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Quarkonium spectra in the framework of quantum
chromodynamies1)

by R. D. Viollier2)
Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and J. Rafelski3)
CERN, Geneva, Switzerland

(10. VI. 1980)

Abstract. We study the nonrelativistic bound states of heavy quark-antiquark pairs in the
framework of quantum chromodynamics. Our static potential is related to the Fourier transform of the
'dressed' gluon propagator. Aside from the quark masses, the model contains two free parameters:

(i) the scale parameter of the theory A, and
(ii) the radius r0 where an additional confining force must be considered.
We evaluate the spectra of heavy quarkonium states solving the Schrödinger equation with our

flavor independent potential. The spin dependent parts of the interaction are treated in first order
perturbation based on the generalized Breit-Fermi interaction. We evaluate the leptonic decay widths
and electromagnetic transition rates using spin independent wave functions.

With A 0.44 GeV, r0 0.38fm, mc 1.525 GeV, and mb 4.929 GeV the charmonium and
bottomium spectroscopy is reproduced very well. This can be interpreted as evidence for the validity
of quantum chromodynamics. We also discuss the (bc)-spectrum and toponium spectrum as a function
of the top quark mass mt.

1. Introduction

It is now well accepted that the'new resonances', e.g. J/dj and Y, are bound
states of heavy quark-antiquark iQQ) pairs. The richness and form of the spectra
suggest a description in terms of the Schrödinger equation [1] with a convex
potential. Two families of such states, the J/t/. =(cc) and the Y ibb) resonances,
are known today. There is a strong theoretical expectation that at least one more
family, £ (jf), may exist which has a new type of heavy quark, the top quark t
[2], as the fundamental building block.

The spectroscopic properties of these heavy quarkonium states represent a
sensitive test for quantum chromodynamics (QCD) [3], the nonabelian gauge
theory of strong interactions. The reason for this fact is that the nonrelativistic
heavy quarks (c, b, t) essentially probe the static quark-antiquark potential. Many

') This work is supported in part through funds provided by the U.S. Department of Energy (DOE)
under contract EY-76-C-02-3069.

2) Present address: Inst, for Theoretical Physics, University of Basel, Switzerland.
3) Present address: Institute for Theoretical Physics, University of Frankfurt, West Germany.
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studies of the charmonium ice) and bottomium ibb) systems have been based on
the Coulomb + linear potential for the static quark-antiquark interaction. This
approach, motivated to some extent by QCD, has been fairly successful in the
description of the charmonium spectrum [4, 5]. However, there are important
vacuum polarization corrections [6-11] which will affect this simple form of the
potential. The strong polarizability of the perturbative vacuum is reflected in the
well-known property of asymptotic freedom [12], arising from the dependence of
the running coupling 'constant' on the momentum transfer q,

«(q2)=R 2/.2V (D
BNf log (-q2/A2)

For a general SU(^colorCg>SU(/)flavor theory of strong interactions BNf is given by

BN/ (llN-2/)/127r (2)

where N represents the number of colors, and / stands for the number of
(massless) quark flavors contributing to the polarizability of the vacuum. From
scaling violations in deep inelastic reactions [13], the scale A in equation (1) is

expected to be within the range of 100 MeV s A s 700 MeV.
Our intention is to show that the currently available quarkonium spectra lend

a strong support towards QCD as the theory of interacting quarks. The spin
independent static potential W0ir) is the Fourier transform of the Coulomb
propagator dressed with the running coupling constant (1). For a general
SL/(JV)colortag)Sta7(/)flavor theory we have

W0(r)=--3
ZTT J

f «(-Iql2)
1 12 e
|q|

CN (N2-l)/2N

-iqr J3d3q (3)
zn- j \q\-

where

(3')

is the color factor [14] of a QQ system in a color singlet state. As compared to
previous models [4-11], our approach will mainly improve the intermediate range
behavior (0.1fmSrs0.4fm) of the interaction. Since the potential (3) does not
have the desired long-range property (rä0.4fm), we will assume that the
confining part grows linearly beyond a certain radius r0. The proper understanding
of this sector is related to the confinement puzzle which will not be further
discussed in this paper.

