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On quantization of the electromagnetic field

G. C. D'Emma*
Laboratoire de Physique Générale et Optique (L.A. n° 214 "Holographie et Traitement Optique des

Signaux"), Faculté des Sciences et des Techniques, F-25030 Besançon Cedex.

(6. X. 1980; rev. 4. XII. 1980)

Abstract. We first construct the Hilbert state space of the classical electromagnetic field. This
construction is given in the helicity representation and uses the theory of the extensions of representations

of the Poincaré group. Each state satisfies the Lorentz gauge condition; a particular rôle is played
by the Lorentz radiation gauge (Coulomb condition). The results obtained show that the field operator
splits into a classical scalar part and a quantum transverse one.

Introduction

The problem of the quantization of the electromagnetic field is a very old one
[1]. During the twenties, Dirac studied the emission and the absorption of
radiation [2]. In his model the relativistic invariance is completely destroyed,
because the field is split into a radiation field and a static Coulomb field; then only
the radiation field is quantized, the static field remains classical. Since then, the
covariant treatment of this problem has been considered by many authors [3a].

In the standard procedure of quantization of the electromagnetic field, one
difficulty is the Lorentz gauge condition [3b]: it is considered as a subsidiary
condition acting on the state vectors which describe the electromagnetic field.
However, the best known method is that due to Gupta and Bleuler [3c], [4], [5].

In their scheme, the state space is a vector space with indefinite metric. There
are four kinds of photons: two kinds of transverse photons, the longitudinals
photons and the scalar photons. The states describing the scalar photons have
negative 'norm'. Longitudinal and scalar photon states are eliminated by the help
of the weakened subsidiary condition: one must take the Lorentz gauge condition
only for the annihilation part of the potential operators acting on the 'physically
desirable' states. The 'physically undesirable' states are connected with gauge
transformations.

Indeed, states with the same number of longitudinal and scalar photons have
zero 'norm': one can then define different vacuum states with positive 'norm'
using particular linear combinations of such longitudinal and scalar states.
Moreover, for a given transverse state, the addition of such a linear combination
corresponds to a description in terms of potentials related by a gauge transformation

[6].

* This research has been partially supported by the Swiss National Science Foundation.



536 G. C. D'Emma H.P.A.

In this paper, essentially based on the author's Ph.D. thesis presented to the
Faculty of Sciences of the University of Geneva [7], we present a group theoretical

approach of the problem with two main purposes: to construct the Hilbert
state space of the electromagnetic field [8] and to obtain the decomposition into a
classical part and a quantum one in a covariant manner. Moreover we analyse the
rôle played by the invariance gauge and the gauge conditions, especially the
Lorentz and Coulomb gauge conditions.

The main mathematical tools used are the extensions of zero mass representations

of the restricted Poincaré group [9]. Indeed, the usual action of this group
on four vectors satisfying the Lorentz condition is given by a decomposable
representation [10]. The existence of an intertwining operator between this
decomposable representation and the extension of zero mass representations with
helicities 0, +1, — 1 and 0 allows the passage from the canonical basis to the local
helicity basis. It follows, in natural way, the decomposition of the field operator
into a classical scalar part and a quantum transverse one. The first one is
associated with the vacuum state and is gauge dependant. If one chooses the
Coulomb gauge, this scalar part is identically zero. We will see that this choice is
related to the direction of the time [11], if the radiation field interacts with a
material system. The quantum transverse part of the field operator is composed
by the two helicity components, which are gauge indépendant and associated with
photon states. We call photons what Gupta and Bleuler call transverse photons;
so we do not introduce the notions of longitudinal and scalar photons.

Thus we develop a formalism which, on the one hand, avoids the mathematical
difficulties due to the indefinite metric and, on the other hand, splits the field

as in Dirac's model. Moreover the gauge transformations are clearly related to the
vacuum state representations. We point out that this approach does not follow the
axiomatic point of view of the quantum field theory [12].

To conclude this short introduction, we briefly mention the contents of the
following sections. In section I, we shall construct rigorously the Hilbert state
space for the classical electromagnetic radiation field. In section II, we give the
action of the restricted Poincaré group on this Hilbert space. The intertwining
operator is explicitly built up. Then the extension of representations and its
domain are discussed. In section III, we construct the Fock space and define the
field operator and its components. Finally, section IV is devoted to the covariance
and the gauge invariance of the field operator. We shall distinguish two cases: the
free radiation field and the interaction of the radiation field with matter.

