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Abstract. Introducing an abstract version of the geometric approach, we deduce asymptotic
completeness for simple scattering systems from local decay and smallness of the interaction near
infinity. In potential scattering, this gives asymptotic completeness for highly singular potentials and
generalized asymptotic completeness, in the sense of Pearson, in the presence of local absorption of
states. Moreover, the singularly continuous subspace that may occur due to local singularities of the
potential is contained in the subspace of bound states of the Hamiltonian (defined in the geometric
sense).

I. Introduction

Over the last two years a new 'geometric' method has been developed for
proving existence and completeness of the wave operators in quantum scattering
theory (see Refs. [1] through [8] and the review [9], all of which are based on the
fundamental work of Enss [1]). In the present paper we deal with the following
two points: (i) we study the mathematical structure of this approach in an abstract
form, and (ii) we apply the method to the situation not previously covered where
asymptotic completeness holds only in some generalized form. In particular we
give a 'geometric' proof of known results about generalized asymptotic completeness

in the presence of local absorption of states, and we obtain as a new result a
characterization of the space-time behaviour of states in the singularly continuous
subspace of Schrödinger Hamiltonians with locally strongly singular potentials.

As in previous work [10]-[12] we adopt the attitude that a. study of the
space-time behaviour of states should be the first step in a physical scattering
theory. To define scattering states and bound states, one considers a sequence {Fr}
of self-adjoint 'localizing operators', i.e. satisfying Fr F? e â8(3îf), ||Fr|| =£ k for
each r= 1, 2,... and

s-lim Fr /, (1)
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where I denotes the identity operator. The usual example in potential scattering is
as follows: the Hilbert space is W L2iUn) and Fr is the multiplication operator by
the characteristic function x. OI the ball Br {xeUn | |x|<r}, i.e.

(*/)<*) ft(x) *!*';' (2)
10 if|x|>r.

The scattering states of the Hamiltonian H for t -» ±oo are defined as those
(pure) states that are evanescent from each bounded region of configuration space
as t —> ±°o respectively. They form subspaces Mt(H) and MziH) respectively
given by

/ e MtiH) O lim ||Fre-iH7||2= 0(H,) for each r 1, 2,... (3)
t—*±oo

The bound states of H at positive or negative times are defined as those states
which remain essentially localized in a bounded region of configuration space at
all positive or all negative times respectively. They form two subspaces Mq(H)
defined as

feM%(H)<*iim sup \\(I-Fr)e-aBff 0. (4)

The bound states M0iH) are those states that remain bound at all times, i.e.

M0iH) JittiH)nMôiH). (5)

It is known [13,10] that each vector in the closed subspace S€P(H) spanned by all
eigenvectors of H is a bound state, but in certain cases M0(H) is strictly larger
than 3ifp(H).

The time evolution exp(-iHt)/ of a scattering state f^MtiH) converges
weakly to zero as t —> ±°° respectively. On the other hand the time evolution of
vectors in the singularly continuous subspace SKsciH) of H will in general converge
weakly to zero only in some averaged sense, for example (ge$fsc(H))

w-lim —-
t^oo t

±T
exp(-JHt)gtai( 0, (6)

so that they cannot be scattering states in the sense of the definition (3). In order
to treat such Hamiltonians, it is essential to introduce two other subspaces
MtiH), the set of scattering states on the time average:

fei*(H)o' lim^
T^oo t

±T
||Fre"iHt/||2 dt 0 for each r= 1,2,... (7)

Since averaging over time is inherent in this approach and essential when
dealing with Hamiltonians with non-empty singularly continuous spectrum, we
use it in our abstract formulation, in the more general form of some invariant
mean. It is then natural to replace also other time limits by limits of time

'*' An equation containing double signs is meant to hold separately for the upper and for the lower
sign.
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averages. On the other hand certain results will be obtained by working with
convergent subsequences rather than with averages.

If scattering theory is approached as outlined above, the completeness proof
should proceed as follows: (i) show that all states orthogonal to the bound states
are scattering states as t —» +oo and t —» -oo, (ii) prove that all scattering states
become asymptotically free, i.e. lie in the range of both of the wave operators.
Now for Schrödinger Hamiltonians it can be proved under suitable local assumptions

on the potential v that M0iH)= 5ifp(H) and MtiH) WciH), i.e. that all
states in the subspace dKciH) of continuity of H are scattering states (at least on
the time average [13,10]). Once evanescence of all states in cKciH) is known to
hold, the completeness proof should involve only conditions on v near infinity.
Thus, the idea of our principal theorem may be paraphrased as follows: 'Suppose
that, for a single-channel scattering system, all states in dfëciH) are outgoing at
large times and that the interaction is well-behaved at large distances. Then one
has asymptotic completeness'.

The theorem just cited gives asymptotic completeness in the usual sense: the
ranges 0l(Cl±) of the wave operators fl± are the orthogonal complement of the
subspace %epiH) spanned by the eigenvectors of H. In more general situations it is
appropriate to speak of asymptotic completeness in the geometric sense, which is
the property that

0iiü+) miiJ) MoiH)±. (8)

This is more general, since 9£piH) may be a proper subspace of M0iH). Some
remarks on this may be found at the end of Section II. Finally, if local absorption
occurs, one must introduce, in addition to M0iH) and Mt,(H), the subspaces
JixiH) of states that are absorbed at the singularities of v (supposed to lie in a
bounded subset 2 of configuration space). One finds in this case that all vectors in
the singularly continuous subspace dl£sciH) of H are bound states, and that the
absolutely continuous subspace SK^iH) of H is the (orthogonal) direct sum of the
subspace of scattering states and the subspace of absorbed states (for each sign of
time). This is called generalized asymptotic completeness and will be discussed in
Section IIIO.

