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Bound states in dipole fields and continuity properties
of electronic spectra
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Institut für Theoretische Physik ETZ Zürich (Switzerland)

(30. IV. 1980)

Abstract. We discuss some known binding/no-binding criteria for a charged particle moving in
the field of a neutral system of N fixed point charges. As an application, we derive a uniform Lipschitz
property (with respect to nuclear configurations) of the discrete spectrum of electronic Hamiltonians.

1. Introduction

This note was inspired by a recent review article [1] on the 'minimum dipole
moment required to bind an electron', where the history of the subject is traced
back to Fermi's notebooks. Our remarks (i)-(iv) below are intended to
summarize, to simplify and to correct some of the original arguments (see [1] for a
more extensive bibliography).

(i) The critical dipole moment a0 is defined as the maximum value of a |a|

such that

H0 -A + r3(a,x)s=0, (1)

where r |x|. As a result of numerical work (see e.g. [2]),

a0= 1.278630.

The qualitative aspects of this problem are briefly reviewed in Section 2,
where we also derive simple upper and lower bounds for a0 with an

accuracy of the order of 1%.
(ii) A variational argument of Simon [3] shows that the field of any neutral

system of N fixed point charges produces infinitely many bound states if
its dipole moment a exceeds a0 (Section 3).

(iii) It is incorrect [1, 2, 4] that the converse (no binding for a^a0) follows
from the scaling property (10) of the eigenvalue problem: (10) holds for
arbitrary N, but for N 3= 3 there is no 'minimum dipole moment required
to bind an electron' (section 4).

(iv) That no binding occurs for N 2 and a^a0 can be seen from a different
law of corresponding states, particular to 2-point dipoles and simply
expressed in terms of elliptic coordinates. From this one can derive
(sufficient) no-binding conditions for N3=3 (Section 5).
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In the last part of this paper we consider the Hamiltonian H(y) of n electrons
moving in the field of N arbitrary point charges fixed in the configuration
y (yi " ¦ ' yN)e R3N. Using the no-binding theorem for 2-point dipoles we derive
a uniform Lipschitz property of the discrete spectrum of H(y) as a function of y.

2. The particle in a pure dipole field

The Hamiltonian (1) can be written as

1 d2

H0=——2r + r-2A,
r dr

A L2+r_1(a,x),

where L2 is the square of the angular momentum. Since (a, x)/r is bounded, A is a
self-adjoint operator on L2(fl) (fi unit sphere). In the subspaces
(m 0,1, 2,... of states with angular momentum ±m along the axis a it acts as
the operator

Amia)=-~il-z2)4-+m2il-z2)-1 + az
dz dz

on L2(— 1,+1), where z (a, x)/ar. Am has a complete orthonormal system of
eigenfunctions

Am/m( Knifmi (¦ m, m +1,... (2)

where Ami(a) is the eigenvalue converging to lil+ 1) as a^>-0. Since in this process
the eigenvalues cannot cross, always labels the Am((a) in ascending order. It
follows from the operator inequalities

Am(a)^An(a) (for m^n)
and

Am(a)s=Am(0)-a

that Amm+(c(a) increases with m for fixed k and that

Ami(a) >.(. + _)-a. (3)

In particular, A00 is always the lowest eigenvalue of A and the only candidate for a

negative eigenvalue as long as a =s2. In order to find simple estimates for A00(a)
we transform (/, A0/) by partial integration into

(/,A0/)
+i

dz(l-z2) 1 I1 ai\n
where /' df/dz. This gives the lower bound

A00(a)^-a2/4, (4)

improving (3) for a<4, and it suggests the choice /~exp(-az/2) (i.e.
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f + affi 0) to obtain the upper bound

A00(a)^(/,A0/) i(l-a/Tha). (5)

Hence A00(a) is indeed negative for a>0 and strictly decreasing to -°° as

a —» + oo, since

^óo(a) (/oo, z/oo) < Ko(a)/a.

Let (r, 6, <p) be polar coordinates with respect to the axis a. The subspaces $?±m>i

of the states

r"1u(r)/m[(cos d)e±im<t (u e L2(0, oo))

are invariant under H0, which acts on u as the operator
d2

-2HKnl)= —-r^+Knir

on L2(0, oo). We shall use this operator only on the domain Cq(0, o°) of infinitely
differentiable functions u(r) vanishing outside some finite, strictly positive interval.

(To define the dynamics of a particle in a pure dipole field we should choose,
in each 3if±ml, a selfadjoint or possibly non-selfadjoint [5] extension of hiXmi).
This is not necessary in the present context.) It is well known (see e.g. [3]) that
f}(A)s=0 if and only if A =£-1/4, i.e.

sup iu,r-2u)iu',uT1 4, (6)
0^ueCJ(0,~)

where u'=du/dr. Consequently, Ho3=0 on Cq(jR3\{0}) if and only if A00(a)3=-ta,.
This is equivalent to a«a0, where a0 is uniquely defined by A00(a0)= _3- The
upper bound

a0< 1.288

is obtained from (5) as the positive solution of Th a la/3. (4) gives the lower
bound a0>l- This can be improved using Temple's inequality [6]:

Aoo > (/, AJ) - [(/, A2f) - if, A0/)2][A01 - (/, Ac/)]"1

with /(z)~exp i-az/2) and with the estimate (3) for A01. The resulting lower
bound

a0> 1.245

is the positive solution of Th a (4a2 + 5a)(4a2 + 6a + l)"1.