We describe the nonrelativistic system in terms of the Schrödinger equation
(h=c l)

V2+w]ip Edj. (4)
mQ

The total mass M of the bound state ip is given by the quark mass MQ and the
binding energy (-E), i.e.

M=2mQ + E. (5)

The spin structure of the interaction W(r) has the general form [14]

Wit) W0(r) + Wi(r)L • S+ W2ir)S12+ W3ir)Vl • <r2 (6)
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where L is the orbital angular momentum, S12 denotes the tensor operator

S12 3(ffj • f)(<r2 • r) - «T! • a2 (7)

and

S 2-(<T1 + <r2) (8)

represents the total spin of the quark-antiquark pair.
The details of the spin independent potential W0ir) are determined by QCD,

and will be given in Section 2. If W0ir) can be represented as a sum of a Lorentz
vector and scalar piece

vV0(r)=Vo(r) + S0(r) (9)

the spin dependent potentials are found via the nonrelativistic reduction yielding
the generalized Breit-Fermi interaction [14]

'
w(r)= I (3dV° ldS>>

2ntQ \r dr r dr
1 /ldVo d2V0\

W2(r) —— I— —-) (10)
\2mQ \r dr dr I

W3(r) ^YV2V0.
DftlQ

In Section 3, we will solve the Schrödinger equation for heavy quark-
antiquark systems. The spin dependent parts of the interaction are treated in first
order perturbation theory. We compare the calculated ice) and ibb) levels with
the experimental data, and predict the (rf) and (be) spectra. The leptonic decay
widths and electromagnetic transition rates are evaluated and compared to the
corresponding experimental quantities. In Section 4, finally, we will briefly discuss
the significance of our results.

2. The quark-antiquark potential

It is worthwhile to begin with a short derivation of the running coupling
constant (1), in order to establish the domain in which we can trust our theoretical
potential. The longitudinal gluon propagator, iDiq2), can be expanded in terms of
the irreducible gluon self-energy or vacuum polarization, — ia0q2II(q2), yielding

iDiq2) —2 + —2 i-ia0q2l\iq2)) ~2 + —2 Ha0q2II(q2))
q <r a. q

x~i-ia0q2Iliq2))^+---=^ (11)
q q q2l + aon(q2)

Thus, in this approximation, we are led to the straightforward identification of the
running coupling 'constant'

<*(q2) ,+ aL .v (i2)l + a0n(q2)
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Here a0 denotes the 'bare' coupling, i.e. the coupling for which the gluon
self-energy vanishes.

The imaginary part of the II(q2) along the cut on the time-like real axis is
related to the gluon decay into gluons and quark-antiquark pairs in the perturbative

vacuum of QCD. For massless gluons and quarks we have in first order

Im n(q2+ ie) -BNfrr. (13)

We now turn to the evaluation of the analytic function II(q2) via a once subtracted
dispersion relation

n(q2)-n(-,x2)=- l dM2 Im n(M2+ie)
1 1

JVI2- M2 + ^
yielding

n(q2)-n(-p2) BNflog(-q2/p2).

(14)

(14')

For convenience, the subtraction point has been taken at a space-like momentum
transfer, q2=—p.2.

Combining equation (12) and (14'), we arrive at

a(q2)-
o-i-p2)

(15)l + a(-p2)BNflog(-q2/p2)
where a(-p2) is the coupling constant, renormalized at q2 —p2. Equation (15)
is readily transformed into equation (1) by introducing the scale parameter A

A p exp
1

(16)
2ai-p2)BNf\

Thus, the dressed gluon propagator (11) develops a branch point at q2= 0 where
the bare propagator has a pole. In addition, the dressed propagator has a pole at
q2 -A2 which represents a 'Landau ghost'4) with a positive residue. Thus, in this
first order approximation, the gluon can transmute into a massive tachyon. The
occurrence of this pole is clearly unphysical and therefore it should be removed.
This point will be discussed in greater detail elsewhere [15].