I. State space of the electromagnetic field

1.1. Definitions

Let M be the differential manifold R3\{0}, which is embedded in R4 by:

M->C+c-R4
p (p\ p2, p3) ~ p» (p\ p2, p3, |p|/c) (p, |p|/c),

where |p| +((p1)2 + (p2)2 + (p3)2)1/2 and c is the light velocity. The range C+ of
this embedding can be explicitly written as

C+ {p-€R4|g^p^ 0 and p4>0},
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where the g^'s are the coefficients of the following sesquilinear hermitian form:

fl 0 0 0

0 10 0
(g*v) I

0 Q 1 0

^0 0 0 -c2 I

Let H L2iM, dmip)) be the Hilbert space whose elements are complex functions
defined on M and square integrable with respect to the measure dmip)
d3p/c |p|.

The scalar product of two elements u and v of H is denoted by (u, v) and
defined by:

(u, v) J dmip)uip)vip), (1.1)

where u(-) is the complex conjugate of «(•)•
Let © H be the direct sum of four copies of H: @H H®H®H®H. An

element of © H is denoted by / and its components by f*. We define in this space
the canonical scalar product between two elements / and h of © H:

if, h) if1, h1) + if2, h2) + if3, h3) + c2if\ h4), (1.2)

where (f\ iV1) is defined by (1.1). The norm of / is given by ||/|| \(f, /)|1/2.
Henceforth we will call this norm the euclidean norm. We also define a
sesquilinear hermitian form:

B(f,h) if\ h1) + if2, h2) + if3, h3) - c2if\ h4). (1.3)
4

Among the elements of © H, we want to restrict our attention to those which
satisfy the following condition:

g^vPT(p) 0 for any p»eC+,
4

which we will call the Lorentz condition. All the elements of © H obeying this
4

condition form the subspace Ht of © H, i.e.

H1 {/6©H|/4(p) £^p, where /(pO (/Hp\Wmf(p))}-

We denote by b the restriction to Hx of the form B (1.3). We have the
following results:

h is a non negative form.

We call 'kernel of b' the subspace (H^o of Ht on which the quadratic form
associated with b is identically zero:

ker b (HOo {g e Hx | big, g) - 0}.

(Hj)o is given by:

(H1)o={g€H1|g-(p) x(p)p,i and jdm(p)|p|2|x(p)|2<°°}. (1.4)
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1.2, Quotient space

Two elements / and h of H1 are defined to be equivalent if they differ by an
element g of (Hx)0 i.e.

h /+g and g»(p) x(P)p», p»eC+, (1.5)

where the scalar function x is finite in the sense given in (1.4). (1.5) is called a
(Lorentz) gauge transformation, because it leaves invariant the Lorentz condition.
The equivalence classes^ form the quotient space SK HJiHJo. The equivalence
class of / is denoted by /. The euclidean norm of / is defined as the quotient norm:

||/||= inf ||/+g||. (1.6)

St equipped with this norm is a Banach space.
The scalar product between two classes / and h is defined as the scalar

product between the representative elements /' and h' which are orthogonal to
(HOo:

if,h) if',h'),
(f',g) (h',g) 0, Vg eCHOo. (L?)

(/', h'), (/', g) and (W, g) are given by (1.2). As (H^)0 is closed, this scalar product
defines a Hilbert structure on St. The norm \(f', f')\V2 of this hilbertian structure is
exactly the quotient norm (1.6) [13].

On the other hand, the sesquilinear hermitian form is simply defined by
bif,h) b(f,h) where / and h are any representative elements of the classes / and
h. b is a positive definite form. The quadratic form associated with it allows us to
define another norm, called the b-norm:

iita%=i£(/,/)r, as)
which is less than or equal to the euclidean norm:

ll/M/ll.

