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Abstract. The densities and currents of energy, momentum and quasi momentum for an elastic
anisotropic continuum are discussed in terms of phonons. It is shown that these expressions are in
agreement with familiar phenomenological formulae. Additionally we discuss the densities of spin and
quasi angular momentum. For crystals the quasi momentum is related to the concept of Umklapp
processes.

1. Introduction

In the companion paper [1], which we shall henceforth call I, we have studied
the continuous symmetry transformations for the continuous model of the crystal.
These transformations generate a set of local conservation laws or balance
equations. From these equations we have found the densities of energy, momentum,

quasi momentum, angular momentum, quasi angular momentum, spin, and
also the current densities for these quantities. Having the expressions for currents
one can find the suitable kinetic coefficients describing dissipation. For this
purpose one can use the exact but formal Kubo expression. Of course, since
Kubo's formula is exact the problem of calculation the analytical dependence of
kinetic coefficients on the temperature, wave vector and frequency is not a trivial
task and one should use some approximation schemes. In the case of transport
properties of crystals one usually uses a specific basis of eigenfunctions. Namely,
the basis of eigenfunctions of the harmonic part of the energy, called the phonon
picture (cf. for example [2]).

On the other hand, there exist simple phenomenological theories of the
transport properties of crystals in which phonons are treated as particles carrying
the energy and quasi momentum [3,4,5,6]. In these theories one uses definite
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expressions for the densities of energy and quasi momentum and for their
currents. The form of these expressions is borrowed from the kinetic theory of
rarified gases or from electrodynamics (cf. [7]).

Our expressions are microscopic and we shall compare them with
phenomenological formulae, which are correct in the hydrodynamical domain. In
this domain one deals with macroscopic motions, the characteristic length and
time of which are several orders larger than the macroscopic length and time
characterizing individual atomic motions. Hence we shall perform a suitable
averaging procedure.

Having identified quasi momentum we can study the transformations generated

by the total quasi momentum. We discuss them in the frame of quantum
mechanics. For this purpose, following Siissmann [8], we study a simple model of
a crystal, namely the linear chain.

2. Phonons, densities and currents

Now we shall derive expressions for densities and currents in terms of
phonon variables. The purpose of doing so is twofold. Firstly, the phenomenological

description of transport properties of dielectric crystals is given in terms of
phonons. Thus our expressions for densities and currents can be compared with
those used in phenomenological theories. Since such theories describe the hyd-
rodynamic, i.e. macroscopic, motions in crystals, the elastic continuum approximation

is well suited for such purposes. Secondly, the formula for total quasi
momentum will facilitate the derivation of the quantal selection rules for the
difference D P —P. We shall study this problem in the last section.

We consider solutions of the equation of motion following from the Lagrangian

given by equation 1(2.1)

PoK(y,t) C%1\aVßuv(y,t). (2.1)

Since this is a linear differential equation we take the solutions in the form of a
Fourier decomposition

u(y,f)=V-1/2Iü(k,Oeik-y
k

V-1/2Ü(0,0+V"1/2 X eikyOk(f)e(/c), (2.2)
..Mo

where V is the volume of the entire system and fc denotes the pair (j, k). The
index /' numerates the eigen vectors e(fc) and eigen values to2(k) of the dynamical
matrix l/p0C^fcafcß. Thus

llp0Ctkakßev(k) <o2(fc)<v(/c). (2.3)

We may also introduce the propagation matrix A(k) with elements

A„v(k) ka-Cl%, (2.4)
Po

where k k/|k|. Then (2.3) reads

A„(k)ev(k,/) ^^e(i(k,7). (2-5)
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In cases where the propagation matrix has the two-fold degenerated eigenvalue Ax
and the additional eigenvalue A3 corresponding to the eigenvector e(3), the
propagation matrix can be written in the form of an axial propagation matrix

A A1I + (A3-A1)e(3) x e(3) (2.6)

where I is the 3x3 unit matrix and the product u x v means

(u x ?)„, Upvv. (2.7)

In case of a 3-fold degenerated eigenvalue A, the propagation matrix A is the so
called isotropic propagation matrix

3

A A £•(») Xe(i) A/. (2.8)
i l

Let us choose the normal coordinates Qk in the form of the combination of
phonon variables ak and a* (k^O, -k (j, -k))

>2p0w(k)

Similarly, for the linear momentum we set

P(y,t) v-ll2ltv(k,t)e-i^

V-1'2p(0,t)+V'1'2 I -J^^e-^M-k)Bk (2.10)
j,k#0 ' ' -<¦

where

Then the Hamiltonian constructed from the Lagrangian I (2.1) takes the general
form

H -^—p(0,t)-p(0,0+ Z hto(k)(a*ak + akat). (2.11)