II. Some abstract results

We consider the scattering problem for a pair of self-adjoint operators H and
H0 in a separable complex Hilbert space 3tf. Among other things we want to give
sufficient abstract conditions for the wave operators to exist and to be complete.
These conditions involve two means m* and a set sd of functions <p from U to C.
We first state our hypotheses on M:

(Al) Each tp e M is the inverse Fourier transform of a function cp satisfying
4>eL\U) and d/dzcpiz) e L\U).

(A2) There is a countable closed subset r of IR and a sequence {<pn} sd0 in
M such that <pn:U^U,

Un II» <M< oo for all n (9)
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and

lim<p„(À)=l forali A. e IR \r. (10)

Notice that (Al) implies for each <p&s£ that À ^(A±i)tap(A)eL°°(|R), hence
that

iH0±i)<piH0)e®i2e), (H±i)<p(H)eS8(^). (11)

Lemma 1. Let {cpn} be the sequence given by (Al) and fe3€c(H). Then
||/-cpn(H)/||-»0 as .woo.

Proof. We denote by {Ex}XeR the spectral family of H Since each cpn is
continuous by (Al), we have

|1-<MA)|2«(M+1)2 VAeR,Vn. (12)

Now

\\f-<PniH)f\\2 \l-<Pni\)\2dif,EJ). (13)

By (12) the integrand in (13) is majorized, uniformly in n, by a function which is

integrable with respect to the measure dif,EJ). Since feSt£ciH) and T is
countable, the measure of T is zero. By (10), <pnik)—> 1 a.e. with respect to the
measure d(f, EJ). The result now follows from (13) and the Lebesque dominated
convergence theorem. ¦

We next say a few words about the means m± that are involved in our
conditions. Let C+([R) be the set of all bounded, continuous, non-negative
functions from LR to [R. We shall write m+(t/.) 0 whenever ip(x) converges, in a
generalized sense, to zero as x —* +oo. (Similarly m fri/.) 0 for the limit x —> — °°.)

Any reasonable definition of this notion entails the following properties:

(Ml) m+(i/() 0->m+(ci(r) 0 for c>0.
(M2) m+itp1) 0, m+(i|(2) 0-> m+(tp1 + ip2) 0.

(M3) m+(t/>i) 0 and dj2= t/.x for x>x0 => m+(i/»2) 0.

(M4) m+(t//1) 0 and tp2<ip1 => m+(t/.2) 0.

(M5) m+ic) 0, e e [0, +oo) o c 0.

(M6) The subset of C+(IR) for which m+iip) 0 is closed in the uniform
topology. We shall further assume that this is a non-empty subset.

For \p e C(U) only (the set of all bounded, continuous functions from U to IR),

we shall write m+(t/.) 0 whenever m+(|t/.|) 0.

Remarks, (a) An immediate consequence of the above is that m+(t/.) 0
whenever lim ipix) 0 as x —» +oo. It also follows that, for any </. such that
m+iip) 0, a subsequence {x„} exists satisfying x„—»+°°, tpix„)—>0 as n—»oo.

(b) It is often of interest to characterize the asymptotic evolution of states in
terms of limits of sequences (as opposed to limits of functions). In that case one
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has to consider convergence of a sequence {cn} to zero in a generalized sense. We
shall express this as p+i{cn}) 0, and there is no difficulty in transcribing (Ml) to
(M6) into the corresponding properties for convergence of series.

It is usually convenient in applications to restrict one's attention to invariant
means.

Definition. We shall say that m+ is invariant if m+(i/.) 0-G> m+(i//a) 0 for
all a e IR, where t/.a(x) ipix + a). (There is a corresponding notion for sequences).

The ergodic mean

i rT
m+M) lim - <Mx) dx (14)

T^oo 1 J0

is invariant in this sense, and may be used to define convergence to zero. This
mean, defined on a suitable space of functions, is an example of an invariant
mean, on which there is a considerable literature [14]. As stated in the Introduction,

the ergodic mean has the property that, if H is a self-adjoint operator in a
Hilbert space X, one has for /e^c(H) and ge^:

me+«g,e-iH,/» 0. (15)

In other words, vectors in the continuum subspace of H converge weakly to zero
in the generalized sense. In general, this property will hold, for m+ invariant, if
and only if m+i(f, e~lHtf)) 0. Hence, for given /, one has to verify convergence to
zero for a single function only.

In defining subspaces such as MÜH), we are concerned rather with strong
convergence. To this end we state the following

Definition. For given f&U, define 38+(H, /) to be the set of all bounded linear
operators A from W to "M for which m+(||AériHt/||2) 0.

Provided m+ is invariant, 33+(H,/) will have the following properties:

(Bl) S8+(H,/) is a norm closed linear subset of 38(2?).

(B2) M+iH, f) is left-invariant under

(B3) Ö8+(H, /) is right-invariant under {H}", the set of all bounded measura¬
ble functions of H.

The only one of these properties which is not immediate to verify is (B3). If m+ is
invariant, then, for A e S8+(H, /), m+(||Ae-iH,(e-iHs/)||2) 0, for each s e IR. Taking
limits of linear combinations for different values of s, one can approximate cpiH)f
arbitrarily closely in norm by Zkcke~iMSkf to give m+(||Ae~iH'tap(.H)/||2) 0, which
leads to the required result.

