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Numerical study of a long range Ising spin-glass:
exact results for small samples and Monte-Carlo
simulations
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Switzerland

(26. I. 1982; rev. 22. II. 1982)

Abstract. A long range Ising spin-glass, in which the spins have a random position and interact,
through a Ruderman-Kittel-Kasuya-Yosida interaction, is studied. Chains of N 8,12 and 16 spins
are exactly solved while a chain with 48 spins is analysed by Monte-Carlo technique. Extrapolation to
infinite chain is performed and it is shown that this system has a clear paramagnetic spin-glass
transition. The qualitative features of this transition are shown to agree with the predictions of the
Parisi-Toulouse hypothesis.

I. Introduction

Despite the vast amount of efforts that have been expended in recent years to
explain the nature of the paramagnetic spin-glass phase transition, several important

questions have not yet received a clean cut answer [1]. For example, one does
not have a complete mean field theory for a spin glass. One way of defining a
mean field theory consists in considering a model with infinite range interactions.
The most studied model of this type is the Sherrington Kirkpatrick [2] (SK) model
in which, Ising spins on a lattice interact through a random interaction Jit.
Although this model has not been solved completely, Parisi [3] gave a convincing
approximate solution to it. The physical content of Parisi 's solution has been
reformulated in simple terms by Parisi and Toulouse [4]. The so-called Parisi and
Toulouse (or PaT) projection hypothesis can be stated as follows: the parameter
space (T,h), where T is the temperature and h the magnetic external field, is
divided into two domains by the Almeida Thouless instability Une [5]. In the high
temperature domain, the spins behave as free spins. However in the low temperature

phase, i.e., the spin-glass phase, the system is suddently frozen and the
magnetization m(T, h) is independent of the temperature T. Thus the
thermodynamic properties of the spin-glass phase are obtained by projection from the
instability line. Recent experiments on CuMn and AgMn [6] show a behaviour of
the magnetization in agreement with the PaT hypothesis. These results suggest
that the type of ordering predicted by PaT is not particularly to the SK model but
may be a general feature for a spin-glass. It is thus legitimate to study other
models of spin-glass than the SK model in this perspective.

It is well known that in substances like CuMn for example, the magnetic ions
interact via the indirect exchange interaction of Ruderman-Kittel-Kasuya-Yosida
(RKKY) [7]. The positions {x;} of the impurities are random but the interactions
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between them are deterministic. Most of the theoretical descriptions of spin-glass
assume that the positions of the magnetic impurities are well defined (the sites of
a lattice) while the interactions are random variables. It is not obvious that this
later description is totally equivalent to the physical one and thus it is interesting
to test this point.

In this paper, we consider a model which allows us to address ourselves to the
above questions, namely, the behaviour of the system in its low temperature
phase (by comparison with the PaT hypothesis) and the role of the positional
disorder. The model consists of an one dimensional assembly of spins interacting
via a long range one dimensional RKKY like interaction, the positions of the
spins on the chain being random.

The paper is organized as follows. In Section II, the model is defined and the
methods used for solving it are discussed. Section III is devoted to the exact
statistical mechanics of small chains and the extrapolation to the thermodynamic
limit. The internal energy, magnetization and the susceptibility are computed. The
problem of the order parameters associated with the ordered phase is discussed
and the order parameter Q is explicitly computed for different values of N. The
results obtained are compared with similar results obtained recently for SK model
[8, 9]. In Section IV, a 48 spins chain is analyzed by Monte-Carlo simulation. The
simulation exhibits clearly two types of susceptibilities: the reversible and the
irreversible one. These two types of behaviour are explained in terms of metastable

states and breaking of the ergodicity in the spin-glass phase. Finally, in the
conclusion, the results obtained are analyzed by comparison with the PaT
hypothesis.

II. The model

We consider an assembly of N Ising spins sf ±1 randomly distributed on a
chain in an external magnetic field h. The distances between the spins {x; — x^}
are random and the spins interact through a one dimensional RKKY-like interaction.