It is an easy task to show that the zero Fourier harmonic p(0, t) is proportional to
the lattice momentum. Indeed tracing back from the field p(k, t) to the
corresponding lattice variable, one finds

p(0,0=V"1/2 f d3yp(y)e-ik-y I

J >k=0

V-1'2 fp(y) d3y V~1/2P V1/2<p) (2.12)

where P is the total linear momentum and (p) the linear momentum per unit of
volume. Similarly one finds

ü(0, t) V'1'2 f d3yu(y)eik-y
I V'1'2 fu(y) d3y

J lk=o J

V"1/2(u), (2.13)

(u) being the average displacement of one atom.
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The first term of the Hamiltonian (2.11) now is simply the kinetic energy of
the center of mass

^P2 |MR2, (2.14)

where M p0 V is the total mass of the system and R V/M is the velocity of the
center of mass.

As we see, the state of a crystal is described in terms of the center of mass
variables and the phonon variables. In the quantum case these two sets of
variables mutually commute. They belong to different Fourier harmonics.

Next we shall quantize the canonically conjugated fields u, p. We impose the
condition of the canonical commutation rule

[My), PP(y')] in8a,08(y-y'). (2.15)

For the Fourier transforms we get from the above commutation rule

[üa(k), pß(k')] ih8aS8*M,, (2.16)

and the center of mass variables obey the commutation rule

[R^P^ihS^, (2.17)

whereas these commute with the other harmonics pM.(k) and u^(k). The phonon
operators obey the Bose communication rules

[ak, ak] 8Kk, 8*X8U, (2.18)

and additionally

[ak, R] [a*, R] [ak, P] [at, P] 0. (2.19)

With the use of these commutation rules the Hamiltonian takes the familiar form

H ^P2+ I hto(k)(atak + 12). (2.20)
LNl /,k#0

The time dependent classical fields should be understood now as quantum fields in
the Heisenberg picture. This means that the phonon variables oscillate, e.g.

ak(t) e-u-^'ak; af(t) e^^'a*. (2.21)

As a consequence the densities and current densities oscillate in time and in
space. Often in macroscopic experiments, these oscillations are difficult to detect
and not of interest. For this reason we shall average these quantities. We define
the averaged smooth quantities with the help of space integrals, e.g.

<p(y)>=4Jd3yp(y) ^P, (2.22)

the total linear momentum per unit of volume. The smoothed energy density is
the total energy per unit volume and contains two parts

<e^>=v7(^p2+ I hto(k)(atak+i)\ (2.23)
V \ZtaM J>k#0 /
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For the smoothed quasi-momentum density one obtains similarly

<P(y)) è S **«?<«* (2.24)
V j',k#0

and the average of the current density of momentum vanishes

<*ev(y)> 0. (2.25)

The averages of the current densities for energy and quasi momentum are more
complicated. After some straightforward calculations (e.g. see [1,10]) one finds

</5>4 I ^(fc)Mk)
V y,k#o OK«

- I4Vf.l.tLo\.
-^)1/2(a,2(k,/)-co2(k,/'))

,-,,',k#o Mk,])/
x e*(k, j)^^ (AkJ.B_k>r + B_k>rAkJ). (2.26)

o

kein the Heisenberg picture, the operator part of the non-diagonal term of jf
oscillates rapidly. Hence, the time average, which we denote with a bar, gives

(j«(y,t))=lim^dt(j*(y,t))

hto(k)d-^atak (2.27)v .-fato afc„

This formula shows that the energy is transported with the group velocity
v(k) (d/dk)to(k), as is generally assumed in phenomenological theories.

As we have checked the space average of rratL (y, t) vanishes. This is in
agreement with the transport theory, since it is well known that not the momentum

but the quasi momentum plays an essential role in transport theory [3,4].
Thus beside the arguments about the importance of quasi momentum non-
conserving processes for reducing the heat conductivity to a finite value [3,4], we
see that our expressions for the operators of densities show that the proper
momentum cannot play an important role in the heat transport of crystals (cf. also
Section 5). This is also in agreement with the physical argumentation. In specimen
with a temperature gradient, the phonons are created, but the crystal does not
move. Thus only the quasi momentum is changing.

Finally we obtain the formula for the space and time average of the current
density for quasi momentum [10], also in agreement with the phenomenological
theories [3,6]

ÖWy7Ö>4 I hka^atak (2.28)
V /,k#0 OKy

In closing this section it is worthwhile to underline that we have got quite
strong results for momentum and quasi-momentum density. The formulae (2.17)
and (2.19) do not depend on the approximations made in the model (continuous
harmonic approximation). All other results do depend on these assumptions. So
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the smoothed linear momentum flux density (^„(y)) will generally not vanish but
depends on the non-harmonic terms in the Hamiltonian. This is of importance e.g.
for the explanation of sound pressure [11]. The expressions found for the
smoothed energy (current) density and quasi momentum (current) density hold as
far as the harmonic approximation is allowed. But their form does not depend on
the approximations we have used [2,10].