1.3. Coulomb condition

Among all the representative elements of a class, there is a particular one
which plays an important rôle in radiation theory. It is the one which obeys the
Lorentz and Coulomb conditions, namely:

p-/(p)=o.
This representative element / is obtained by the means of a gauge transformation

(1.5) acting on some other representative element / of the same class /.
Explicitly we have:

t(p)=r(p)+x(p)p» a.9)

and x is the following scalar function:

/-n c ,4/-, P • f(p)
x(p)=-W{f(p)=-1Fr.
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This particular representative element f is orthogonal to CHi)0:

(/, g) 0 for any g € (H^o-

Thus / is the representative element /' of (1.7). Moreover b(f, h) is equal to if, h)
(because f4 and h4 are zero). Collecting these results, we obtain that the scalar

product (/, û) of two classes f and û and the value b(f, fi) of the form b (evaluated
on the same classes) are equal:

(f,h) bif,Û).

In particular, the euclidean norm || • || and the b-norm || • ||g of any class coincide.
From now on, we shall omit the symbol and denote by the same letter / an

element of St (i.e. a class) and a representative element of this class.
A class / is called a state of the classical electromagnetic field: each class is

indeed formed by elements which obey the Lorentz condition and two elements of
the same class differ by a gauge transformation (1.5). We say that each class

corresponds to an electric field and to a magnetic induction and each representative
element of this class corresponds to a four potential obeying the Lorentz

condition: we shall say that the field is described in the Lorentz gauge. If we
represent this state by the element / which obeys the Coulomb condition, we shall
say that this state is given in the Lorentz radiation gauge.

II. Actions of the restricted Poincaré group SP

ILL Representations of SP

We want to give the action of the restricted Poincaré group 2P in the various
Hilbert spaces of the previous section. Let us recall that, in the Hilbert space
H L2iM, dmip)), & acts by the unitary irreducible representations Vx of zero
mass, positive energy and helicity A.( -1, 0, +1). If (a, A) is any element of £?>,

where a e R4 stands for a translation and A for a proper orthochronous Lorentz
transformation, Vx(a, A) acts on an element u of H as follows:

(Vx(a, A)u)(p) exp (- ir^pp-a3) • exp (2.A0(A, p)) • u(A"1p) (H.l)
where h is Planck's constant divided by Irr and 0(A, p) is a function of A and p
with values in the interval [0, lrr[. If A is represented by the SL(2, C)-matrix

A(A)=(ai1 a»\ (II.2)
\a21 a22/

then we have:

exp(.0(A,p)) ^ (II.3)
m

with 7 a22(|p| + p3)-a12(p1 + ip2). The helicity k takes the values -1, 0, +1.
4

In our direct sum space ©H, the action of £9* is given by the following
bounded operator:

(%(a, A)fr(p) exp (- in-WOA^f (A"1?)- (II.4)
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4

The restriction to the subspace Ht of © H and the quotient of Hx by (H^o do not
induce any formal modification to (II.4). However, we denote by Uia, A) the
action of & in the state space St; Uia, A) is unitary.

On the other hand, the operator which leaves invariant the choice of
Coulomb representative element f* is given by:

Üia, A)fTip) exp - ih-1 g^p-a0 (a?- c p A4)/" (A"1?). (II.5)

[7(a, A) is obtained by a gauge transformation (1.5) defined by the scalar function
(cf. (1.9)). >

(l/(q,A)/')4(p) „ 3 A^r(A-V)
X(p) -c rq -exp(-i/i g»3P « K rzr, •

II.2. Helicity representation

The representation %(a, A) is decomposable. The problem is to find an
intertwining operator II(p) such that:

n(p)%(a, A)n-1(A-1p) Wia, A) (II.6)

where Wia, A) is an extension of the representations Vx(a, A) defined in [9]. The
operator II(p) can be considered as a local change of basis in the space © H.

In order to do this, we consider the underlying helicity representation. Il(p) is
constructed in the following way:

n(p) T-a(p),
where r is defined by its action on the f*'&:

(rfy f3 + cf4,

(rff^f-if,
(rf)3=f1 + if2,

irf)4 -f + cf
and a(p) is composed of a rotation pip) and a boost ß(p) such that:

a(p) 0(p)p(p) and a(p)p»=pZ (II.7)

with po =(0,0, l,c_1). n(p) takes the following explicit form:

(TLf)1(p) <l<1(p)=-pJ»(p),
(n/)2(p) ^2(p) -x.(p)/-(p),
(n/)3(p) ^(p)=-x,(p)r(p),
(Tlf)4(p) >l>4(p)=-Pj»(p),

with

P.. (p\ - c |p|), PV pj5 (P, c |p|), (II.8)
IpI

*m"Ìha<ikp>(',+*,>'
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X2(p) ifr,+Fi7F|T 3Ap2 + ipx), (H.9)
Ipi IpKIpI+p)

X3(p)—i?T'
X4(p) 0.

