natMg (c 3.045 fm, t 2, 3 fm).

Ee°,a) V-Ab) Sc) Pd) Te)

10 1.249-01 2.575-01 2.213-01 8.659-02
20 4.382-01 8.277-01 7.824-01 3.158-01
30 8.814-01 1.555 1.517 6.631-01
40 1.410 2.311 2.289 1.113
50 1.981 2.967 2.967 1.652
60 2.549 3.395 3.415 2.264
70 3.068 3.463 3.500 2.931
80 3.487 3.047 3.090 3.627
90 3.706 2.040 2.074 4.256

100 2.683 5.859-01 5.966-01 3.380
110 1.751-01 2.244-02 2.286-02 2.259-01
120 6.056-03 8.555-04 8.715-04 7.787-03
130 4.440-04 6.389-05 6.512-05 5.705-04
140 5.008-05 6.580-06 6.711-06 6.457-05
150 6.846-06 7.476-07 7.631-07 8.878-06
160 9.704-07 8.012-08 8.185-08 1.267-06
170 1.237-07 6.882-09 7.037-09 1.626-07
180 1.158-08 3.683-10 3.769-10 1.532-08
190 5.112-10 6.935-12 7.097-12 6.794-10
200 1.632-12 4.412-15 4.505-15 2.169-12

E1"1: Total energy of the electron in units of [mj.
V-A: BOMES according to equation (14).
S: BOMES according to equation (15).
P: BOMES according to equation (18).
T: BOMES according to equation (20).



a.ti2ti

x
Ä

cd

tu

OOO

OOOOOOOOOt-h

OO

OOOOOOOOO'-''-*

OONrncn^aNOûOONr^^r^r^^-^-^tl>»r.^«OrnOHxinoHinhH^ovoorJocnto^H\ûNCOH'fNnrnr^r^'rHVìTtrÌH(NNri(NHH00o
o

Tfi-H^H<^ix)^ro^ûoot^r^^-^^-^rôfNiAiySfôOOO^r^uorrj^o^^^^r^r^rHCAiri^ocfNin^i/.cc^^m\ooOTHrioc3MJOHOi,ts-o|/.oooooooooooooooooooooo

1*1

._-

Ä

fNrHi—t

THMrTi^i^vor-OOi^M

OOO

OOOOOOOOO^h

OrN(N0N,rtr^0(^.OO0NOI>t^-00OOasl>r-~^0ov^(NrHt^rnot^H\ûta^^rnooq^pooqrniinONrr.-^!^i^.N(r.rn^rNC^rNrNrNÌT^rH

rH

HCNfN^'WT'ûr-OOaMHtaf.

OO

OOOOOOOOO^ht-h

H\ÛOMHhlT\OHOÛH^HHmmOOhHOXMQOmHHOrnc*.ff.M\Ot~-\OOhm^i,t^w^sOroo^^ONCO^t^^r^o^roinoo^fOfN(Noôi^rJr^rr.(^rJi-H^^f^(Nr-ir^(^r-i^r^HH

Htsm^iri^hMONHin

OO

OOOOOOOOO^h^h

^M^r^oof^xita^rHNincac^rniri^r^h-^oOMninODOM'-'OO't^'^OHOMNO^Hvßooq^^ofnnoooornqq^o^iN^oor^rfiqr^c>Hfvit^rn^NH^^(^r^H(^rn(NHr,ONOOOcxj^ou^c<ì^^-^i^^a\<Noòr^cóoòcp\^r^^óoH^HO\\Or.NO(/iii.ooi/.nooco^C'00(0l-oo^^o^Hin^HCoqooNqcStNinhl;ooooooooooooooooooooHfNd't^vûhoo^OHtaNfn'tin^hcoc^o

XiH-GH



COu

«!

D.>.

>

muc<uc
t-

fc.

„

.0

(U

0«

i-Hi-Hr-l

t-t(NfO-^-iri\DI>00a\fN

OOO

OOOOOOOOO-H

III

I

I

I

I

I

I

I

I

I

I

(^^irjfNcoor^^oo^^o^^^ooNO^t-^-r--q^-toihtohoirìO\ri(Nq^oovoo)qn^Hr*ìl^rHH^j^OfnTf(Nf^(^^OT^^t^o^o6rO,*OO

OOOOOOOOOr-trH

^^oo^c^ir-)wnr--oocS'H:^tisOO'HrTrooooTi-O^u^rsjiiOi^^r^^fNiTj^OONV-irH^i-ioOt-iCN^oq^o^o^fnoor^r-ir^p-^rHt^oqoNOOONrNoicdi^r-icnrOfOr^i^^^^c^^^'^r^^fNoöO
o