It is easy to extend the original derivation of RKKY [7] to an arbitrary
dimension. In particular, for d l, one finds

cosHx^l)
X- —X-

for a |x; — x,| » 1 where a is twice the Fermi wave vector of the host metal and is
taken as a parameter in our calculation.

The position {x;} being distributed randomly, we have to avoid the situation
where |xf — xy | becomes too small, making the interaction Jtj to diverge. This is
easily obtained by changing slightly the denominator of (II.1). The interaction
chosen is then:

cosHx-x,!)
IXj-Xyl+l

and the hamiltonian reads:

H=fdJijSiSi-h I S; (II.3)
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To avoid ambiguities with the boundary conditions and the symmetry of the
interaction (II.2), we work with an open chain.

The quantities of interest are quenched averages. Let {Jy} a given configuration
of the interactions and P({-Jy}) the probability distribution of {/„}. The

quenched free energy is defined as:

F=-kBT(F({Jii})h (II.4)
where

and

Â (A({Jtì}))j - f û dJiìP({Ji;})A({J{S}) (II.5)

F({/lj}) lnTrexp[^»] (II.6)

is the free energy for the configuration {J;,}.
The numerical results for the average ground state energy E0(N), (see

Section III.D), indicate that the model as defined by (II.2) does not yield an
extensive free energy. To have a well defined thermodynamic limit, we must then
replace the coupling J0 by J0/p(N), p(N) being such that the free energy becomes
extensive. By studying a non-frustrated version of the model, obtained by
replacing V„ by | Vy | in (II.2), one can show that p(N) < In N. However, we were
not able to find p(N) analytically and we shall determine it numerically in the
following sections.

Other quantities of interest for our problem are the internal energy per spin

iTr{sj iexp (dfH iu ({/..}) S 1 --- _ (j-n (n.7)"" N „ta, (-H\ Nx /T

Tr{«eXPfe)
and its configuration average

ü=~((H)T)j, (II.8)

the magnetization per spin given by

1 / \ 1
Tr{s,> LSi6xp(]TT)J

"<w>-è(H-è
T /-«f <IL9)

TrBjexnî-Tj
and its configurational average

*4((R), (iuo)

The magnetic susceptibility x(T) is defined by

X(T) lim m({Ju},h)lh (11.11)
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and similarly its configurational average x(T). As we shall see in the next section,
the limit h —» 0 in (11.11) only makes sense for infinite systems. For finite systems,
the limit in (11.11) should be reinterpreted.

We can now proceed and compute the above quantities for our model. Due
to the complicated form of the interaction, it is not possible to solve the problem
analytically and thus, we used two different methods:

i) Exact numerical solution for small chains (N 8,12,16) and extension to
large N.

ii) Monte-Carlo simulation for a large chain (JV 48).

III. Exact results for small chains

The procedure is the following. Given JV, and given a distribution of the
impurities, i.e., a distribution of the interactions {/;,}, one can compute numerically

the quantities of interest by taking explicitly the trace over the 2N states, for
several fields and temperatures. More delicate is the average over the configurations.

Although it is not a problem of principle, for computing time reasons, we
cannot average over too many configurations (10 for the 16 spin chains). Accordingly,

we selected some representative configurations of the spin glass state
according to the following criteria.

i) Small ground state magnetization, typically m0=£l/VjV[9].
ii) Average nearest neighbour interaction £.<,- -/y (i, j nearest neighbours) as

small as possible,
iii) Average interaction X,<j J.,(V i, j) as small as possible.

The parameters entering into the interaction (II.2) are the following: x;
xi_1 + 20 • r, r being a random number, 0<r<l,

a =lrr
/.-io ,lnl)

The average spacing between two spins is thus 10.
In order to ensure that the model describes indeed a kind of spin-glass, we

have to make sure that the system is neither too frustrated nor totally non-
frustrated [1]. This can be achieved by comparing the ground state energies for a
given configuration {x(} with the corresponding non-frustrated and fully frustrated
cases. The first case corresponds in replacing Vy by |V;I in (II.2) and the second
by replacing JqV,- by l^oV.,-.. All the samples chosen for averaging have a ground
state energy well between these two extreme values. The numerical exacts results
obtained are then the following.

a. Case JV 16

A. Ground states properties and internal energy

For a 16 spins chain the configurational average has been performed over ten
samples. Each sample can be in 65536 different states. For each of these states,
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Table I
Ground state energies and the corresponding magnetizations and spin configurations for the 10
samples used for the averaging in the N 16 case.