We can trust, however, the discontinuity of aiq2) across the timelike real
axis, since it is related to the physical process of the gluon decay in the
perturbative vacuum. With

Ima(q2+Ì£) for q2>0, (17)
BNj[(logq2/A2)2+.r2]

one can easily find the spectral representation of aiq2) in terms of its singularities

dM2 A2
aiq2)2"-BNj i; (18)

[(logM2/A2)2+.r2](M2-q2) q2 + A2.

In this form, the contribution along the cut in the complex plane is explicitly
separated from the spurious pole term.

We are now ready to perform the Fourier transform (3) based on the spectral
representation (18) at spacelike momentum transfers, q2= -|q|2. First, we have to

4) In the case of QCD it should be called a 'Landau tachyon'.
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specify how to integrate around the tachyon pole. The simplest interpretation of
the singular integral (3) in terms of a principal value leads to a real potential

vVo(r)=WpoIe(r)+Wcut(r). (19)

For N=3 and Bf BNf(N=3), the contribution of the tachyon pole is

Wpole(r) —- (1 - cos Ar),
3Bfr

while the cut term is given by

Wcutir)--
3Bfr

(fr OdM2

o [(logM2/A2)2+.r2]M2"

(20)

(21)

The potential Wcutir) is obviously an attractive 'Coulomb like' interaction,
represented by the dotted line in Fig. 1 for a particular choice of parameters. The
interaction is of varying strength and less singular than the Coulomb potential at

1

1 1 \/ y
Wpole^fr /jev j y' /wpole + wcut

/ /0.5

0

s' / Wpoie ^/ // // /
/ // l/ | |

/5 1 r [fm ] 1.5

/ ..'"' wcut

-0.5 / / QQ-POTENTIAL

// A 441 MeV

// r0 .378 fm

// m u iTid 0

-1 _ Ì ms 300 MeV

I»

l/ I 1 1

Figure 1

The spin independent quark-antiquark potential.



Vol. 53, 1980 Quarkonium spectra in the framework of quantum chromodynamics 357

1 1

er2, ä-2

ä-2

/ ^«ta

/' <Xs ^~ / "Vta

/

/
/
/

1

1 1

¦ta. a"2

1

-

0 .5 I r[fm] 1.5

Figure 2
The effective coupling constant ajr) and slope parameter ä~2(r).
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short distances. This can be seen in Fig. 2 where the dotted line represents the
'effective coupling constant' defined as

as(r)= -%rWcutir). (22)

It varies between as 0.4 at r 0.05fm and a,. =0.8 at r 0.5fm.
The potential Wpole(r), shown for the same set of parameters by the dashed

line in Fig. 1, must be taken with more caution. It is tempting to identify this term
with a 'confining' potential. However, Wpoleir) cannot describe permanent
confinement, since it oscillates and reaches its first maximum of roughly 550 MeV at
about 1 fm. While W^^ir) is probably incorrect for large values of r, there is

reason to believe its structure at short distances. Thus, motivated by gauge
theories on a lattice [16], we extrapolate Wpole(r) linearly beyond a certain radius
rn

WpoleW -{ WpoieW r<r0
Wpole(r0)+ W[^ole(/-0)(r-r0) r>r0

(23)

The extrapolation radius r0 is a phenomenological parameter to be determined
from the experimental data. The 'linearized' potential W^^ir) is represented by
the dashed-dotted line in Fig. 1, while the solid line stands for the total potential,

W0(r)= Wpole(r)+Wcut(r), (19')

actually used in the calculation. In order to facilitate the comparison with other
models, we have plotted in Fig. 2 the 'effective slope parameters', defined as

â-2(r)=Wpole(r)/r. (24)

It varies between a-2 0.18 GeV2 for short and ä~2 0.14 GeV2 for large
distances.