3. Binding in dipole fields

Let e ie1 ¦ ¦ ¦ eN), Y. ei — 0, be N point charges in a fixed configuration
y (yi ' ' " Jn), and a X e^ their dipole moment. It follows from a result of
Simon [3] that

Hie, y -A + £ c, |x - y, |" * -A + V(_) (7)
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has infinitely many bound states if a > a0. We restate Simon's estimate in a form
which directly applies to this case.

Lemma 1 (Simon). Assume that for some R>0, V(x) is a real, locally
integrable function for R < |x| < oo satisfying

V(x)-(a,x)r-3=s-cr-p,

with c arbitrary and 2<p. If a>a0, there exists an infinite sequence of C°°-

functions tpn with compact, disjoint supports in R < |x| < oo such that

iVn,i-A+V)Vn)<0.
Remark. Since Hie, y) is selfadjoint on the domain of the Laplacian and has

essential spectrum [0, oo), Simon's lemma proves the existence of an infinite
sequence of negative eigenvalues of Hie, y) converging to zero if a>a0 [6].

Proof. Let ip r~1uir)f00 (cos 0), with /00 given by (2), and h h(A), A

Aoo(a)<-3- According to (6) we can find ueC^(0,°o) such that (u, u)=l and
(u, hu)<0. The unitary scaling operator

U(S):taMx)^taMx) S3/2<Mta.x) (8)

(0<s<oo) acts on the radial wave function u as

uir)-+ usir) ^s1/2uisr).

For s sufficiently small we have us e C^iR, °°) and also

(tfc, (-A+ V)djs)^ius, hus) + dus, rpus)
s2iu, hu) + cspiu, r~"u)

<0.
Since u has compact support not containing 0, we can choose a sequence
s s(n)—»0 (n 1, 2,... such that the scaled functions us(n) have pairwise
disjoint supports.

4. The scaling argument

Hie, y) has the scaling property

U(s)H(e, y) U~\s) s2His~1e, sy) (9)

with respect to the transformation (8). Hence Hie, y)dj Eip is equivalent to

His-'e, sy)ib-s s^E^ (10)

Since the scaling (e, y)—»(s *e, sy) does not affect the dipole moment, the scaled
potential converges (for x j= 0) to the pure dipole potential as s—»0. On the basis
of (10) it has been argued [1, 2,4] that the 2-point dipole (N 2) has no bound
states if a<a0. For example: If E<0, then s~2E—>-co as s—»0. Conclusion:
a > a0, since the resulting pure dipole will have states of 'infinitely large negative
energy'.

While this conclusion is correct for N 2, the argument must be false since it
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applies equally well to arbitrary N. But for N 3= 3 there are obvious counterexamples

with a 0 where binding occurs: place two charges +1 a distance R apart
and a third charge -2 at middistance. For large R there will be slightly perturbed
hydrogen-like bound states around the negative charge.

The scaling argument fails since the scaled eigenfunctions ips do not converge
to a corresponding state in the pure dipole field (i//s ->0 weakly as s-»0). For fixed
djE q-;(_ta3\{0} it is true that

lim (t/», His^e, sy)dj) id,, H0ifj).
s^O

Hence if Hie, y)s=0, then His^e, sy)s=0 by (9) and it follows that Ho^0. Thus
the scaling argument proves binding for a>a0 (as we have already seen in Section
3), but it fails to prove the converse.

5. No-binding criteria

A simple example is H=H0+V(x), where H0 is given by (1). Suppose
that (roughly speaking) V is nonnegative and sufficiently repulsive to make H
bounded below and that V(x)-*0 faster than |x|~2 as x^-oo. Then it follows from
the results of Sections 1 and 2 that H has no negative energy bound states if
a^a0 and infinitely many if a>a0 [2].

It is remarkable that exactly the same distinction holds for the 2-point dipole:

Theorem 1 (Fermi, Teller [7]). ForN=2 the Hamiltonian (7) has no negative
energy bound states if a =£a0 and infinitely many if a>a0.

Proof. In [7] this result (together with the value a0= 1.278) is mentioned
without proof. A proof (based on counting the number of nodes of the explicit
zero-energy solution in elliptic coordinates) was indicated by Wightman [8] and
presented in more detail by Crawford [9].

Since binding for a> a0 follows from Lemma 1 we need only show that
Hie, y)3=0 if N=2 and a=sa0. This is seen by inspection from the expression of
iip, Hie, y)ip) in elliptic coordinates:

Let r; |x - yf| (i 1, 2), 2R jyx — y2( and a 2Re2. Then the coordinates

r \iH+r2)-R,
z ir1-r2)/2R,

<p angle around the dipole axis,

have the range

K:0=sr<oo; -1 ss z =s+ 1 ; <p e unit circle;

which is independent of R, and

iip, Hie, y)dj)= j dr dz dd, j (r2 + 2JRr)
dip

dr

2

+ (l-z2) P +[(l-z2r1 + JR2(r2 + 2Rr)-1]
lazi

dip

dcp

2

+ az W2}.
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For fixed a and jR 0 this reduces to the expression of (t//, H0ip) in polar
coordinates (z=cos0). If this is nonnegative for all ipeCôiK), the same is
evidently true for R>0.