OOOOOOOOOi-irH

^C^TttaN0000t~-rs-H>iriO\Csl^tHr'H00^rN1OHrfia't'tafOOnoOHMinoON^H^oli-in^)friC^i^r4<r.fy.rr.fNi^unwSrGnr^^^^'fr^rHi-Hi-H

HtNCO^IO^t^XafN

OOO

OOOOOOOOOrH

HHCriLnO-t^Oin^OOOrHi-OOn^HOMr,00C-ÏW.Na\U0^0N(r.O0N»n<^-^\0'^0N.^00C01;qh^q^H^TtoqiriifìHcnqfi(SN(NOOOOOOOOOOOOOOOOOOOOHfNimi-invûr-ooooHtNrOTi-in^t^ooONO

r«"mes

Xi

Ä
c.

(U

tu

»nr-iooinr-i^uiuoi^^vO'-4t>»r)Cor---i--icoi-HONr-ih

(S

co

o\
i*n

T-H

i>
^o

o
es

o
o#

o
rH

wî
oo

^t
cn

i>

H^oÔHH^rnfOr^cs^'^'OûOHHHHH-Ho
o

nf.fO'tin'Ohoo^Hinooooooooo-

j

ï_,

^_,

,_,

^_^

^_^

i_^

^_,

s^

.^,

-,

Il

I

I

I

I

I

I

I

I

I

I

I

ffl^,00^-OO'Ol>OC0C0û00sN,!tC7\'n0NO.OioiOt>-cf.Hoor.^Ot^ffitfiffi'Hinot^(Soo^t'OvC^ONrHr^f^rn(^(^rHTt^^r^CC(^a\^fNf^CNO

OOOOOOOOO-H

I

I

I

I

I

I

I

I

I

I

I

I

^(S-H'H-oinûOfO^'oN'^ooovHoor-r,^^^HH^(^wmrÌH^vo^dvdt^aixvd(stn(si-Hi-H

THtNPì-'tiriin^r-ON

OO

OOOOOOOOOrH

Il

I

1

I

I

I

I

I

I

I

I

HTf^iJ1f'.Om,0

0\00^'M(np.i/lMinOOO

0N^^r^O^00rH00(T.rHf0OI>r00Nr^l><^rn^^o^fNr^i-H^o^^O\r-(Nooi-;roOi--;roHlfìHHCÌN^^nH'^t*.^^OCÌHHrl(nHooooooooooooooo<rHfNro^-io^ot^-coaNOTHrJm^-m4

'ooi

(N



68 F. Herzog and K. Alder H. P. A.

Table 9
Decay electron energy spectra of ^Zn (c 4, 440 fm, 2, 3 fm).

E,o«a) V-Ah) Sc) Pd T')

10 1.850-01 3.677-01 3.213-01 1.317-01
20 6.014-01 1.090 1.040 4.467-01
30 1.129 1.894 1.860 8.795-01
40 1.702 2.617 2.605 1.400
50 2.274 3.130 3.140 1.987
60 2.794 3.315 3.344 2.616
70 3.196 3.072 3.110 3.231
80 3.336 2.353 2.388 3.658
90 2.849 1.296 1.317 3.363

100 1.441 4.017-01 4.088-01 1.786
110 3.236-01 6.473-02 6.592-02 4.097-01
120 4.500-02 7.621-03 7.765-03 5.743-02
130 5.888-03 8.735-04 8.905-04 7.557-03
140 8.128-04 1.018-04 1.038-04 1.050-03
150 1.145-04 1.135-05 1.159-05 1.489-04
160 1.518-05 1.095-06 1.118-06 1.987-05
170 1.666-06 7.801-08 7.977-08 2.195-06
180 1.195-07 3.062-09 3.132-09 1.583-07
190 2.952-09 3.041-11 3.109-11 3.927-09
200 2.690-13 4.944-16 5.022-16 3.570-13

The meaning of the columns a),. ..,e) is the same as in Table 4.

conversion experiments (Refs [2], [9] and [10]). The decay electron energy spectra
for the four different interaction types (according to equations (14), (15), (18) and
(20)) are listed at twenty points in the energy range 10[me]=£Ee ^200[me], where
Ee is the total energy of the outgoing electron.