We shall use the notation Rz (H- z)"1 and R° (H0- z)"1. We denote by
Ea,, the orthogonal projection with range 96aciH0) and by SS.» the Banach space of
all compact operators on ffl, the norm being the operator norm. If m + is invariant,
then

m*«/, e-iH'f)) 0 4> *„e 3T(H, /). (16)
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In scattering theory it is useful to impose conditions on the difference H-H0
or on HK - KH0, where K is some suitable bounded operator. This motivates the
following lemmas in which we derive properties of cpiH)K-K<piH0) from
assumptions on HK-KH0.

Lemma 2. Let K be an operator in SÖ(^f) and assume that iH0-i)'1iH0K-
KH)iH-i)~1e3ß+iH,f), where m+ is invariant. Then

(a) K<PiH)-<PiH0)K<=gtiH,f) for each <^ei.
(b) (piH0)[K-expiiH0t)Kexp(-iH()]eS8+(H,/), for each (pesi and each

ten.
Proof, (a) Let Im z + 0. Then R°ziH0K-KH) is well defined on DiH) if it is

interpreted as H0R°ZK - R°ZKH. From (B2), (B3) and the identity

R°ziH0K-KH)Rz =[I+iz-i)R°z]RUH0K-KH)Ri[iH-i)Rz] (17)

one obtains that R°iH0K-KH)Rz eS8+(H,/). Hence

KRZ - R°ZK R°iH0K - KH)RZ e S8+(H, /). (18)

Furthermore one has

KR^RÏ-R^R^K iKR^-R^lORï+R^iKRï- R°cnK). (19)

Setting in (19) z £, m - 1 and n N-1, one obtains by induction that
KR?- R°NK e £1 +(H, /) for each N 0, 1, 2,... Upon reinserting this into (19)
one concludes that KR^R^ - R^R^K e 38+(H, /) for all m, n 0,1, 2,... .By
the complex Stone-Weierstrass theorem (applied to the one-point compactifica-
tion of IR [15]), each cpesi is the uniform limit of a sequence of polynomials in
(A + i)_1 and (A - j) \ Hence KcpiH) - <piH0)K is the uniform limit of a sequence
of operators in S8+(H,/), i.e. K<piH)-<PiH0)KegfiH,f) by (Bl).

(b) Replacing </>(A) by exp (JAf)<f)(A) in (a), we have that KcpiH) exp (iHf) -
(piH0) exp iiH0t)He2ß+iH, f). Upon multiplication by exp (-iHf) on the right,
we obtain that KcpiH)-cpiH0)expiiH0t)Kexpi~iHt)e^+iH, f), and the result
of (b) follows by combining this with (a). ¦

Lemma 3. Let K be an operator in CßidK) and assume that (H0-i)~1(H0JC-
KH)iH-iY1e^œ. Then

(a) K<piH)-(piH0)KeS^ and cPiH0)[K-exp UH0t)Kexpi-iHt)]e <%«, for
each (pesi and each teU.

(b) If m+ is invariant and m+i(f, e~'Htf)) 0, then the conclusions of Lemma
1 follow.

Proof. The proof of (a) is similar to that of Lemma 2. (b) follows from
(16). ¦

A closely related result for sequences is

Lemma 4. Let K be an operator in <3àiW) and assume that iH0-i)~1iH0K-
KH)iH-i)~1e 08«,. Suppose generalized convergence to zero is defined for sequences

and that p.+({(g, e~,H-nf)})= 0 for some sequence {(„} and all geffl. (This will
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be so provided p+i{(f, e~iHl'»+s)f)}) 0; i.e. the sequence (f, e~iMt»f) and its translates
must converge to zero in the generalized sense.) Then the conclusions of Lemma 1
follow, where the set 38 +(H, /) is now defined by the condition pfr({||Ae"iH'"/l|2}) 0.

Theorem 1. Let m* be invariant means and E an orthogonal projection
commuting with H0 and such that £%(E)ç:2ifc(H0).

(I) Assume there is an operator J' e*M$t) and two self-adjoint operators F±e
such that

(Cl) JDiH0)çzDiH),
iCl) (a) iF++F_)E E,

(b) FTtap(H0)6tal±(H0,/) for all (pesl0, fe&iE),

(c) dt\\iHJ - JH0)4>iH0)e-iH°tEF± <oo, V(pesi0.

Then the wave operators W± s-limexp iiHt)Jexp i—iH0t)E as t—»±oo exist.
(II) Assume in addition, for some fe%fciH) and some (pes40
(C3) (H0 - i)-\H0J* -J*H)iH- i)-1 e 98*(H, f),
(C4) (I-E)d>(H0)J*e3t(H,f).

Then

W*f=0-$ J*<PiH) e ST(H, /). (20)

In particular, if (C3) and (C4) hold for all <pesl0 and all feWciH), and if all
such states f are 'evanescent with respect to I — J*\ e.g. if

(C5) iI-J*)<PiH)egtiH,f) V<pes£0, V/e^c(H),

then £%(WJ ^P(H)-L. If furthermore £l(E)c= ^(Hq), then H has no singularly
continuous spectrum.

(Ill) Assume in addition to (Cl) and (C2) that

(C6) (/-/)€ 0tiHo, h) for all h e £%(E).