E0 M Spin configuration

1 -18.73 0 _ + + _ — + + _ + _ + + _ + - —

2 -13.87 -4 - + + + - + - + - - - - - - + -
3 -29.32 +4 - + + + + + + + - + - + - - - +
4 -31.75 -4 - - - + - - + - - + + - - - + +
5 -25.51 0 - + + - + + - - - + + - - + + -
6 -24.67 4 - - + + - + + + + - - + + - + +
7 -24.16 -2 - - - + - + + + - + + - - - - +
8 -25.29 0 - - + + + - - - - + - + + + - +
9 -17.72 +4 - + + + - + + + - + - + + + - -

10 -30.26 -2 - + - - + + - - - + + - - - + +

the energy has been computed, and thus the ground state identified. Table I gives
the 10 grounds states with their explicit configuration, energy and magnetization.
Note that each ground state is twice degenerated (inversion of all the spins). The
average ground state energy plus or minus its standard deviation is:

Ë0 =-24.13 ±5.49 (III.2)
The ground state magnetization M is <Vjv for each sample. One also notes that,

2.0

1.5

1.0

0.5

Figure 1

Internal energy as a function of temperature for two samples (No. 1 and 10 in Table I) for the N 16
case.
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Figure 2
Average internal energy as a function of temperature for the JV 16 case.

besides the natural twofold degenerary already mentioned, the ground states were
never degenerated; a typical example of the ground and first excited states is
given for the configuration number 1:

E0 -18.73 Ex -18.51 E2 -18.24

Typically, the first excited state is not obtained by flipping only one spin in the
ground state but corresponds rather to the excitation of a small cluster of spins
(1,2 or 3). Typical value for ü.<j-^j f°r J» nearest neighbour or for the sum over
all sites is ~5 • 10"2.

The easiest quantities to compute are the ones in zero field. Using (II.7),
(II.8) we can compute the internal energy as a function of temperature. Figure 1

shows this internal energy for the configurations number 1 and 10. Both curves
show an inflexion point corresponding to a maximum of the specific heat at
temperatures respectively Tmi 2.37 and Tmio=1.69. Thus, there are important
variations of Tm from sample to sample. Figure 2 shows the average internal
energy over all samples. Here Tm 1.75.

B. Magnetization as a function of the external field

A crucial quantity to test the PaT hypothesis is the magnetization as a
function of the magnetic field and the temperature. Using relation (II.9) one gets
m(h, T) for the different configurations. The results are shown on Figs. 3, 4 and 5.

Figure 3 shows the typical behaviour for a given sample (the number 10 in Table
I). At low temperatures (T 0.3), the magnetization increases by jumps from one
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Magnetization at given temperatures as a function of the magnetic field for a typical sample (No. 10 in
Table I) for the JV= 16 case.

plateau to the other. As the temperature increases, the general behaviour is
smoother and, for high temperatures (T=1.8), the magnetization increases
smoothly with the field. This behaviour is easily explained in terms of the results
of Table I and the energies and magnetizations of the first excited states. Indeed,
the energy gap between two states is AEij (Ei(h 0)-Ej(h 0))-h(Mi-Mj).
At very low temperatures, the excited states are populated only when the external
field is large enough such that AE0i — 0. Once an excited state can be occupied
then the magnetization jumps. As the temperature increases, the role played by
the energy gaps is smoothed out by the product kBT in the Boltzman factor
exp-AE0i/kBT. Thus the magnetization becomes a smooth function of the field.
Figure 4 shows the behaviour of different samples at low temperature. The
important differences from sample to sample reflect the differences in the energy
spectrums from sample to sample. Figure 5 shows a similar behaviour at a higher
temperature (T= 1.2). Note that this step like behaviour for the magnetization as
a function of the field, suggest that the spin-glass ordering may be described as a
succession of first order transitions.