Then W(a, A) introduced in (II.6) can be written (in matrix notation) as
follows:

W(a, A)

fV0(a,A) z(A,p)V+(a,A) z(A, p)V_(a, A) |z(A, p)\2V0(a, A)>

0 V+(a,A) 0 z(A,p)V0(a,A)
0 0 V_(a,A) ^Ä7p)V0(a,A)
0 0 0 V0(a,A)

(11.10)

and its action is given formally by:

iT (p) (W(a, A)i^r(p) W(a, A)^^(A-1p)-
These Vx's, A. ±1,0, are given by (II. 1) and z(A, p) is the following complex
valued function:

1 äß + y8
z(A,p) - g 7 (11.11)

IpIM +M
with

a a21(|p| + p3)-a11(p1-Hp2),

ß a11(|p| + p3) + a21(p1-ip2),

J a22(\p\ + p3)-a12(p1 + ip2),

8 a12(\p\ + p3) + a22(p1-ip2).

z appears (with 0) in the SL(2, C)-matrix representations of the little group SPo of
Po-

«*»< 73-
Po-z(A, p) and 0(A, p) (see (II.3)) characterize the following element of S.

A(0(A, p), z(A, p)) A(p)A(A)A-1(X=V),

where A(p) is the SL (1, C)-matrix associated with a(p) (II.7) and A (A) with
A (II .2).

Remark. Because of the little group multiplication law

A(01; z1)A(02, z2) A(0! + 02, Zi. + e2ie>z2),

the function z(A, p) obeys the 1-cocycle equation

z((Ai, P)(A2, p)) z(Als p)+ V+(fll, A1)z(A2) Afp) VöHai, Ax).
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In the helicity basis, where the states are described by the components $*, the
scalar product of © H is given by:

(t/., <£) j dm(p)sUp)Vm<t>v(p), (11.12)

where the s'^pYs are the coefficients of the canonical scalar product (1.2)
expressed in the new basis:

/IpI2 0 0 0

1/0 10 0
(Op)) 21 0010\o 0 0 |p|-2i

The sesquilinear hermitian form corresponding to (1.3) is now denoted by ß(dj, <b)

and is given by:

ß(th, <*>) j dm(p)glJÏ(d<b»(p), (11.13)

where the gjfrs are the coefficients of the sesquilinear hermitian form expressed
in the helicity basis:

VOtalVV r-f

(11.13) becomes:

ßb!>, (b) M(«/>2, (b2) + (*\ (f>3) - (*\ <t>4) - («A4- ^1)}.

where (if/*, <bv) is given by (1.1).

Remark. This sesquilinear hermitian form is invariant under the Poincaré
group. The above expression of this form is one of the possible invariant
sesquilinear forms defined by Rideau [9].

II.3. Domain of the extension

Consider the multiplication operator z(A, p) (11.11). Because of the simple
pole at the origin p (0,0,0), it is an unbounded operator. The domain of the
extension W(a, A) cannot be the space © H. We restrict W(a, A) to the subspace
®D D®D®D®D, where D is the space of C°°-functions of compact
support on M; D is a dense subspace of H and © D is dense in © H.

Following the same procedure as in section I, we define the subspace Di
formed by the elements obeying the Lorentz condition, expressed now as follows:

Di {i//e©D|i//4 0}.

So for every element of Du the first component if/1 is simply related to the fourth

0 0 0 -i
0 1 0 0

0 0 1 0

1 0 0 0
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component f4:

^(p)=2c|prnp)=2^^.
if/1 is called the scalar component.

Now the scalar product (11.12) restricted to Dx is:

(* <p) -à«**, 4>2)H*3, <P3)}+1j dm(p) IplW)^), (11.14)

and the restriction to Dx of the form ß is given by (we still call it ß):

ß(*, <*>) M(«/>2, d.2) + (<p3, <b3)}. (11.15)

ß is degenerate. Its kernel is the following:

(Dx)0 kerß={xeDi\x2 x3 0}. (II. 16)

The elements of (Dj)0 give the gauge transformations (cf. (1.5)). We see then that
these transformations do not affect the components \fi2 and if/3; they modify only
the scalar component iff1.