Then W± are isometric with initial set 3?(E). Under the stronger hypothesis

(C6') s-limU-J)e-iH°'E 0,
t—*±oo

the wave operators D,± s-lim exp iiHt) exp i~iH0t)E as t—>±c° also exist, and
n±=w±.

Proof, (for W+).
(i) As in Lemma 1, ||g-cf>n(-Ho)g||—»¦ 0 as n —»°°, for each geäft(E). Thus the

set 3) {<p(H0)g | g e <%(E), <p e s£0} is dense in £l(E).
We next show that the set

3+ {<PiH0)EetH°sF+e-iH°sf | / e ^(E), s > 0, <p e si0}
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is dense in 3ft(E). For this, let /=<p(H0)ge2> and e>0. We set /+(s)
E exp iiH0s)F+ exp i~iH0s)f. By (C2, b) there is a sequence {sm} such that sm —* oo

and exp (.HoSm)F_ exp i-iH0sm)f-+ 0 strongly as m —> oo. By (C2, a), this implies
that

s-lim /+(sm) s-lim Ee,H«sfrF+ + FJ)e~iH°s™f f. HD

Now

||/-<pn(H0)EclH^F+e-iH^/||<||/-/frSm)|| + ||/+(sm)-tapn(JHo)/+(S„

By (21), we may choose m such that ||/-/+(sm)||<e/2. Once m is fixed, it follows
from the first part that there is n such that ||/+(sm)-c/)„(Ho)/+(sm)||<£/2. This
proves that S>+ is dense in £%(E).

(ii) We now show that W+ exists. It suffices to prove existence on 2>+. So let
g 4>iH0)E exp iiH0s)F+ exp i~iH0s)f be in 9)+. Then (setting t= t-s)

dt\\iHJ-JH0)e~iH°'g\\

dr\\iHJ - /H0)e-iH»T<p(H0)EF+e-iH«s/||

dr\\(HJ - JH0)e-iM°-<piHQ)EF+\\

+ s\\iHJ-JH0)(PiH0)\\\\F+\\\,

^\\f\\{

which is finite by (C2, c) and the fact that F+ e <30€) and (HJ- JH0)<piHo) e 38 (3f).
By the Cook criterion [16, Proposition 4.15], {exp iiHt)J exp (-iH0f)g} is strongly
convergent as t —> +oo, i.e. W+ exists. Similarly one obtains the existence of W_.

(iii) We next show that, if one assumes also (C3), one has, for the vector /
satisfying (C3) and all cp e sî0:

F±Ed>iH0)iJ* - W*) e m+iH, f) nSSfrH, /). (22)

By Lemma 2, F±E<piH?)[J*-exp iiH0s)J* exp i-iHs)]e9S+iH, f) n ®~iH, f) (take
K /*). As s —>±oo, this converges weakly to the operator in (22). We must show
that the convergence is even in operator norm. This follows from (C2, c) since for
/eD(H),

||F±E^(H0)[eiH»uJ*e-iHu-eiH"s/*c-iHs]/||

dtF±E(PiH0)eiH°XHQJ* - J*H)e~iH'f

[ dt\\iHJ-JH0)e-lM°'<PiH0)EF±
¦'s

which tends to zero as s, u —> +oo or s,u—> —°° respectively.
(iv) Since £%(E)s3ifc(H), the intertwining relation for W±, together with its

definition, implies WiWJçzWc(H) WpiHY.
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(v) We next prove (20). We assume W*f=0 and use the identity

J*e~iHt(PiH)f [J*(f>(H) - cPiH0)J*]e~iHtf

+ [I- iF+ + F_)E]driH0)J*e-iH'f
+ F+E<PiH0)iJ*-Wt)e-iHtf
+ F^E<piH0)iJ*-W*)e-iH'f
+F+E<piH0)e-iH°tW*f+F_<PiH0)e~iH°tEW^f. (23)

The first four terms on the r.h.s. converge to zero in the generalized sense since
the operators appearing in these terms belong to 38+(H, /) by Lemma 2(a), (C2, a)
and (C4) for the first two and by (22) for the next two. The fifth term is identically
zero, whereas the last term converges to zero as t—»+°° by (C2, b). This proves
(20).

(vi) Now if feWciH) and W*/=0, (C5) implies, with the result already
obtained, that <MH) e 38+(H,/) for each 4>eM0. But m+(||tap(H)e.-iH,/||2)
m+(||<p(H)/||2) 0 implies (piH)f=0. Hence, if (C5) holds, we have (pniH)f 0 for
each n, where {<£„} is the sequence given by (A2). Then /= 0 by Lemma 1, so that
there is no vector in ^C(H) except the zero vector satisfying Wff 0. Thus
m(W+) Wp(H)±.

If miE) ç ^ac(H0), then 0liW+) £ ^«(H) by the intertwining relation. Hence
dK 'XpiH)®'S£aciH), i.e. H has no singularly continuous spectrum.

(vii) Assume now that (C6) holds. Then, for each feSkiE), there is a

sequence {t,,} such that t„ -*¦ °o and ||(I-J) exp (-iH0tn)ß -> 0 as n -> oo. It follows
that

||W+f\\ lim pe'^fW lim pe-^fW
I—s-co n—x»

lim ||e-ÌH»«-/|| W, (24)
n—m»

i.e. that W+ is isometric with initial set £%(E). The proof of the other statements
in (III) is straightforward. ¦

Corollary 1. In the hypotheses of Theorem 1, replace 38 ±iH, f) by $L in (C3),
(C4) and (C5). Assume in addition that m+i(f,e~iH'f)) 0 for each fe$ec(H).
Then all conclusions of the theorem remain valid.