The two Fermi parameters, c and t, used for the description of the nucleus
with charge distribution pcp(r) are taken from Ref. [15]. There pp'ir) is defined as
follows:

c,tr \ Po Po (11\^ 1+exp [(r-c)4 In 3/.]~l +exp [(r-c)/a]
where a is given by a t/4 In 3.

The normalization

Ait drr2pcp'ir) Z

determines p0:

3Z
Po-

4 tre' Htìo'ì^v
IV. Estimate of the electron bremsstrahlung effect on the BOMES shape

We are looking at the bremsstrahlung graphs drawn in Fig. 3. Since the
emitted electron is influenced by the nuclear Coulomb field, one may ask for the
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Figure 3

Bremsstrahlung graphs, which give rise to a change of the shape of the bound muon decay electron
spectrum according to equation (24).

effect of the electron bremsstrahlung on the BOMES shape. We assume that the
energy of an electron lies at the energy point E^ within an interval AEe, given by
the experimental resolution. We determine the probability, that this electron
radiates off a photon of energy a.>AEe, so that the electron leaves the initial
energy interval at Eex) and populates an interval at a lower energy Ee2)«
Ee»-AEe/2.

Taking this electron bremsstrahlung effect into account we have found for the
bremsstrahlung corrected rate FCE™) at point E^ the following estimate (the
index i refers to the four different interaction types, i (V-A), S, P, T):

IfrE™) with bremsstrahlung
correction

fri(Ee1)) +
Je<»+ak

dEifcT"(E(fc))
1 dcr(Eek), E<»)

'E«ll>+AEe/2 dE(e(i)

"I
E <»-AE /2

dEf>P(Ee")
IdaiE^E™)

dE'(2) (24)

The expression dcriE?, E?)/dE? is the differential cross section for emission of
a bremsstrahlung quantum with energy a. E? — E? from an electron of energy
E?. In the high energy limit E? » 1 and E? » 1 this differential cross section is
given by Ref. [16] as

dcrjE?, E%>)

dE?
4Z2a3

(Ee')-Eeft)(Ee°)2

x {(Ee°)2 - iE?)2 - |Ee°Eef)} In (183Z"1/3) +
iE?)2
<0\2_iE?) fiZa)

E?E?

(25)

where

/(Za) (Za)2 I 1

in(n2 + (Za)2)

and a is the fine structure constant. The area F, originating from the incoming
particle flux, is not uniquely defined here, but the simplest area one can imagine
in this context is given by the surface area of the sphere with radius (r), defined as
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the mean value of the ls1/2 shell radius, the possiblest origin of the electron:

(r) d3r |r| (ftiBlHn, pdvW, _)<?„. (Blsi;2, p(p^),S(i,r)4>F 4TT<r)2

With the choice of F, formula (24) gives not a precise correction procedure for the
various BOMES, but an upper limit for the change of the shape of the spectra. In
Fig. 4 we have drawn this maximum correction for sulphur 32S assuming (V—A)
interaction. Formula (24) in context with the expression (25) should not be taken
too seriously in the low energy region Ee s 30[me], because equation (25) is not
valid in this form: the effect of screening cannot be incorporated in a simple way
in this energy region. For further reading on this subject the reader is referred to
Ref. [16].

V. Discussion

Our calculations of the BOMES neglecting electron bremsstrahlung are in
agreement with similar calculations performed earlier by several authors ([6],
[13]). In addition we have calculated the BOMES in various coupling schemes for
several elements, which will probably be chosen for further muon electron
conversion experiments ([9], [10]) and also for experiments on bound muon decay
([8]). In an estimate we have shown that the electron bremsstrahlung effect on the
BOMES shape may play an important role.

Our calculations are compared with three experimental results: In the first
experiment (Ref. [17]) the ratio

AFe r(p- + 56Fe^e- + 56Fe+Ve + Jv)/T(p~^» e'+^ + vJ
has been determined; one has found the value A^p= 0.972±0.042 in agreement
with our theoretical value AtFe 0.984. In the second experiment ratios of the
form

AZ'Z'^r(lLt--rZ-^C--rZ+i.e + VM.)/r(p--rZ'^e--rZ'-rVe + ^)
have been measured. The only ratio we can compare is AFeZn where one has
found experimentally AF^Zn 0.94±.05 [18]. Our calculations predict a ratio
A^2" 0.990.