On the other hand, the action of 0* given by W(a, A) on t/.2 is determined by
V+(a, A) only: if,2 is the helicity +1 component, we call it t/fr. The same is true for
tp3 with the opposite sign of helicity: we call it iff'.

Remark. We have the well-known result that the gauge transformations do
not modify the helicity components.

Going on with the procedure of section I, we define the quotient space
3> Di/(Di)0; two equivalent elements tf/"- and qb11 differ only by their scalar
component:

<b1(p) dj1(p) + lX(p),
where x(p) (2, 0, 0, 0) is an element of (DOo (it is easy to verify that the image by
n(p) of an element g of (Hi)0 (see (1.4)) is of this particular form).

The space 3) is provided with the quotient norm and the quotient form ß (cf.
§1.2, (1.6) and (1.8)).

The action of £9* on 2 is defined by a restriction of W(a, A) (owing to the
Lorentz condition tff4 0):

V0(a,A) z(A,p)V+(a,A) z(A, p)V_(a, A) \
W(a,A)=| 0 V+(a,A) 0 1 (11.17)

\ 0 0 V_(a,A)/

The representative element ifi* of the class \fi written in Lorentz radiation
gauge has its scalar component equal to zero (Coulomb condition). It is obtained
by means of the gauge transformation defined by x(p)= _l,l'1(p) (see (1.9)):

^(p) ^(p) + 2x(p) 0.

This representation element is orthogonal to (Di)0: the quotient norm of the class
dt is given by the norm of ^ (cf. (1.6, 7)). Then, by comparison of (11.14) and
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(11.15), we see immediately that the scalar product (i/., <b) of two classes if/ and <b

and the value ß(dj, <b) of the form ß (evaluated on the same classes) are equal:

(dj, <b) ß(ib, <b).

On the other hand, the action of ^ on â which leaves invariant the Lorentz
radiation gauge is obtained by the intertwining operator II acting on U (see (II.5)
and (II.6)) and then by restriction to 3):

W(a, A) U(p)U(a, A)n"1(A"1p), (11.18)

(*
0 0 \

0 V+(a,A) 0 (11.19)

0 0 V_(a, A)/

The asterisk stands for

V0(a,A)(l-cpAi).
\P\

This extension is reducible to the direct sum of V+(a, A) and V_(a, A):

w(a,A) V+(a,A)©V_(a,A),
(V+(a,A) 0 \ (11.20)/V+(a,A) 0 \

W(fl'A)=l 0 V_(a,A)}

Its action is given by:

dj'(p) (w(a, A)dj)(p) V+(a, A)^+(A"1p) © V_(a, A^^A"1?).

III. Quantization

III.l. Fock space [15]

We want to sketch the construction of the Fock space in this framework; it is
not necessary for this construction to limit oneself to the subspaces D, Dx, (D^)0,
3).

(i) First we consider the tensorial product Hn Ht eg) • • • <8> Hj with n s* 1

and H0 C. The scalar product and the form ß are simply defined by the product:

(<A(„), (f>(n)) û (^i, 4>i),
1=1

ß(^M, </>(„)) Il ß(% <f>i),

J=l

where if/M (t^,..., if/n) and <b(n) (<bu ...,<f>n) belong to Hn. (t/.,, <fc) is given by
(11.14) and ß(^,, ta^) by (11.15).

The kernel of ß, (Hn)0, is given by the direct sum of n subspaces of Hn and
each subspace by the tensorial product of (n — 1) spaces Hj and one space (Hi)0:

(Hn)0 {djM (djx,..., i/c.) 13k, 1 =£ fc *sn, ife e (H^o/
((Hi)0 (g> Hi eg) • • • <g> Hi) © • • • © (Hi <g> • • • ® Hx eg) (H^o).
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The quotient space HJ(Hn)0 is isomorphic to the tensorial product Stn

SK® • • • ®St of the quotient space 5if H1/(H1)0:

Hnl(Hn)0=-Stn.

In Stn we define two (bounded) operators:

ta.(T,)ta/.(n) (Ti,ta^1,...,ta^n), n>0, (ULI)
a(r\)\fß,n) ß(r\, tf!i)(ifi2,..., ifin), n 5= 1, ,jtj 2)
^(t|)'/'(o) —0 and r\ belongs to SK.