Corollary 2. Assume (CI), (C2) with (C2,b) replaced by s-
lim FtaÇ-p(Ho) exp i~iH0t)h 0 as t —» ±oo, for each <pes£0 and each h e 1%(E). Also
assume (C3) and (C4) with SttiH, f) replaced by S&œ. Let generalized convergence
to zero be defined for sequences and let pfr({(g, e~iH'n/)}) 0 for some sequence {t^
and for all geW. Then

W*f 0 ^> J*<PiH) e gt(H, f)
(38"""(H,/) being defined as in Lemma 4).

Proof. Use (23) and notice that now the operators appearing in the first four
terms are in 38.» as a consequence of Lemma 3, hence in 'Still, f) by the analogue
of (16) for sequences. The last term in (23) converges strongly to zero by
hypothesis. ¦
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If W*f W*f 0, one may use a version of Corollary 2 in which the time
parameter t does not appear. As an application of this we have

Corollary 3. Assume (Cl), (C2), as well as (C3), (C4) and (C5) with
38 ^H,/) replaced by (%L. Then each eigenvalue of H in U\T is of finite multiplicity,

and these eigenvalues accumulate at most at points of T or at ±°o.

Proof. Let AeLR\r, and assume there is an infinite orthonormal sequence {/„}
of eigenvectors of H with Hfn \Jn and An -> A. Choose (p e sd0 such that
<MA)>0. One has w-lim/n 0 and lim||<p(H)/J <MA)>0. Since W*/„ 0, we
obtain as in (23) that

<PiH)fn ü-J*)<PiH)fn + [J*(PiH)-(PiH0)J*]fn
+ [I-iF+ + F_)E]<piH0)J*fn + F+E<piH0)iJ* - W*)/„ + F_E<t>(H0)(/* - W*)fn.

Since all operators appearing on the r.h.s. are compact and w-lim fn 0, we obtain
||taf>(H)/J|—»0, a contradiction. (Note that convergence of sequences here is
defined in the normal way). ¦

Theorem 2. Let {Fr} be a sequence of localizing operators such that FrJe
38±(H0,/) for each r=l, 2,... and each /e£%(E) and such that
lim ||(I-Fr)(/-J*)|J 0 as r-> oo. LetJfiiH) be defined by (4). Assume (C1)-(C4)
in the form stated in Corollary 1. Then

(a) 2c' MZiH)G)®iW+) JlöiH)Q,®iW_). (25)

(b) If ta%(E)ç^ac(H0), one has WsciH)<zM0iH).

Proof, (i) We first show that Fre3tiH, WJ) for each fe 01(E). In fact

||Fre"iHlW±/||2 < 2 ||Fr||2 ||e-iHt WJ-Je^ff+1 WFJe-^'fY.
The first term converges to zero as t^-ioo, hence m±(||e~iH<W±/-Je"iH(',/||2) 0.
Also, by hypothesis, m±(||FrJe~iH<,t/||2) 0, so that our claim follows from (Ml),
(M2) and (M4).

(ii) Let heM^iH), /e£l(E) and g= W+f. Then

K/t,g>| |<e-iHth,e-iH'g)|

\(iI-Fr)e~iH,h, e-iH,g) + (e-iH,h, Fre-iH'g)\

^\\iI-Fr)e-^h\\\\g\\ + \\h\\\\Fre-iH'g\\.

Given e >0, one may choose r so that the first term on the r.h.s. is less than e/1
for all f >0. Since Fr e38+(H, g), there is a r>0 such that the second term is less
than e/1. Hence \(h, g)|<e for each e>0, i.e. (h, g> 0. Thus J<J(H)±a(W+).

(iii) Now assume that / is such that flMoiH) and /13?(W+). We must show
that /=0. So suppose fj=0.

Let cpesd0 be such that g cpiH)fi=0. Since Jl^iH) is invariant under e'lHt,
we have gS-MoiH). Thus, since g^JitiH), there are two sequences {t.,} and {r„}
such that („ -»+00, ^—»+00 and

||(I-Fr>-iH'"g||>o>0 for all n. (26)

Since each bounded sequence has a weakly convergent subsequence, there is a
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subsequence {tnJ of {tn} such that {exp(-iHtnJg} is weakly convergent. We
relabel the subsequence {t^} and the corresponding subsequence {r„k} and use the
fact that compact operators map weakly convergent sequences into strongly
convergent ones. We then find from (23) (cf. the proof of Corollary 2) that
/*exp(-iHtn)g /*cp(H)exp(-JHtn)/ converges strongly to some vector in 9if.
Since I-Fr —» 0 strongly and

||(I-Fr„)e-^g||<||(7-FJ(J-ta/*)||||g|| + ||(/-Fr„)/*e-iHt"g||,

it follows that ||Cr-FrJe"~iHt"g||-»0 as n-»co. This contradicts (26), so that we
must have /=0. This proves (a).

(b) If 91(E)çX^ÇHo), then 9t(Wjçz3€aciH), hence by (25) ^sc(H)c
MZiH)nM0iH)=M0iH). M

Corollary 4. Under the assumptions of Theorem 2, the following two
statements are equivalent:

(a) M+0iH) M~0iH),

iß) the wave operators W+ satisfy asymptotic completeness in the geometric
sense, namely 0l(W+) 9l(WJ) M0(H)X.