Here again, in order to get a meaningful information, one has to average over
the different samples. Figure 6 shows the average m(h) for different temperatures.
The striking feature is that, for small temperatures, the average magnetization
m(h) is almost independent of the temperature, while for high temperatures
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m (h)'
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Figure 4
The magnetizations of all samples at T 0.3 as functions of the magnetic field (JV= 16).

(T?s 1.8), a clear temperature dependence develops. The results of Figs. 4, 5 and
6 show that the differences from sample to sample are quite important and that, in
order to be able to make a precise determination of the transition temperature,
one would need better statistics, i.e., to average over a much larger number of
samples. The results obtained for our model are qualitatively similar to the ones
obtained for the SK model [9]. Another useful way to look at those results
consists in computing the magnetic susceptibility as defined by formula (11.11).
However, for our finite system we cannot take the limit h —* 0 because, due to
the structure of the first excited states, m(h) may be zero for small fields.
Accordingly, the relevant quantity is m(h, T)/h for small h. This quantity is
plotted on Fig. 7. For fields not too small, the susceptibility for fixed field and
varying temperature shows two regimes. For T<Tc(h) a plateau type of
behaviour while for T> Tc(h), \ is falling down to follow a Curie-Weiss law at high
enough temperature. The critical temperature Tc(h), determined by the end of
the plateau, is decreasing as the field increases. Again, due to the rather poor
statistic, it is difficult to make a precise determination of Tc(h). However, in view
of the curves as estimation of Tc(h =0)= 1.6±0.1 seems reasonable. Qualitatively,

the behaviour of our system agrees with the PaT hypothesis.
Note finally that Tc(h 0) is smaller than the temperature at which the

internal energy has its inflexion point, i.e. the specific heat has its maximum.
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The magnetizations of all samples at T= 1.2 as functions of the magnetic field (JV= 16).
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Figure 6
Average magnetization at given temperatures as a function of the magnetic field (JV 16).
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Figure 7

Average susceptibility at given magnetic fields as a function of temperature (JV=16).

C. Order parameter

In order to give a firmer justification for the existence of a phase transition at
Tc, we would like to define an order parameter for our system. Assuming that the
ordered phase is a spin-glass, one may ask what would be a good order parameter
to compute. Since the works of Parisi [3] and Sompolinsky [10], we know that the
spin-glass phase cannot be simply described by a scalar order parameter but, at
best, by an infinite number of order parameters. However if not all the properties
of the ordered phase can be described by a simple order parameter, the qualitative

behaviour of some scalar quantities can be taken as the signature of a

spin-glass phase. The most used order parameter is the so-called Edwards
Anderson order parameter q^ defined as [11] qEA ={{si)T)]. However, this is not
a suitable quantity to compute for finite systems because (sf)T 0 is zero field and
finite JV. Another order parameter, which does not suffer of this drawback, has
been proposed by Morgenstern and Binder [12] for models with short range
interactions. We suggest the following generalization of their definition for our
long range interaction model:

Q(T)
1

JV(JV-l)
(I<^>2t) (III.3)

For the SK model, where ((s;_5,)T)j is the same for all pairs i^j, Q reduces to the
q<2) discussed by Young and Kirkpatrick [9]. In our case, in the limit T —» 0,
Q —» 1, since the ground state is not degenerated. Moreover, if for T>TC, the
spins behave as free spins (as suggested by the susceptibility), then Q is zero. In
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N= 8Q
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Figure 8

The order parameter Q, defined in (III.3), as a function of temperature for JV 8,12 and 16.

between, Q should decrease smoothly. The numerical results obtained for Q(T)
are shown on Fig. 8. Note however that, for computer time reasons, the average
has been performed only over three samples (the numbers 4, 6 and 10). The
average Tc for these three samples, T'c, is somehow higher than the average Tc for
the 10 samples, namely T'c 1.8. We see on Fig. 8 that the qualitative behaviour
is correct, although some important finite size effects are showing up. A better
analysis of the size dependence is clearly needed and will be performed in Section
III.D.