(ii) Next we define the tensor space 3~(St) as the direct sum of the Stn\:

3'(St) (&Sti;
1=0

an element *P of 3~(St) is a sequence of elements if/(n) of 3^n such that:

¥ {*»), *œ, *«» • • •} and IW I H^(n)ll2 < °°-
n=0

Obviously, the scalar product and the form ß are defined in 3~(St) by the sum:

(¥,*)= I (lA(n). </>(n)),
n=0

3(¥,*) I ß(«/V), <*>(„))•
n=0

The operators «(•) and a(-) extend (canonically) to 3~(%t):

ciri)^ {0, «(t))i/.(o), «(t))^!), • • •},

«(^)*=W-n)t/'(l).«(T))t/.(2),«<T))t/.(3), ...}.
Moreover we define two other operators:

(1) the symmetrisation operator S:

S^P {Sta/.(0), Sd/m, Sdj(2), ...}
with SdjM (n!)-1^ (itaci), • • •, itacn)) and the sum runs over the n! permutations
of (1,..., n);

(2) the number operator N:

Nv=mm,idjm,idjm,...}.
(iii) Now we consider the subspace ^ of 3~iSt) generated by the finite linear

combinations of elements of the form {0,..., 0, djlk), 0,...}. In other words, an
element ^P of ^ is such that it exists a subset $ of the set N and i/>(lc) 0 for
k =N\ta?. <3 is dense in 3~(2t).

The symmetrised space S3~iSt) is the Fock space SF. We call SF0 the symmetrised

subspace S^; SF0 is a dense subspace of &.

III.2. Field operator

We have seen in section II that the euclidean norm ||-|| and the ß-norm ||-||ß

are the same on the quotient space St. But to emphasize the invariant character
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under the Poincaré group we will use the form ß instead of the scalar product, in
particular for the adjointness: Let û be a linear operator defined on STiSt); we call
adjoint of û an operator üt such that

ß(#, eW) ß(C<I>, V), 4>, * e STiSt).

We define now the annihilation operator with domain .§:

ai-) Sa(-)y/NS

and its adjoint, the creation operator:

at(-) sVJVc(-)S.

They obey the following commutation rules:

[a(u),a(!)] [at(T.),at(e)] 0,

[a(Tj),at(|)] ß(Tj,-|)S, TuÇeX.

The field operator si(-), with domain &0, is defined by

rf(;) !(a(-) + at(-)).
sd(-) is essentially selfadjoint on &0. the commutation rules are:

[M(dj),M(4>)] ^lmß(iP,(b), dj,<be2e.

III.3. Components of the field operator

Until now we have associated a field operator s£(ift) to each state \\i of the
electromagnetic field. To write down explicitly this state if/, we have to choose a

representative element $*. Similarly, for the field operator s£(dj) we must define
its component si^dj).

(i) Let us consider the state if/. We choose the Coulomb representative
element i/.1*:

«/fr=(0;t/.+; dj-;0). (III.3)

The components si^iff) of the field operator si(dj) in Lorentz radiation gauge are
defined as:

k^) (0; s4+(*); .*-*_(«/>); 0), (III.4)

where sd±(ifj) acts only on the A.-helicity components (4^ of a state <5 of !P0,
$ {</>«»> </>(i), <t>(2), •••}, where <bM (cb1,..., <b\^ belongs to Stn and (b\\ (0;
(i-kX; (d**)-; 0) to St. This ^(t/r) may be written as s4(if/*).

(ii) A particular attention must be paid to 'zero' class of St(i.e. the kernel of
ß, (Hi)0). The representative elements of this class are of the type (cf. (11.16)):

X»=(X, 0,0,0).
As this class is the kernel of the form ß, the operator a{X): Stn —» Stn_x defined by
(III.2) is identically zero:

"(x)<1>m ß(x, «hXife, • - • ,*n)- o,
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for every i/.(n) («^,..., djn) belonging to Stn. Thus the annihilation operator a(X)
associated with this class is identically zero.
On the other hand, the operator c(x) : Stn -*¦ Stn+1 defined by (III.l) applies the
'zero' class of Stn onto the 'zero' class of Stn+1:

4x)^m (x, «/>!,•••, *!>„) e (Hn+1)o,

for every dj,n) of SKn. The creation operator a\(x) commutes with every annihilation

operator a (tp):

[a(.W,at(x)]=ß(ikx)S 0. VtbeSt.