As a final point, let us discuss how to include the effect of finite quark masses
on the polarizability of the perturbative vacuum. The up and down quarks can be
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assumed as massless, but we should allow for a finite mass of the strange and
heavier quarks. The gluon part of the irreducible vacuum polarization is for q2 > 0

Imng_gg(q2+.e)=-^, (25)

while each quark flavor (Q u, d, s,c,...) contributes

Imn^0ô(q2+.e) ^(l+^)Vl-^ (26)

for q2>4m2Q which corresponds to distances rs(2mQ)_1. We could certainly use
equations (12), (14), (25) and (26) to derive the exact form of the potential, but it
is sufficient to change the value of / in equation (2) by one unit as r becomes
smaller than (2mQ)_1. Thus, if we restrict ourselves to three quark flavors,
mu md 0 and ms ^ 0, the constant B, in equations (20) and (21) is replaced by
the function BsBir) defined as

B^rìAi-ì)^-2^ <27)

which interpolates smoothly between the two limiting cases

1 1

BeffW B3
1 1

Beff(r)~B2

r« (2m.fr1

(28)

r»(2msr1.

The exponential range of Befi(r) is adjusted to the approximate range of the
vacuum polarization potential arising from strange quark-antiquark pairs.

3. Numerical results

3.1. The spectra

We now turn to the discussion of the numerical results. A straightforward
potential description of the states above flavor threshold is unreliable due to the
strong coupling to the decay channels. Thus, we will restrict ourselves to the study
of the low-lying states. The charmonium and bottomium spectra are evaluated
solving the Schrödinger equation with the potential shown on Fig. 1. We insert
the masses of the light quarks, mu md 0 and ms 300 MeV, from the bag
model. For charmonium, the three free parameters of the model, A, r0, and mc,
are determined by fitting the IS, 2S, and IP levels to the experimental 1 3St
(3.097), 23S, (3.686), and to the center of gravity of the 13P0,i,2 levels at
3.523 GeV [17], respectively. The fit parameters A 441 MeV, r„ 0.378 fm, and
mc 1.525 GeV, are compatible with what one may expect from other sources
[4,13]. For the bottomium spectrum we use the same potential. The only
parameter left, the bottom quark mass mb, is adjusted to the experimental 1 3SX

(9.46) level of bottomium [18] yielding mb =4.929 GeV.
In Fig. 3 and Table 1, we present various quarkonium spectra. The agreement

between theory and experiment in the case of charmonium is largely due to
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Figure 3
The orthocharmomium and orthobottomium spectra. The observed states are compared to calculations
with a spin independent force.

the fact that the three lowest levels have been fitted. Thus, the only independent
tests of the model are the experimental 3 3SX (4.030) and 1 3Dt (3.772) levels.
Unfortunately, the theoretical prediction of the first is unreliable, since it is far
above charm threshold, while the latter cannot be compared to the calculated
center of gravity of the 1 3D123 levels without introducing spin dependent forces.

The real test of our QCD potential is the bottomium spectrum. Here the
observed 23S1 (10.02) and 3 3Sj (10.38) levels are below bottom threshold, and
represent therefore a conclusive test of the model. Our calculations agree very
well with the observed bottomium spectrum, thus confirming the reliability of the
first order QCD potential. In fact, it includes both concepts, asymptotic freedom

Table 1

The orthoquarkonium spectra for (cc), (bb), and (be) bound states in GeV. The observed states are
compared to calculations with a spin independent force (* fit).