ß. Case JV 12

For the 12 spin chains, the averages have been performed over ten samples
choosen according to the same criteria than before. All that has been said for
JV= 16 can be qualitatively repeated in this case. Thus we will not enter into all
the details. The susceptibility versus field and temperature results are shown of
Fig. 9. We see that the extrapolated zero field critical temperature is now
Tc 1.0±0.1. Here also, a better statistics would be useful to give better
quantitative results. The results for Q(T) are plotted on Fig. 8. The average has
been performed over all the ten configurations.
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Figure 9

Average susceptibility for JV 12.

y. Case JV 8

For the 8 spin chains, the averages have been performed over 20 samples.
Susceptibility versus field and temperature is plotted on Fig. 10, leading to a value
of Tc 0.75±0.1. Q(T) given on Fig. 8, is also obtained by averaging all the 20
samples.

D. Size effects and extrapolation to infinite chains

In order to interpret properly our results, we have to study their size
dependence and draw some conclusions for the infinite chain.

a. Size dependence of J0

The first question we have to address ourself is the determination of the
factor p(N), introduced in Section II, which ensures the existence of the
thermodynamic limit. We can determine p(JV) by looking at the average ground state
energies E0(N), which should be extensive. The average ground state energies can
be fitted by the following power law:

(III.4)

(III.5)
and

E(N) Ne0Na, a 0.35

p(JV) JV°'35



Vol. 55, 1982 Numerical study of a long range Ising spin-glass

m/h

41

0.7

0.6

0-5

0-4

0.3

0.2

0.1-

Figure 10
Average susceptibility for JV 8.

Note that for JV 8,12 and 16, JV035 is only slightly smaller than InN,
relative difference being smaller than 5%. Accordingly, we assume that p(N)
In JV. The energies and temperatures have to be rescaled by this factor.

Let us consider now the critical temperatures obtained numerically Tc>n(JV),

they are

Tc,„(16) 1.6±0.1

Tc,n(12) 1.0±0.1
Tc,n(8) 0.75 ±0.1

(III.6)

Besides the rescaling of the temperature scale given by (III.5), the Tcn should
exhibit an explicit finite size effect. One may fit the numerical critical temperatures

by the following law:

(III.7)Tc,n(JV) p(JV)Tcoo(l--^

The best fit is for a 1.3, b 0.35, with Tcoe= 1.03.

b. Size dependence of Q

In order to compare the Q obtained for different sizes we have firstly to
rescale the critical temperatures according to the above analysis. The values of
Q(T/TC) for JV 8,12 and 16 are plotted in Fig. 11. One notes that for low
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Figure 11

The order parameter Q as a function of T/Tc for N 8,12 and 16.

temperatures one gets:

Q l-y(T/Tc) (III.8)

with y —0.5. Moreover, we see that Q decreases more rapidly with increasing JV.

At low temperatures, Q is going to 1 in a similar way for all values of JV, although
our statistic does not allow us to see more subtle JV dependence in this domain.
These qualitative features are similar in the SK model.

Looking at T Tc, one sees that Q does not vanish at the critical point.
However, the value Q(TC, JV) QC(N) decreases when JV increases. One can
extrapolate to N —» oo by fitting again the data with a power law. One gets:

QC(N) QCJNX (III.9)

with x 0.31.
This leads to a vanishing Q for T<TC in the thermodynamic limit, indicating

the presence of a clear cut transition for infinite chain.

c. Scaling form for Q(t, N)

We can do more than the prediction (III.9) by returning to the definition
(III.3) for Q. Indeed, if we consider the Edwards Anderson order parameter
^=\(Sì)t)j> then in the high temperature phase Q(T) is simply related to the
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susceptibility Xq associated to q. One has, for large JV (i.e. JV 1« 1),

Q(T)~N-1kBT2Xq(T) (III.10)

But if q is describing, at least partially, the ordering then Xq diverges at Tc. In
terms of the reduced temperature t (T-Tc)/Tc one has:

y being the critical exponent associated to Xq, and tnus

Q(t,N)-N-1ry
Just below Tc, one expects:

Q(t,N)~\tf
where /3 is the critical exponent for this order parameter.

