Zeitschrift:	Helvetica Physica Acta
Band:	54 (1981)
Heft:	3
Artikel:	Aharonov-Bohm scattering : comment on a paradox
Autor:	Henneberger, Walter C. / Huguenin, Pierre
DOI:	https://doi.org/10.5169/seals-115222

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 17.11.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Helvetica Physica Acta, Vol. 54 (1981), Birkhäuser Verlag, Basel

Aharonov-Bohm scattering: comment on a paradox

by Walter C. Henneberger

Department of Physics, Southern Illinois University, Carbondale, IL. 62901 (U.S.A.)

and Pierre Huguenin

Institut de Physique, Université de Neuchâtel, Rue A.-L. Breguet 1, CH-2000 Neuchâtel (Suisse)

(4. IX. 1981)

Abstract. Although the acceleration is zero in a very strong sense for the scattering set-up of Aharonov-Bohm effect, the Schrödinger equation predicts a diffraction pattern. The reason is simply that the velocity operator has no eigenstate for noninteger flux.

1. Introduction

The Aharonov-Bohm scattering [1] is an idealized experiment where a beam of charged particles scatter a whisker of magnetic flux. The problem is twodimensional and classically no effect at all is expected.

In quantum theory, the vector potential appearing in the Schrödinger equation gives rise to a diffraction pattern corresponding to an infinite total cross section [2]. This fact, although strange, is not really a paradox. Quantum theory is more basic than classical mechanics and we have to accept the result.

An apparently deeper question arises if we look at the acceleration operator which is zero almost everywhere in the configuration space. The scattering states (with two exceptions) are eigenvectors of the acceleration with eigenvalue zero [3].

We consider this fact a real paradox. Why does the beam spread? To answer this question we shall look at the velocity components v_x and v_y in the plane perpendicular to the magnetic whisker. The magnetic field is supposed to be concentrated at the origin of the coordinate system and so strong that its flux ϕ remains finite.

2. Search for eigenstates of velocity operators

Following ref. [3] we introduce

$$v_{+} = v_{x} + iv_{y} = e^{i\theta} \left[-i\frac{\partial}{\partial r} + \frac{1}{r}\frac{\partial}{\partial \theta} + i\frac{\alpha}{r} \right]$$

$$v_{-} = v_{x} - iv_{y} = e^{-i\theta} \left[-i\frac{\partial}{\partial r} - \frac{1}{r}\frac{\partial}{\partial \theta} - i\frac{\alpha}{r} \right]$$
(1)
(2)

Vol. 54, 1981 Aharonov-Bohm scattering: comment on a paradox

where α is related to the flux by

$$\alpha = -\frac{e}{2\pi\hbar c}\phi\tag{3}$$

and the mass is chosen such $\hbar/m = 1$. We chose here periodical wave functions of θ with period 2π as in the conventional calculations where the mentioned paradox arises.

The operators v_{\pm} transforms easily under velocity change

$$e^{-i\mathbf{k}\cdot\mathbf{x}}v_{\pm}e^{i\mathbf{k}\cdot\mathbf{x}} = v_{\pm} + (k_{\mathbf{x}} \pm ik_{\mathbf{y}})\mathbf{1}$$
(4)

For this reason it is enough to study the eigenvalue zero. From the fact that ψ is periodic we have

$$\psi = \sum_{m} f_m(r) e^{im\theta} \tag{5}$$

and

$$0 = v_+ \psi_+ = \sum_m \left[-if'_m + i \frac{m+\alpha}{r} f_m \right] e^{i(m+1)\theta}$$
(6)

and

$$f_m = c_m r^{m+\alpha}$$

Then

$$\psi_{+} = \sum_{m} c_{m} (x + iy)^{m} r^{\alpha}$$
(7)

Each term diverges either at the origin or at infinity, unless α is an integer. In this case, for $m = -\alpha$, ψ_+ is simply

 $\psi_{+} = c(x+iy)^{-\alpha} r^{\alpha} = c e^{-i\alpha\theta} \qquad \alpha \in \mathbb{Z}$ (8)

The same calculation for v_{-} gives

$$\psi_{-} = \sum c_{m} (x + iy)^{m} r^{-(2m + \alpha)}$$
(7)

Again, each term diverges either at the origin or at infinity, unless α is an integer. In this latter case, for $m = -\alpha$

$$\psi_{-} = c(x+iy)^{-\alpha} r^{\alpha} = c e^{-i\alpha\theta}$$
(8')

is identical with ψ_+ .

As a result, we see by comparison of (7) and (7') that v_+ and v_- have no common eigenvectors unless α is integer. This is a necessary condition to diagonalize simultaneously the two components of the velocity.

3. Commutation properties

Taking a regular vector potential we find

$$[v_{\rm x}, v_{\rm y}] = i \frac{e\hbar}{mc} B_z$$

In our case, and returning at v_{\pm} we have

$$[v_+, v_-] = -4\pi\alpha\delta^{(2)}(\mathbf{x}) \tag{9}$$

It tells immediately that it is difficult to diagonalize simultaneously v_x and v_y , v_+ is not a normal operator.

This answer is enlightening but insufficient. We do not see the periodicity character in α of the problem from the commutation relations.

4. Conclusion

Although the acceleration plays no role in the Aharonov-Bohm set-up, interesting phenomena arise due to the impossibility of finding eigenvectors to the two components of the velocity operator. The velocity spread is not the effect of a force but of the boundary conditions. It is therefore not surprising that controversy concerning the Aharonov-Bohm effect is generally centered on the question what the appropriate boundary condition should be [3].

REFERENCES

[1] Y. AHARONOV and D. BOHM, Phys. Rev. 115, 485 (1959); 123, 1511 (1961); 130, 1625 (1963).

[2] W. C. HENNEBERGER, Phys. Rev. A22, 1383 (1980).

[3] W. C. HENNEBERGER, J. Math. Phys. 22, 116 (1981).