E

I

V] —
¦///////,

0.5 -4-
—

— BB

— threshold

Bottomium

0

T"
—

Spectrum —

S P D F

\ experiment

— theory „--•— — fit
0.5 —

(cc) (bb) (be)

state experiment theory experiment theory theory

4S 10.628
3S (4.030 ±0.010) 4.090 10.38 ±0.04 10.370 7.30
2S 3.686 ±0.003 3.686* 10.02±0.02 10.039 6.93
IS 3.097 ±0.002 3.097* 9.46 ±0.01 9.460* 6.34

3P 10.543
2P 3.951 10.275 7.18
IF 3.523±0.005 3.523* 9.921 6.77

2D 10.456
ID (3.772±0.006) 3.806 10.176 7.05

IF 10.366
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and linear confinement at large distances, and does therefore a much better job
than e.g. the Coulomb + linear potential. We recall here that the original
Coulomb + linear potential [4] fails by about 150 MeV in the description of the 2S
and 3S bottomium states. Assuming that the flavor threshold is at 680 MeV,
independent of the quark mass, we predict the 11S0 state of the bottom meson
B (bü) at 5.27 GeV. Recently a bottom meson has been reported at 5.3 GeV
[19].

We have studied in detail the quark contribution to the vacuum polarization.
The major effect on the spectrum arises from the massless up and down quarks.
As expected, the quark contribution increases the overall level spacing of the
spectrum. The massive strange quark, however, affects mainly the lowlying states,
since only the short-range part of the interaction is changed. Thus, it lowers e.g.
the masses of the J/ip and Y particles by 13 and 38 MeV, respectively. Of course,
the charmonium and bottomium data could be reproduced omitting entirely the
strange quark vacuum polarization. In fact, we obtain a similar fit to the observed
spectra with A 472 MeV, r0 0.462 fm, mc 1.505 GeV, and mb 4.909 GeV
which sheds some light in the uncertainty of the parameters. In this context, it is

interesting to note that the mass difference, mb — mc 3.404 GeV, is to a large
extent independent of the choice of the potential parameters [20].

The quarkonium spectrum, plotted as a function of the quark mass mQ, is
shown in Figs. 4 and 5. While the excitation energy to the first excited state
remains roughly constant («600 MeV) in the range of 1.5 GeV:£ mQ s 9 GeV, it
increases rapidly at larger quark masses. For example at mQ 15 GeV we have
already M(23S!)-M(1 3Sx) 707MeV. Here the lS-wave function is concentrated

in a domain of roughly 0.1 fm which makes the excitation energy very
sensitive to the short-range behavior of the potential and thus to the vacuum
polarization contribution of the heavy quarks.

Of course, the energy levels of other nonrelativistic quark-antiquark bound
states like the (be), (tc), and (tb) systems can be calculated, as well. Introducing
the reduced and the total mass of the (bc)-system, i.e.

mbmc
mbc ¦ (29)

mb + mc

and

M=mb + mc+E(2mbc) (30)

we can predict from Figs. 4 and 5 the triplet states of the (bc)-mesons (Table 1).

3.2. Spin structure

It is worthwhile to begin with a brief discussion of the current data on the
spin dependent interaction. The spin orbit and tensor splittings of the P-levels in
charmonium are well established. Based on first order perturbation theory and
equation (6) we obtain

"
M(l 3P2) M(l 3P) + Wi(l P) -1W2(l P)

M(l 3P.) M(1 3P)-WX(1 P) + 2W2(1 P) (31)

M(l 3P0) M(l 3P) - 2Wi(l P) - 4 W2(l P)
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Figure 4
The energy levels of the S and P states of quarkonium as a function of the quark mass mQ.

From the experimental P-levels 1 3P2 (3.554), 1 3P1 (3.508), and 1 3P0 (3.413) [17]
one can deduce the center of gravity of the 1 3P0,i,2 states (Table 1)

M(l 3P) 3.523 GeV (32)

and the expectation values of the spin-orbit and tensor interaction (Table 2)

Wfp(l P) 35 MeV
W2xp(l P) 10 MeV.