Remark. If the wave operators fl± also exist and W± fl±, then (a) or (ß)
implies that the scattering operator S iî*fi_ is unitary in the subspace 3?(E).

Corollary 5. Assume in Theorem 2 that s-lim FrJe~lH°'f - 0 for each r and
eachfe&liE). Then

%e MtiH)®MtiH) M0iH)®M^iH).

III. Remarks and examples

We collect here a few remarks about our theorems and indicate how they
may be applied in non-relativistic potential scattering.
(A) If one replaces in (C3) and (C4) 9t(H,f) by 38», then the conditions
(C1)-(C4) and (C6) in Theorem 1 are assumptions on the operators H0, J,

HJ-JH0, E and F± which, in applications, are expected to be explicitly given.
(C5) is a condition on H, called 'local evanescence', which we have purposely
isolated from the other assumptions (see (K) for a motivation of the term 'local
evanescence').

The conditions (C3) and (C4) may be replaced by the following two conditions

(C3') and (C4')=

(C3') EiH0-ir1iH0J*-J*H)iH- i)'1 e33*(H, /),
(C4') (I-E)J*eB*(H,f).

Also, if J I, then (C5) and (C6) clearly become redundant.
(B) If one knows in addition to the assumptions of Theorem 1 that <rc(H)c
crciH0), one may replace in (10) the real line IR by crc(ff0).
(C) If one assumes in (A2) only that T is a set of Lebesgue measure zero and
makes the assumption that ^(E)çggac(i-f0), one obtains in Theorem 1 that W±
are complete in the sense that 3ft(W±) 2i?ac(H).
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(D) Some useful possibilities for the projection E in Theorem 1 are the following:

(a) E E°c, the projection onto the absolutely continuous subspace of H0. In
this case one obtains the usual wave operators fl.± s-
lim exp iiHt) exp (-iH0f)E°c as t —» ±00.

(ß) E E", the projection onto the continuous subspace of H0. In this case
the wave operators are partial isometries mapping 3fc(H0) onto "XciH).

(7) E E°, the orthogonal projection onto the subspace MJJI^) of all
scattering states of H0 [17, 16]. Here it is assumed that one has a

sequence {Fr} of localizing operators which serve to define the scattering
states M*iH0) as in (3), and that Mt(H0) Ji\liH0)=MJH.0).

(E) If si0 c C^flR), the condition (Cl) may for example be weakened to (Cl') : Jfe
DiH) for each / in 2tfc(H0) having compact support in the spectral representation
of H0.
(F) Theorem 1 has the peculiarity of not applying immediately to the trivial
situation where H H0, J I and 96sc (H0) {0}. In this case, the conclusions of
the theorem are clearly valid. But only the assumptions (Cl), (C2, c), (C3)-(C6)
are trivially satisfied; it is a non-trivial fact that one may find two operators (even
projections) F± satisfying (C2, a) and (C2, b) with E Eac ([18], Theorem 8).
(G) As another illustration of the usefulness of averaging, consider the case
where J=I, (H-H0)(H0+i)-2e3L and DiH) DiH0). It follows [19, p. 261]
that (H-H0)(H+i)-2e38oo. Hence, by (16), iHQ + i)-1iH-H0)iH+ i)'1 e3t(H, f)
for all / in the dense subset {/=(H+i)_1g I ge^c(H)} of 9ifc(H). Since (H0 +
jT^H-HoXH+O-1 is bounded, this implies (C3) for all feXe(H).
(H) The conditions (C1)-(C5) do not exclude the possibility that W± 0, i.e.
dKciH)-{0}. (An example is given by the harmonic oscillator H=-A + |x|2,
H0 -A in L2(IR"), if one takes / to be multiplication by a function ;'(x) in
Co(IRrt)). The partial isometry of vV± is obtained only after imposing a condition
of the type (C6).
(I) Let EA and El be the spectral projections of H and H0 respectively associated
with the interval A. If one replaces in (Cl) and (C2, c) the operator J by EAJ with
J e 38 (Si?), then part (I) of Theorem 1 gives the existence of the local wave operators
s-lim EAeiM'Je~iHotEAE as f —» ±00. If furthermore A is compact, (Cl) becomes
redundant. (In (C2), E may also be replaced by EAE). If one assumes (C3)-(C5)
for each feEJt°ciH), or (C6), (C6') with E°AE instead of E, one obtains the
corresponding conclusions locally (on A).

Suppose that

(C2, c') dt \\EAiHJ-JH0)cPiH0)e-iHoEF±\\ <=o, Vcp e sto,

for each compact interval A. Then EAelHtJe lH»'E has strong limits as t —» ±00 for
each compact A. If one assumes in addition a weak version of (Cl), e.g.