3. Spin and (quasi) angular momentum density

In I we have derived the (approximative) global conservation laws for proper
angular momentum

dt\d3y(Sp(y) + Lp(y))=^<SvpKirßvVßKd3y~0 (3.1)

and for the quasi angular momentum

dt|d3y(Sp(y) + Lp(y)) |^pX7rß„(VßMv+V„Mß) d3y 0 (3.2)

valid for |Vu|« 1.
In this section we will investigate the smoothed densities of the proper and of

the quasi angular momentum in terms of phonon variables. Let us first look at the
orbital part Lp(y) of the proper angular momentum

My) Po^PtatavyA- (3-3)

With (2.10) and suitable boundary conditions one easily finds

<L(y))=ta^|d3yL(y) ^|d3yyAP. (3.4)

So, only the motion of the center of mass contributes to the orbital part of the
averaged angular momentum.

Consider now the orbital part of the quasi angular momentum

4(y) -Po^wxyx«(.v7uti. (3.5)

With (2.2) and (2.5) one finds

<4>=yj d3yLp(y)=-— ^P(XV j d3yyihpclVvua

^P^\d3yyJa(0) I fcCiUkV*-"
V J k'#0

^PJd3y I y.k'vpa(k)üa(k')e-i(k-k^. (3.6)
V J k,k'#0

For usual macroscopic systems, the allowed values of k are distributed almost
continuously. Therefore the summations over k and k' may be approximated by
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integrals

y _^_
7

~*
(2tt);

[d3k. (3.7)

In this way we find

(Lp)= -^5^5^P(iVptt(0)|d3k'kCûa(k')^7 |d3yeik'-y

+^^^p^}d3k|d3fc'fctPtat(k)ûa(k')^ }d3ye-i(k-k,)-y, (3.8)

from which easily follows

<4> (^5 *«-} d3fcfc-(^- P-*))a,0k). (3-9)

We will not investigate this relation any further.
For the volume average of the intrinsic (quasi) angular momentum spin)

(S) one finds

(S) (S°)+<S1), (3.10)

where

<S°) <u)A(p) (3.11)

and

<SX) 4 [d3y I ü(k)Ap(kV(k-k,)-y (3.12)
y- J fc,fc'=o

h y la(k,ì')/_ ^* v„ _„*
2iVÄ V( — (aKj + a*fcj,)(a_fc>r - a*r)
HV*M. V w(fc,j)
xe(k,/)Ae*(k,;')

Neglecting rapidly oscillating terms, one finds

<Sl>= TU ATTT^ I «.<«*> 7)Ae*(k, j')+h.c),2V v û)(ktaj)kJJ.,

where h.c. stands for the Hermitean conjugate.
Also the term akjat,y is rapidly oscillating, unless to(k, j) co(k,/'). Thus

<S1) ^7 I (iakX^(t/)Ac*(k,/') + h.c), (3.13)
Z V k,i,/'

where the summation has to be carried out over all degenerated states (k, /) and
(k, /'). Thus, in the general case where there is no degeneration, the smoothed
spin density (S1) is identical to zero. The smoothed spin density will not vanish if
there is some degeneration. This may be the case for waves propagating along
symmetry axes of the medium, but it also might be the case for waves propagating
in other (accidental) directions if special relations among the elements of the
propagation matrix are fulfilled (cf. Federov [12]).



402 .T. A. Kobussen and T. Paszkiewicz H. P. A.

4. The smoothed spin density in case of degeneration

In this section we want to investigate the expression (3.14)

(^4 I 0akX,,.e(k,/)Ae*(k,/')+h.c.) (4.1)
z y kj.r

where the summation is done over all degenerated energy levels to(k, j) ta(k, j').
As the polarization vectors e(k, j) are the eigen vectors of a real symmetric

matrix, they can be chosen real and orthonormal:

e(k,l)Ae(k,2) e(k,3) (cycl.)

e(k, /) • e(k, /') 8U, (j, /' 1,2,3), (4.2)

e(k,j) e*(k,j) (/ 1,2,3).

Assuming the energy levels numbered 1 arid 2 are degenerated, any linear
combination of e(k, l) and e(k, 2) is again an eigen vector. Thus instead of e(k, j)
0 1. 2, 3) we may introduce the new base

1

(4.3)

«=+—/— v^v». >-> t »«v» *¦>),

e_ eî -j=(e(k,l)- ie(k,2))

e3 e(k,3).

One now easily verifies

©_l_ © c »+ ™+ *+ ®— •e_ 0,

C_|_ * C_j- C— * C_ — C_(_ * c_ e_ e+ 1

e+-e3 e_*e3 0.