Under these conditions, the field operator sî(x) reduces to ^at(x) and commutes
with every field operator st(if/) associated with any state if/ of St:

¦**(*) §at(x),
{.s4(x),sé(ib)l 0, VibeSV.

We will say that the field operator s&(x) is classical. The components of the field
operator sd(x) associated with this particular state are

•sMx) (j*o(x);0;0;0).
•s^o(x) is called the scalar (classical) part (we put the index '0' instead of Y because
this part has no helicity). Note that if we choose the Coulomb representative
element x" (0; 0; 0; 0), st„,(x) is identically zero.

(iii) Let us consider a symmetrised element Siff(n) of SStn. We call it a state
with n photons. The Fock space SF is the space of states with an undetermined
number of photons.

The operators a(if/) and at(«/>) are the annihilation and creation operators of
a photon in the state dj.

The 'zero' class of SF (which is the direct sum of the 'zero' classes of each
subspace SStn) is the state without any photon: we call it the vacuum. It is
represented by the following element of SF: r\ ={i,(0), 0,...} and t.(0)= leSt0.

Remark. In the canonical basis, we can define in the same way the field
operator and its components:

r=(f\f2,f3,o), (in.3bis)

K(f) (Äi(f), Ä2(f), Ä3if), 0). (IIL4 bis)

We use a different symbol to distinguish between the canonical and helicity
bases (see §IV.2). But, in the canonical basis, the rôle played by the scalar
classical component Â4(/) 0 is less transparent.

IV. Covariance and gauge invariance

We want to discuss the covariance of the field operator under the action of
the restricted Poincaré group £?. Contrary to section III, we have to consider the
subspace 3 of St, which is the domain of the extension of representations Wia, A)
(11.17). We start with the electromagnetic radiation field alone. Next we will look
at the interaction of this field with matter.
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TVA. Radiation field (free propagation)

Let us consider the field operator st(ip) associated with the state dj. Both are
given in the Lorentz radiation gauge (III.3,4). The restricted extension w(a, A)
given by (11.20) leaves invariant^ the Lorentz radiation gauge: it applies the
Coulomb representative element «£"• of the state dj onto the Coulomb representative

element ty'* of the state iff'. The state dj' is obtained by the action of the
Poincaré transformation (a, A) on the state d/.

It is the same for the field operator:
We recall that the action of any unitary operator % on the field operator is

given by:

aUsl(d,)<!U.-1 sâ(aUdj).

Thus the action of a Poincaré transformation (a, A) on the field operator sâ(dj) in
Lorentz radiation gauge, action which preserves this gauge, is given by
the restricted extension co(a, A):

w(a, A)tarf(taA)w_1(a. A) st(w(a, A)dj) si(dj'). (TV.T)

By considering (II.5) and (11.18), we see that W(a, A) (and also w(a, A)) is
compound of the extension W(a, A) followed by a gauge transformation. But we
have shown that a gauge transformation affects only the scalar component of a
state and leaves invariant the helicity components. For a fixed state, the choice of
a particular gauge corresponds to the choice of a particular representative element
(because a state is an equivalence class). Thus, in this framework, this choice
influences only the scalar component. As the gauge transformations are all in the
same equivalence class, i.e. the 'zero' class (Dt)0, those transformations are
representative elements of this class. In the Fock space 3?, the direct sum of the
'zero' classes S(Stn)0 of each subspace SStn defines the vacuum. Then we can say
that a gauge transformation changes only the representation of the vacuum [6].

On the other hand, the field operator attached to the scalar component is
classical and gauge dependant. We have choosen the Lorentz radiation gauge in
which this operator is identically zero. Thus the radiation field is divided into a
classical and gauge dependant part and a quantum and gauge indépendant part.
The latter part is described by states of photons and quantum field operators
acting on them. Moreover the action of every Poincaré transformation (a, A) is
mixed with a gauge transformation (which depends on (a, A)) such that the choice
of the Lorentz radiation gauge is left invariant: the classical part of the field is still
zero.