Remarks, (i) Comparing this proof with the scaling argument (Section 4) we
note the following difference: while the Hamiltonian is scaled in the same way,
the transformation of states is now defined by changing R and keeping ipir, z, <p)

fixed. As a function of x, t/. then changes with R and has a well-defined limit as
R—>0. In distinction to (10), this 'elliptic law of corresponding states' is not
unitary and does not map eigenfunctions into eigenfunctions.

(ii) Any Hamiltonian of the type (7) can be written in the form

H(e,y) -A+Xvk(x) (11)
k

where each Vfc(x) is a 2-point dipole potential (Example: split e (1, —2, 1) into
(1,-1, 0) + (0, -1,1)). Let ak be the absolute value of the dipole moment of Vk
and a Yiak. Then

Hie,y) '£a-1aki-A + aaZ1Vk)^0 ill)
k

if a =£ a0, since each term in this sum corresponds to a 2-point dipole with dipole
moment a. Therefore no binding occurs if the sum of the absolute values of the
2-point dipole moments does not exceed a0.

6. Application to electronic spectra

Let

Vyix)=t e. k-y.r1
i l

be the potential produced by N arbitrary point charges ex • ¦ ¦ eN ('nuclei') with the
configuration y (yx • • • yN), and

H(y)= £ [-Ak + Vy(xk)]+ X \xt-x,k\

the Hamiltonian of n 'electrons' moving in this field. The y-dependence of the
discrete spectrum of Hiy) (if any) is basic for the theory of molecules. Continuity
in y is the only general local property known so far [10] (Differentiability has
been proved in important special cases: for N=2[10] and for nondegenerate
eigenvalues in the case of arbitrary N[ll]). The link between this problem and our
subject is provided by the remark that Vy — Vz is a sum of N 2-point dipole
potentials with dipole moments at \eiiyi — zi)\. It follows from (11) (12) that

H(y)-H(z)\*-\\y-z\\Ho (13)

where H0 -£i. i Ak is the kinetic energy of the electrons and || || a norm in the
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configuration space of the nuclei defined by
N

l!yl! «Ö1 X ky.|.
i l

From (13) we can derive estimates for the spectrum of H(y) using the minimax
principle in the following form [12]: For m 1, 2, 3 • • • let

Em(y)= inf sup («/., H(y)^), (14)
dimM m .|/eM,||i/.||= 1

where M ranges over the finite-dimensional subspaces of D(H(y)). Then

limEm(y) E(y) (15)
mutais

the minimum value in the essential spectrum of H(y) and the subsequence
{Em(y)<X(y)} is the sequence of eigenvalues of H(y) below X (y) in ascending
order.

Theorem. There exists a constant ß independent of m, y, z such that

|Em(y)-Em(z)|^ß||y-z|| (16)

and

*ß\\y-z\\ (17)I(y)-I(z)
for all m, y, z.

Proof. We first recall some properties of H(y) [6]: H(y) is self-adjoint with
domain DiH0) and has essential spectrum E(y),00) with X(y)^0. There exist
constants a, ß > 0 independent of y such that

i^H^^ai^Hiy^ + ßi^d,) (18)

for all y and all i/>eD(H0).

Secondly, we remark that for fixed y the trial subspaces M in (14) may be
restricted by the condition that

(i>, H(y)^)=s (X iy)+e)iip, iP)^eidj, </.)

for all ipeM, with arbitrarily small e>0. By (18), a weaker and y-independent
restriction is

(^,H0ta/»)^(ae + ß)(i//,ta».

Imposing this it follows from (13) (14) that

Em(y)-Em(z)z*-(as + ß)\\y-z\\.
Letting £->0 and interchanging y with z we obtain (16), from which (17) follows
in the limit m—»ß.

Remarks, (i) Let G be any euclidean transformation of R3 and Gy
(Gyj • • • GyN). Since H(Gy) is unitarily equivalent to H(y) we can replace ||y - z||

in (16) and (17) by minG ||Gy - z\\.
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(ii) Theorem 2 also holds for the restriction of H(y) to any symmetry sector
with respect to permutations of electrons, since (13) is invariant under permutations.

(iii) We expect, of course, that the discrete eigenvalues of H(y) can be
represented by smooth functions of y. But even in this case the increasingly
ordered eigenvalues will only be Lipschitz in points y where smooth eigenvalues
cross.

(iv) The Lipschitz constant ß appearing in Theorem 2 is defined by (18) and
can be estimated in terms of the parameters n, N, e1 ¦ ¦ ¦ eN. It gives an upper
bound for the electronic contribution to the binding forces in a molecule and thus
a lower bound for the internuclear distances (in the clamped nuclei approximation).
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