(Cl') F<f>(H)J(p(H0)e38(3r)

for each (peM0, where F^IR-^C is such that ^^(A)!-»» as |A|-^oo and
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l-Ftaf>(A)|2:l, then W± exist. This follows easily from the identity

eiH'Je-iH°'<PiH0)g E[_M,M]ciH7e-iH"^(H0)g

+ ^(H)]-^/- E[_M;M])eiHtF,t(H)J<P(Ho)e-iHo'g

and the fact that WF+iH^il-Er_MM)\[-^0 as M-*oo.
Also notice that, if one assumes the existence of W± and (22), then (Cl) and

(C2, c) can be dropped altogether.
(J) Two-space Scattering Theory. Let H0 act in a Hilbert space 9€0 and H in a

Hilbert space "M. J is a bounded operator from 3H.0 to 3Œ and J* maps back from 3€

to "Mr,. Assume (C1)-(C4) and

(C5)2 nfrflRZ* - J*)e-iH,/||2) 0 V/e K(H),

where Z is a bounded operator from 3€0 to %€ satisfying ||Z*ri||>c||ri|| for some
c > 0 and all he%k. One then gets wave operators W± s-
lim exp iiHt J exp i~iH0t)E as f-»±oo. If fl3€p(H) and f±9l(W+), one obtains
from (20) and (C5)2 that Z*<p(H)exp(-.Hf)/—»0 in the generalized sense, so
that (p(H) exp (- iHt)f —» 0 in the generalized sense by the hypothesis made on
Z*. Hence £%(W±) 2t?p(H)x as before, and H has no singularly continuous
spectrum if £%(E)ç^ac(H0).

If for example

(C6)2 m±(||(Z-J)e-iHo'/||2) 0 Vfe9t(E),

then, as in (24), ||W+/|| lim||Zexp (-iF^O/ll as n—>^, and W+ is a partial
isometry only if this limit is equal to \\f\\ for each fe^kiE).
(K) Potential Scattering. In non-relativistic scattering theory, one has H0 -A in
%£ L2(taRn). J is the multiplication operator by a C°°-function / such that /(x) 0
for |x|<R and /'(x) l for |x|>R + l, where R is any finite number (J satisfies
(C6')). F± may be taken to be the spectral projections associated with the
intervals (0, oo) and (-oo, 0), respectively, of the self-adjoint operator A |(P • Q +
Q • P) (Q multiplication by x, P= —i grad) [5]. Thus, roughly speaking, states in
the subspace F+2i?(FLffl) are such that the projection of the velocity onto the
position vector is positive (negative). Also E I.

If v:Un-+U is a potential such that multiplication by u(x)/(x) is a H0-
bounded operator, we define H to be an arbitrary self-adjoint extension of
H -A + v with DiH) JDiH0) (notice that, unless we take j l, H is not
densely defined since all functions in DiH) have support outside the ball
BR ={x | |x|<.R}.) One has HJ- JH0= VJ-(AJ)-2i(VJ) • P, where e.g. (AJ)
denotes the multiplication operator by (Ay)(x).

To prove (C2, c) it suffices to exhibit an invertible operator TeSßiX) such
that

||[VJ-(AJ)-2i(VJ) • P](H0+ lfrT^H-CtaOo for some a =0
and

llTe-^'^^FJI-Sc^d + Irl)-1-8 (27)

for some S>0, all fëO respectively and all tap€^ CO(IR\{0}). This may be
proved for instance for T=|A + i|-1-28 [5] or for T (7+|Q|r1_2S [20] provided
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that

vix)jix) (1 + |x|)-^2S[wœ(x) + wp(x)] (28)

with w„e L"(R") and wp eLP(|R") for some p >max{2, nil}. (The terms with (A/)
and (V/) give no difficulties since Aj and V/ are in Co (IR"), hence of the form of
the r.h.s. of (28)).

The fact that T* has dense range also implies (C2, b): If g T*f, then

||F±tap(H0)e-iH",g||<||Te+iHoItap(H0)F±||||/|HO as t^T»
so that (C2, b) holds, in the sense of normal convergence, on a dense set and
hence on Sf.

Thus, if v has the form of the r.h.s. of (28) outside some ball BR (for some
8 >0) and if all states in WciH) are evanescent in the sense of (C5), H± exist and
3ì(jQ±)= dfëpiHY. (Local conditions on v implying evanescence can be found in
[10,13l.fr>

A different pair of operators F± is used in [6].
(L) Oscillating Potentials. One can also treat potentials that oscillate sufficiently
rapidly near infinity. Take n 3, assume v to be spherically symmetric and define
wir)=-gvis)ds. If

|w(r)|<(l + rr^8[/„(r) + /2(r)] for r>ro>0, (29)

with /coeL"(R+), rf2eL2iU+) and S>0, then one can show as in Eq. (25) of [22]
the existence of a function cp0 : U+ —» IR such that, as r —» oo.

cpo(r)=l + 0(r-6/2)

and

d<p0(r)/dr=w(r)[l + 0(r-s/2)]

(set e S -1 in Eq. (21) of [22]). Take / =j<p0, with / as before. Then, as in [22],

(H/-ta/H0)taP(H0)e~iH",F±={w0(|Q|)+w(|Q|) • P^Ho)^"-^,
where |w0(r)|<c1(l + r)~m +c2 |w(r)| (m any real number) and |wk(r)|<c3 |w(r)|
for r>R (fc 1, 2, 3). Hence, as in (K), one has existence and strong asymptotic
completeness of fl± provided v satisfies local conditions such that all states in
Wp (H)x are evanescent. The condition (29) is satisfied for instance for potentials of
the form u(r) crK sin (ry) with k eU and y —k >2. (For other results on oscillating

potentials, see [4]).
(M) One sees that, for the geometric proof of completeness to work, it is not
necessary to have local compactness or a condition of subordination, e.g. of the
type