The only experiment on the BOMES was made by the Bern group at SIN in
connection with their muon electron conversion experiment [2]. The measured
high energy tail of the BOMES for sulphur 32S agrees with the two theoretical
bremsstrahlung non-corrected curves of BOMESv A and BOMEST. The
bremsstrahlung correction leads to a slightly better agreement. In this experiment it was
not possible to resolve the tensorial spectrum and the usual V-A spectrum,
because the experimental uncertainty was 35% [19], but the pure scalar and
pseudo scalar spectra are, as was to be expected, clearly excluded.
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Appendix A: Notation

As units we have the system of natural units, i.e. h= c me 1, where me is the
electron mass.

If not otherwise stated, four-vectors are written as normal letters, whereas
three-vectors are written bold face. The metric tensor g^,, (Greek indices range
between 0 and 3) and the Dirac matrices y^, ys are exactly the same as of
Bjórken-Drell [12]. The normalization of the Dirac spinors corresponds also to
that of Ref. [12]. The interaction operators and the corresponding coupling
constants are defined in the following table:

Interaction S P V-A T

Interaction
operator 1 75 7.(1-75) <Vv "[Y.. 7J/2

Coupling
constant of this

paper Ss gp 8VA gr

Connections of
our coupling
constants to g|= g|= g%A= g\
that of Ref. [11] 2{|CS|2 + |CJ|2} 2{|CP|2 + |CP|2} KICvl2 + |C'vP + |CA|2 + |cg2} £\CT\2 + \C>T\2}

Instead of taking the charge retention ordered expression (t/4(Q + QY5)rji/.(J
idjvTl\fi^) where Tt 1, _ys,_ y^,_ 7^75 or a^ we could also take thecharge
exchange ordered term (ife(C. + Ci75)rii/.j;J(i/,lvrit/.(J. The coefficients Q, C[ however

can be expressed by the coefficients Q and C\ (see e.g. Ref. [7]); we choose
therefore for our case the technically simpler charge retention ordered Lagrangian
of equation (1).

Appendix B: The wave function of the electron and the muon

Electron wave function

The relativistic continuum wave function of the electron with total angular
momentum /Ke=lKel_2 in a central symmetric potential is given by Ref. [20]:

r /8k.(/•)*.£(*) \^WsW»)Wlth r=rr

and xZ® IJ2jZ+li-l)l"<-m+»<( 1k- 2 ,K' W..-T(*) _t> (Bl)

Here lK =jK +|sign(Ke) and \^t) is the two-component Pauli spinor. The radial
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functions uKe(r) rgK(r) and vKJ(r) rfKj(r) are solutions of the differential equations:

jd/ujrfr/ -Kjr Ee + l-V(r)\/uK.(r)\
dr\t.K»/ V-(Ee-l-V(r)) KJr Ai>K.(r)J '

We have used the following potential Vir):

-Zafr r>RN ®

VWHâK) -<* •
RN is the radius of the nucleus with charge number Z and a is the fine structure
constant. In the case where V(r) is given by equation (B3) ® the solutions u^j(r)
and u„r(r) are well known [20]; we give here power series solutions for u^ir) and
tfr(r), because they are useful in the case where Ee ~ l[me]. Thus they are
suitable for giving start values in order to solve equation (B2) with equation (B3)
(D numerically; using the notation pe |pe| one gets:

<{r)=UK^y)_(Ee + iy'22^2\Tiy + iV)\

TTPe Ì r(2T + l)

x (7 cos cp - n sin <p) £ c^ipjT^ (B4a)

c /Ee-iy/22^W2ir(7+in)^) ü^Y)=t) r(27 + i)

x (7 cos <p - rj sin <p) I bn(Per)n+T (B4b)

The coefficients an and bn are given by the following coupled recursion relation:

(an+1\_ 1

bn+1J in + l)in + l + 2y)
Za[(Ee-l)/(Ee + l)]1/2 (n + l + y-K.) \/a»

-(n + l + 7 + Ke) -Za[(Ee + l)/(Ee-l)]1/2Ata.„

(Ee + 1) 1.(7+Ke)
a0=l, 00 -

(B4c)

Ee (Za)2

The functions y, 17 and <p are defined as follows:

y [K2-iZa)2r2
in Za/pe (B4d)

e2i<p =-Ke-iiilEe
7 +IT]
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irreg
regFor later use we write u (r) uKe(r,"F 7), v ir) vKir,"f 7). In the case where

Vir) is given by equation (B3) (2) the solutions are ([20]):

(B5a)-w=(i)k''x'
I cn(r/RN)2"

n 0

£ änirlR»)2^1
.n 0

Ke<0

Ke>0

..<M£f-
t dnir/RN)2"+1

n=0

£ Mr/RN)2"