(33)
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G

Figure 5

The energy levels of the D, F, and G states of quarkonium as a function of the quark mass mQ.

Table 2

The observed and theoretical expectation values of the spin-dependent interaction in MeV. The
theoretical numbers for charmonium and bottomium are calculated using a pure vector potential.

(cc) (bb)

experiment theory theory

state w. W2 W3 W, W2 W3 w. W2 W3

4S 0 0 3.0
3S 0 0 0 0 15.4 0 0 3.8
2S 0 0 0 0 20.0 0 0 5.4
IS 0 0 30.3? 0 0 36.6 0 0 13.4

3P 13.9 1.7 1.2
2P 59.3 6.5 6.8 16.9 2.1 1.4
IP 35 10 76.1 8.2 8.9 24.4 3.1 2.0

2D 7.3 0.8 0.8
ID W1 + 1W2 37.1 3.4 5.6 8.9 1.0 1.0

11.3?

IF 5.2 0.5 0.7
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Similarly, we have for the D-states in first order

M(l 3D3) M(1 3D) + 2W,(1 D)-fW2(l D)
M(13D2) M(13D)-W1(1D) + 2W2(1D) (34)

k
M(l 3Di) M(l 3D) - 3 Wi(l D) - 2 W2(l D)

from the observed 1 3Di (3.772) level and the theoretical estimate for the center
of gravity of the 1 3D1>2>3-states, M(l 3D) 3.806 GeV, we conclude (Table 2)

Wfp(l D) + lWlxp(l D) 11.3 MeV(?). (35)

This relation, however, is less reliable, since it depends also on the theoretical
value of M(l 3D).

The hyperfine splitting of the various states is given in first order by

M(n3L)-M(n1L) 4W3(nL)
L S, P,... ; n 1, 2,...

Here the experimental situation is less clear. In fact, since the states at 2.830,
3.454, and 3.590 GeV have not been confirmed by more refined experiments at
SLAC [19], no paracharmonium state is really well established. However, recently
a candidate has been reported at 2.976 GeV [19] which might very well represent
the long expected nc, the 11S0 partner of the Jfdi particle, yielding (Table 2)

Wrp(l S) 30.3 MeV(?). (37)

Our calculated matrix elements are shown in Table 2 for charmonium and
bottomium. Here the spin independent potential W0 is assumed to be of vector
type. For charmonium, the tensor splitting W2(l P) 8.2 MeV and the hyperfine
splitting W3(l S) 36.6 MeV agree reasonably well with the experimental values
of W2xp(l P) 10 MeV and W|xp(l S) 30.3 MeV(?), respectively. However, the
theoretical spinorbit splitting Wx(l P) 76.1 MeV is about a factor two larger
than the experimental value of Wixp(l P) 35 MeV. The discrepancy is even
larger for the 1 D-states, since, instead of 11.3 MeV (equation 35), our model
predicts

Wi(lD) + |W2(lD) 39.2 MeV. (38)

Thus, even if our estimate of M(l 3D) was too low about 30 MeV, the theoretical
prediction (38) is still about twice as large as the experimental one. This may
indicate the presence of an additional scalar potential S0(r). We will return to this
point below.

Using the matrix elements given in Table 2 and equations (31) and (34), we
can deduce the energy levels of the 1 P and 1 D states in orthobottomium

M(l 3P0>1,2) (9.860, 9.903, 9.944) GeV (39)

M(l 3D1>2>3) (10.147,10.169,10.193) GeV. (40)

However, as in the case of charmonium, we should not trust this prediction too
much, except for the fact that the splittings are much smaller than for
charmonium.