We insist that this situation is only possible for a radiation field which
propagates freely. We will see now that the situation is different if the radiation
field interacts with matter.

IV.2. Interaction with matter

Let us consider a material system (e.g. an atom) which interacts with an
electromagnetic radiation field. The evolution of this system is governed by a

Schrödinger equation. By virtue of Galilei principle, the field which appears in the
hamiltonian of a massive particle must be a fourvector [8].

Now the action of the Poincaré group given in canonical representation by
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Û(a, A) and in helicity representation by W(a, A) and w(a, A) (II.5,19, 20) is not
the one which must act on fourvectors. Thus we have to work with U(a, A) and
W(a, A) (see (11.4,17)). Therefore the choice of the Lorentz radiation gauge is no
more left invariant by the Poincaré group. One possibility would be to abandon
the Lorentz radiation gauge. But, to our knowledge, the experimentalists always
use that particular gauge (without justifying their choice). How to conciliate then
the relativistic covariance of the field and the use of that particular gauge?

We suggest that the choice of the gauge is connected with the direction n of
time, where time is the parameter of the evolution. The space-time symmetry is
broken by this direction n (even if no electromagnetic radiation is present).
Furthermore this direction determines the representation of the fourmomentum
and spin operators of a relativistic particle [11]. The fourpotential appears with
the fourmomentum in the hamiltonian and, from a passive point of view, every
gauge transformation implies a change of the fourmomentum operator. Thus it is
not surprising that this direction n determines the choice of the gauge [14].

Remark. For the forthcoming discussion, we use the canonical representation
again to avoid the local dépendance on p.

As the Coulomb condition, which determines the Lorentz radiation gauge, is
a transversality condition, we postulate that the gauge is fixed by the following
relation:

g^T 0, feSK, (TV.l)

where the n^'s are the coordinates of the time-like fourvector n and the /*"s are
the components of a representative element of the state /. (IV.2) appears as a
generalised transversality condition which fixes the representative element.

The Coulomb condition corresponds to the choice of a frame such that n has
the following coordinates:

n" (0,0,0,1). (IV.3)

Under a Poincaré transformation (a, A), the coordinates n* change as usual for a
fourvector:

n'» Knv + a». (TWA)

Starting with n", the field operator A(f) is given in the Lorentz radiation gauge.
After a Poincaré transformation (a, A), n has the components given by (IV.4) and
the field operator Aif') is obtained with the help of Uia, A) given by (II.4):

Uia, A)A(f)U-\a, A) AiUia, A)f) Aif'). (IV.5)

Thus, as Uia, A) does not preserve the Lorentz radiation gauge, the field operator
is no more written in that gauge, but in a gauge fixed by (IV.2), i.e.

This dépendance on the components n* suggests to use them as a superselection
rule and to introduce a family of state spaces {St,,-.} and a family of Fock spaces
{SFnr.}; the construction of the previous sections corresponds to StA~. and 3Fn». We
lose in this manner the ambiguity due to the quotient structure: for every state /
of Stnv., the condition (IV.2) fixes unequivocally how to write it (i.e. the gauge is
fixed).
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Example. Suppose that for n given by n*, we first pick up a representative
element /"¦ of a state / such that (IV.2) is not satisfied. By means of a gauge
transformation (1.5), we may obtain the right representative element /fr

r(p)=r(p)+x(p)p*.
The condition (IV.2) gives the function x'

gt,vnr(p) o-^x(p) -EjiI^-,
\p\

which is an already known result (see (1.9)). f* will be written with the index

Remark. In helicity representation, the components of n depend on p. For
example, the components n" become:

n»(p) IKpXn" fe, 0,0, c |fl). (IV.3 bis)

The condition (IV.2) is written as (cf. (11.13)):

gl*n* (PW(P) n2(p)«/fr(p) + n3(p)dj-(p) - n4(p)^(p) 0 (IV.2 bis)

for every p belonging to C+.
The transformation law (IV.4) becomes:

n'*(p) A(pX(p) + a(pT, (IV.4 bis)

where

A(p)=n(p)An-1(p)
and

a(p) II(p)a, aeR4.

Finally, the law (IV.5) of the field operator is given by:

W(a, AM«/.)W-^a, A) s£(W(a, A)«/») stW), (IV.5 bis)

where W(a, A) is defined by (11.17).
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