1. Ul lllC'l I1II.J1 t;

e+Aef= -e_Aeï= --Jes, e3Aef 0,

e_Ae!f e+Ae* 0.

e3Aeî= -e+At%= - ie+

(4.4)

(4.5)

e3Ae^= -e.Aef ie_

Now let to(k, 1) w(k, 1) j= to(k, 3), then with the base vectors e+^, e_ and e3,
equation (4.1) reads

(Sî) lh(-N*+ + N*_)e3 (4.6)
k

where

N*± — (a*±at±+h.c.) (4.7)

represents the number of phonons per unit of volume with polarization ±. Thus
each phonon with polarization ± gives a contribution Tft to the smoothed spin
density in the e3 direction. The smoothed spin density in the other directions
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vanishes. In the special case of the isotropic elastic medium, for any direction of k,
the propagation matrix is axial

..-x fl a + c r. -A(k) — 1+ kxk.
Po Po

Then in the above formulae, the e3 direction equals the k direction and equation
(4.6) reads

(ST) h(N*_-N*+)£-r (4.8)

and Nk+ and Nk_ correspond to the number of right- and left- circular polarized
transversal phonons, respectively. In their study of the homogeneous isotropic
elastic medium, Vonsovskii and Svirskii [9] obtain a similar result. The authors
formulate this result by saying, transversal phonons have spin 1, longitudinal
phonons do not carry any spin. We further refer to Levine [13] and to Jensen and
Nielsen [14].

In the case of an isotropic propagation matrix A(k) a/p0 I all three
eigenvalues are degenerated and equal to a/p0:

w2(k, 1) to2(k, 1) <o2(k, 3) — fc2
Po

This situation corresponds to I (2.3) with c a. The equation of motion then is

p0u aAu.

Choosing e3 k/|k|, as before we can define the base e+, e e3 and one obtains

(S1) h X -Nk+ + IVk_)e3+(S^)nd,

where
n(S\d — £ ((a3aî - a+af )e+ + (a_af - a3a*)e_)

or

<S1>nd -Z^((a3aï-a+a* + h.c.)e(k,l)
V k V2

+ (ia3a* - ia+al*+h.c.)e(k, 2))

Thus, as before, with respect to the smoothed spin density in the k direction,
circular polarized phonons behave as quasi particles with spin 1. The longitudinal
polarized phonons now contribute to the smoothed spin density in a direction
perpendicular to k.

5. The selection rule for the quasi momentum

In the case of a crystal, an arbitrary space shift of the coordinate frame is not
an exact symmetry operation. The reason lies in the discrete structure of the
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crystal. Let us consider the discrete operation generated by the difference
operator D P — P. For a linear mono-atomic chain with interatomic distance a
Süssmann [8] has shown that the operator

&na=eiDna'h (5,1)

generates the cyclic permutation

•Aia^K-na ~ ri-l-na, ''noMy-na P\-na

(n,l 0,l,l,...,N), (5.2)

which does not change the variables of the center of mass

&naR®-na R, ^na^-na P. (5-3)

The proof relies essentially on the cyclic boundary conditions. The cyclic permu-
lation does not change the Hamiltonian

&naH&.na=H(n 0,±l,....). (5.4)

From this invariance property the selection rule for the quasi momentum easily
follows. To show this we first introduce the eigen states

\tr) \P,...,nk
of the harmonic part of the Hamiltonian (2.15), of P and P simultaneously. The
corresponding eigenvalues are Ecr=Y.2hto(k)(nk+%), P<T P and P„=YJhknk,
respectively. Then

einaD,h |a) einaOJH. Da=P„~ Pa. (5.5)

From (5.5) and the fact that Çfna commutes with the harmonic part of the
Hamiltonian, now follows

<<r| Hanh |o-')(einaIV*- einaD-'*) 0, (5.6)

where Hanh is the anharmonic part of the Hamiltonian, describing the interaction
of the phonons. Hence, the transition probability \{tr \Hanh\ cr')|2 from the state \tr)
into the state \tr') is zero unless

einaDJh_einaDJn Q (57)

Hence the transition \tr) -» \tr') is possible if and only if equation (5.7) is satisfied,
i.e. if the difference (D^—D^/h equals a vector of the reciprocal lattice Gn
Irrnfa

Da-Da, lrmfa, n 0, ±1, ±2,... (5.8)

Thus the difference D of momentum and quasi momentum is conserved only if in
(5.8) n 0. These processes are termed normal processes. The processes with
n^O are termed {/-processes or Umklapp-processes. The selection rule (5.8)
together with the law of the energy conservation is very restrictive. However, for
highly excited states, which are almost classical states, there are so many allowed
transitions that the selection rule (5.7) is inoperative. This is in agreement with
the general rule (cf. for example [15]).
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