In spite of the numerous attempts to understand the observed splittings of the
charmonium states quantitatively, the spin structure of the quark-antiquark
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interaction is still an open question. Following the conventional approach within
the framework of the generalized Breit-Fermi interaction (10) one may introduce
a scalar component S0(r) in the spin independent potential (9). The one-gluon-
exchange potential has presumably vector character at short distances. But at
intermediate and large distances, when the confining mechanism sets in, the
potential may acquire an unknown scalar component S0(r). Since there is experimental

information on the splittings of three states (1 S, 1 P, and 1 D) which
probe different space regions, one may parameterize the shape of the scalar
potential, however, at the expense of the predicting power of the theory. With a

simple power law ansatz

lAr" r>rl
and V0(r)=W0(r)-S0(r), the scalar contribution to the various spin dependent
potentials is

SW3(r)=-

(2-n)nAr"~2

n(n + l)Arn"2

8W2(r)=-- -fr-^ for r<n (42)
12mQ

6m 2

and ôW1(r)=ôW2(r) ÔW3(r) 0 for r>rx. A good fit to the observed spin
dependence is obtained with

"

n 3

A 0.961 GeV/fm3 (43)

rx 0.805 fm.

3.3. Leptonic decays and electromagnetic transitions

An interesting consistency check of the model are the leptonic decay widths
usually calculated through the van Royen-Weisskopf [21] formula

T(n 3S^ TD j^T^ta l«An(0)|2e2Q- (44)

Here a denotes the fine structure constant, eQ is the charge of the quark in units
of e, and ipn(0) is the n 3Si-state wave function at the origin. This equation,
however, is subject to large radiative corrections, arising from the exchange of
gluons, which tend to suppress the leptonic widths dramatically. In fact, equation
(44) should read

T(n 3S^ m jv~T~5 k(0)|2 e2QF(m2Q). (45)
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The correction factor F(itiq) has been evaluated to first order in a(q2) [22] giving

F(m%)=l~-a{m& (46)
J TT

where «(jtiq) denotes the strong coupling constant at timelike momentum transfers.

Since the correction is rather large, one may conclude that the first order
result is unreliable. Thus, at the present stage, Fim2^) is best kept as a free
parameter to be determined from the charmonium and bottomium data. In Table
3 the leptonic decay widths are shown for charmonium and bottomium. Here the
theoretical widths of the ground states have been fitted to their experimental
values by introducing the scale factors

Firn2) 0.55 and Fimi) 0.61. (47)

In first order, these correspond to the coupling constants of

a(m2) 0.27 and «(mg) 0.23, (48)

respectively, which are somewhat larger than expected from the three gluon
decays. Thus, only the widths of the excited states are meaningful in our
comparison of the theoretical and experimental data in Table 3. The widths of the
IS states agree very nicely with the experimental data.

For completeness, we also mention the electromagnetic transition rates for
charmonium. In nonrelativistic approximation, the rates for electric dipole transitions

are given by [14]

T(E1,13S^ 1 3PJ) ^(2J+l)4a[M(23S1)-M(l 3Pj)?(lP\ r \1S)2

T(E1, l3Pj^l 3S1)=te2Qa[MH 3P,)-M(13S1)]3<1S| r |1P)2

where (n'L'\ r \nL) is the electric dipole matrix element

(n'L'\r\nL)-- Vn^ir)rUn^ir)r2 dr, (50)

and UnLir) the normalized radial wave function. Using the experimental masses
of the l3Si, 23S1; and 1 3P0,i,2 states, the 2S-1P transition rates

r(Fl, 2 3Sj^ 1 3P0>1>2) (70, 58, 40) keV (51)

are a factor 2 or 3 larger than the observed El transition rates of (17±8) keV.

Table 3
The experimental and theoretical leptonic widths in keV for charmonium and bottomium. The
theoretical values are computed with F(m^) 0.55 and F(mi,) 0.62 (* fit).