>P(P)E(a,b)iH)e®im (30)

for some tp going to infinity at infinity and all a,beU, which has been used in

' It is interesting to note that the geometric proof of asymptotic completeness, at least in potential
scattering, can be carried through by purely time-dependent methods without invoking the spectral
theorem [21].
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previous work (e.g. [4, 7, 8]). Only evanescence is essential. However, from a
condition of the type (30), evanescence can easily be inferred [10].
(N) It is an interesting feature of the geometric method that the combination of
certain ergodic or similar assumptions (cf. (C2, b), (C3)-(C6)) with a Cook type
hypothesis (cf. (C2, c)) may lead to the conclusion that averaging over time (for
instance in the definition of the subspaces of scattering states) may be left out. In
fact, if xR(Q)(H+ ï)"1 e Soi» (xr is the characteristic function of the ball BR), then
s-lim Xr(Q) exp (-iHt)f 0 for each R<oo and each feW^H) [10], hence for
each fe 3tfp(H)x under the hypotheses of Theorem 1.

(O) Local Absorption. Assume there is a bounded closed set IS of Lebesgue
measure zero such that ueLfoc(IR" \S) for some q>max(2, n/2) and vj satisfies
(28), where /' is as in (K) and vanishes on some ball BR containing 2 in its interior.
Let H be an arbitrary self-adjoint extension of (-A+ u) |,C0=(IRn \S). We denote
by Cf(Rn) the set of all bounded functions in C°°(IR") vanishing in some
neighbourhood of 2. We denote by Ji^iH) the subspaces of all states that get absorbed
at 2 as t —» ±oo [11] and by M^iH) the subspaces of all states that get absorbed on
the time average. These subspaces are defined as follows:

feMt(H) O lim \\Ke~iHtf\\2 0 Vfc e C|(R"). (31)

where K denotes the multiplication operator by the function k, and

\\Ke~iHtff dt 0 Vk e Q(IRn). (32)

We also set Mx,ac(H) Mx(H)r\%ac(H).

1 f±T
feMtiH)<SXim-

T-wo i J„

Theorem 3. Let H be as above and H0 -A. Then the wave operators
ü,± s-lim exp iiHt) exp i~iH0t) as t —» ±°o exist and one has generalized asymptotic

completeness in the following sense:
(a) As t —» +00, state vectors in the absolutely continuous subspace of H are

either scattering states and belong to the range of £l+ or absorbed states, and
similarly as t —» —oo. More precisely:

%?aciH) MtiH)®Mtac(H) M-iH)@M^aciH) (33)

and

®tiÇl±) MtiH). (34)

(b) State vectors in the singularly continuous subspace of H are bound states,
and as t —> ±oo, they get absorbed at 2 on the time average:

3KsciH)çzM0iH)r)MiiH)r)M^iH). (35)

In particular, one has asymptotic completeness in the geometric sense if and only if
MtaciH) Ji^aciH).

Proof. The domains of H and H0 coincide locally on IR" \2 as well as outside
BR [23,11]. This implies (Cl) and the compactness of k\i- J*)iH+ i)"1 for any
fc e C^iUn). Also, by the results of (K), (C2)-(C4) and (C6') are satisfied (for each

tp e Co°(IR\{0})), with <3tiH, f) replaced by S8«,, and the convergence in (C2, b) is
normal convergence.
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If fellCaciH), then exp(-.Hf)/ converges weakly to zero as r—»±oo. Hence
Kil-J*) exp(-iHt)(H+i)_1/ converges strongly to zero. Since the set {(H +
i)~7IfeW^iH)} is dense in W^H), we have

s-lim K(I-/*)e^H,g 0 Vge^ac(H). (36)
t—*±a°

Similarly one obtains from (6) that

1

lim
t— TJ \\K(I-J*)e-aithfdt 0 VheWsciH). (37)

If fe"MaciH) and f±9l(Cl+), then by (20) and Lemma 1, s-
lim J*exp(-ifft)/ 0 as t^+oo. Inserting this into (36), we obtain s-
limKexp i-iHt)f=0, which proves (a). Similarly, if heèWsciH), then by (6), (20)
and Lemma 1:

s-lim —
T— T) P*e~iHthfdt 0

which, together with (37), implies that heM^(H). The fact that heM0iH) follows
from Theorem 2: the localizing operators Fr are given by (2) and satisfy the
hypotheses of that theorem. ¦

We expect that the result of (b) is true under weaker assumptions on v
outside BR. In that case the wave operators may not exist, and our proof will then
not be applicable. The local assumptions on v could also be somewhat weakened
[7, 24].

One may ask the question whether all states in 2tfsc(H), in addition to being
bound, get absorbed at 2 in the ordinary sense, i.e. whether WsciH)çzM^iH) (no
time average!) This is so if and only if lim (h, e~lHth) 0 as f^»±oo for each
h eS€sciH). Based on results in [25], one may construct examples of operators H
(e.g. of the form H (piH0+ V)) for which exp i~iHt)h is not weakly convergent
for h e "sKsciH). Some details on this will be given in [26]. It follows however that
in general (e.g. under the hypotheses of Theorem 3):

MiiH)n2esciH) MziH)r)zesciH). (38)

This together with (35) shows that X,C(H) is symmetric with respect to the
behaviour at £ -oo and at t +oo.

For scattering theory (with short range potentials), one wants to be in the
subspace orthogonal to the bound states. So, by Theorem 3, one is automatically
in (some subspaces of) iK^iH). Also note that ^(fi±) are the sets of states which
evanesce to infinity in the usual sense of convergence.
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