Ke<0

Ke>0

(B5b)

The corresponding coefficients are determined by the recursion relations

1

a„ =-

K+i

(2|Ke| + 2n + l)
1

{bn(RN(Ee + 1) + (1)ZJ - %Zabn_ò

{-äniRN(Ee - 1) + (|)Za) 4- (i)2aä-_J,2(n + l)
2_k]+i

RN(Ee + l) + (|)Za

(B5c)

The coefficients cn and d„ are given by cn(Ee,Z) b(—Ee,—Z) and a\,(Ee, Z)
ä„(-Ee, -Z). The general solutions of equations (B2)-(B3) are thus given by

uK(r) < K* K<

•-AKiurKf(r

vK ir) i K- K'

lAKv7Hr

r<RN
ir) + BKu™%r) r>RN

r<RN
«.tCOO+ £«.<"*(>) r>RN

(B6)

The coefficients iVfr, AKe and BK are determined by the continuity conditions of
uKir) and uKe(r) at r RN and the postulated asymptotic behaviour of the general
radial functions uKjj) and vK]j). One gets ([21]):

: cKBK, x, _cKurK:s(RN)+uT^jRN)^
UK+RN)

UK.jRN)v7;eiRN) - u™HRN) VK+RN)

<g(Rv) VJRN) - UK±RN)vr:f(RN)
'

BK, [1 + cKScK, + 2 cos (ÔrKf - ô'KTeg)]"1/2

c_- =- (B6a)

SKi =-argr(±7 + in) + <p(±7) + T7(^+lT7)/2

The nuclear radius RN of a muonic atom, whose nucleus is described by a
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two-parameter Fermi charge distribution pp'(r) (equation (23)), is given by Ref.
[22]:

RN=(^r-V/m
m

J drrm+2pcp'i

(B7)

r), drr2PcF'ir) where m 2-0.014456xZ

The general distorted plane wave function cpc ipe, se, r)_ can be written as an
expansion into total angular momentum eigenfunctions ifiKe(le(r):

<Pe(Pe,se,r) 47r[Tr/|pe|]1/2 I e'M-O'-v^T+î^l)^ 1/2

XL -s Ï -a K^sSÎ>e)<»S*) (B8)

In order to test the numerical procedure for calculating the exact BOMES, it is

necessary to examine uKJ(r, 7) and uKc(r, 7) in the case Z 0. One finds:

1/2

x(-l)a+sgo(K«))/2(Per)/,. (per)uKir, y Ke)-

vKir,y Ke)--

TTPe

Ee-1
L irpe

x (Per)ii_x iper)

where /t (per) is a spherical Bessel function [14].

(B9)

Muon ground state i\sV2)-wave function

The ground state wave function of the muon is given by

to t /gi(r)xiui(*)\
.(BISlfl,p(p,),S,')=(i/i(te(î))

The equations for the real functions gt(r) and /i(r) are given by

±(Si(r)\= 1/2/ 0 E^ + m(,-V(r)\/g1(r)
drVAWJ m,i \-(E(i-m11-V(r)) -2/r A/X(r)

In all the 'exact' calculations we have put ([23])

(477
V(r) -Za

+ -
2a
37 J

p^(r')r'2dr'-r47r[ pc/(r')r'dr'

pcAr')r'{Fli\r'-x\)-F1i\r>+r\)}dA,

F,(x) dye -2xy Vv2-1

r l1 +
2y3 yl+fr^

(BIO)

(BID

(B12)

The charge distribution pp'ir) is given by equation (23). The differential equations
(Bll) with the potential (B12) are solved numerically. We have often used the
nonrelativistic point nucleus Is muon wave function; therefore we write down
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here the explicit formula of this wave function:

<pAB1s, p(pj, v, r) |non 2iZam^)3'2e-Zam^xsMr) (B13)
relativistic

Appendix C: The angular matrix element <Kfpf |YXJ KjP;)

<«/Pf |YJ K.-Pi)= |x^(»)Y^ff)x5tf) <*«(*)

_ ir,+1/_r_g___± !)(2a+dgj«.4-dii/2/ /k, A /«,

Ik, A Jk, \n j_, |\L +L+ M

¦Pf p Pi

xi? Ö "ijU + (-1)"+,rf+x}/2 (C1)

where /Kij=|kJ-|, .K,f /Kì-f+(è)sgn (kw) and x£«(r) is defined in (Bl).
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