(cc) (bb)

state experiment theory experiment theory

4S
3S
2S
IS

(0.75±0.15)
2.10±0.30
4.80 ±0.60

1.3
2.0
4.8*

0.33±0.10
1.20 ±0.20

0.23
0.30
0.45
1.2*
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This discrepancy indicates the limits of our present understanding of the short-
range quark-antiquark interaction. Clearly more work is needed on higher order
QCD corrections to the electromagnetic transition rates. For the IP-IS transition

rates we obtain

T(E1,1 3Po.!,2^ 1 3S1) (194, 428, 583) keV. (52)

We now turn to the magnetic dipole transitions in charmonium. The description

of the forbidden transitions is uncertain due to coherent relativistic effects.
We therefore focus on the allowed magnetic transitions [14]

4 el
3 mir(Ml, n3Sl-^n 1S0) --^a[Min 3S1-Min ^o)]3. (53)

Assuming that the 11S0 state is at 2.951 GeV as predicted by our model, we
obtain

r(Ml, l3S1^l1S0) 5.8keV. (54)

However, using the reported 1 ^o candidate at 2.976 GeV [19], the decay width
for a magnetic dipole transition

r(Ml, l3S1-*l1S0) 3.3keV (55)

is much closer to the experimental upper limit of 1.1 keV for the transition.
Placing the 2 1S0 state at 3.606 GeV, our model predicts a 2S-transition rate of

r(Ml,23S1-^21S0) lkeV (56)

which is not in contradiction with the experiment.

4. Conclusions

We have described nonrelativistic heavy quark-antiquark bound states in the
framework of quantum chromodynamics. The static quark-antiquark potential is

W0ir)=-^°^+ä-2ir)r (57)
3 r

where both the 'effective' coupling constant asir) and the slope parameter ä~2(r),
vary significantly (Fig. 2) in the region of interest.

Our calculations reproduce the observed orthocharmonium and ortho-
bottomium spectra quite well. The agreement between the theory and the
experiment not only confirms the validity of the perturbative approach to QCD
and asymptotic freedom, but also establishes a strict quantitative relation between
the parameters of the theory and experiment. We obtain a scale parameter of
A 441 MeV, consistent with estimates from deep inelastic reactions [13]. The
quark masses, mc 1.525 and mb =4.929 GeV, as well as the phenomenological
extrapolation radius r0 0.378 fm seem reasonable.

For a general SU(N)color®Sta7(/)flavor theory of strong interactions the 'effective'

strength of the quark-antiquark interaction in a color singlet state is given by



Vol. 53, 1980 Quarkonium spectra in the framework of quantum chromodynamics 367

(58)

the ratio (see equations (2) and (3'))

CN _6tt 1-1/JV2

BNf_ll 1-2//11N'
Thus, for reasonable values of JV and /, this expression is rather insensitive to

the number of colors and flavors. While the fit parameters A, r0, mc and mb will
slightly vary if we change the flavor (or color) content of the theory, the mass
difference, mb-mc 3.404GeV, is remarkably stable. Moreover, the fit to the
observed spectra remains equally good. It seems therefore difficult to draw any
definite conclusion concerning the number of colors and flavors which are
required to describe the experimental spectra adequately. However, our calculations

are consistent with three colors and three flavors: two massless up and down
quarks, mu md 0, and a massive strange quark of ms 300 MeV. In view of
the theoretical and experimental uncertainties, the electromagnetic transition
rates and the leptonic decay widths are in reasonable agreement with the
experimental data. However, the detailed spin structure of the quark-antiquark
interaction, in particular the Lorentz character of the potential W0{r), still remains
to be understood. In this context, it is interesting to note that the introduction of a
scalar potential of the type S0ir) ~ r3 which may describe the transition from the
perturbative to the real QCD vacuum helps improve the spin splittings significantly.

Concluding we would like to emphasize that, if the top quark exists, the
toponium spectrum will be crucial test for the model. Assuming a top quark mass
of m, a 20 GeV, toponium will probe much more the domain that can be
described by perturbative QCD and that is presumably less sensitive to
phenomenological modifications at large distances.
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