These two behaviours can be reproduced by assuming for Q(t,N) the
following scaling form:

(III. 11)

(III. 12)

(III. 13)

Q(t,JV) JV-x/(tJVy) (III. 14)

To reproduce the t dependence of (III.12) one should have /(tJVv)~(tJVy) y for
t > 0 and thus

x + yy 1. (III. 15)

QNxi

1.4

1.2

1.0

0.8

0.6

0.4

0.2

-0.3 -0.2 -0.1 0 0.1 0.2 0-3 t|s|y
Figure 12

Fit of the numerical data with a form Q(t, N) N~°-31f(tN°9) (see (III.14)). (A,D and • are for
N 8,12 and 16).
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For KO one should have f(tNy)~(tNy)ß, and thus Q(t,N)~N~x+ßy\t\ß. Hence

ßy-x=0 (III.16)

thus x and y are given in terms of ß and y by

*=-—. y=4^ (III17)
y+ß y+ß

For the SK model, y and ß are known to be representively 1 and 2. Thus Young
and Kirkpatrick were able to test the scaling form (III.14) [8]. In our case, we do
not have an a priori knowledge of y and ß and thus, x and y are to be taken as

fitting parameters. Note that the exponent x entering in (III.14) is the same x
which is in (III.9). Thus we have x 0.31. One can then fit the numerical data
with a scaling form like (III. 14), and determine y. Figure 12 shows such a fit with
y 0.9. It turns out that our datas do not allow a very precise determination of y.
The most reasonable fit is obtained for y 0.85±0.15, giving y 0.82±0.15 and
ß 0.36±0.06.

IV. Monte-Carlo simulations

The study of longer chains by the exact method described in Section III
implies a too long computational time. Accordingly, we approached the problem
by another way, the Monte-Carlo method [13].

The strategy is very similar to the one used in Section III. Given JV, one
distributes the spins along the chain according to (III.l). Then, for a given field h
and temperature T, one applies the standard Monte-Carlo procedure [12]. The
time evolution of the system is given by the usual master equation associated to
the hamiltonian (III.3). Starting from an arbitrary spins configuration C0, one lets
the system evolve in such a way that after Nf Monte-Carlo steps per spin
(MCS/spin) one reaches a configuration Cx. If JVf is large enough, then Ct will be
an (or close by to an) equilibrium configuration. From this state one computes
equilibrium quantities (thermodynamic quantities or correlations functions) by
invoking the ergodic theorem. Averages over the phase space are replaced by
averages over time, the dynamics being always defined by the master equation.
Starting from configuration Ct one runs JV more MCS/spin to reach a new
configuration C2. One computes the quantities of interest in the configuration C2.
Then one repeats the same procedure JVP times, to reach a final configuration CNp.
The thermal averages of interest are then given by the average over the values
associated to the configurations Q i.e.:

(A)T=~YIA(Q) (IV.l)
-^p i

The overall number of Monte-Carlo steps per spin is thus JVtot Nf + Ni ¦ Np. Note
that one key point of the Monte-Carlo method is the validity of the ergodic
theorem.

Once the above program has been performed for one sample, i.e., one
distribution of the spins on the chain, one should in principle repeat it for other
samples and then average over the samples. However, as the size of the chain gets
larger, one expects to have to average on a smaller number of samples to obtain a
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good answer for the quenched averages. Indeed, it has been proven, see Ref. [14],
that for some general classes of disordered spin systems, a particular configura-
tional free energy F(J) was equal, with probability one, to the quenched free
energy, in the thermodynamic limit.

According to the above remarks, we have studied an unique chain of 48
spins. The choice of the sample has been performed according to the criteria
explained in Section III for the small chains. The total number of MCS/spin
performed was between 103 and 104. This number was choosen in such a way that
doubling the number of Monte-Carlo steps did not change significantly the results.
At high temperatures, less steps are needed than at low temperatures. The main
quantity that we have been looking at in the simulation is the magnetization M as
a function of the temperature T for different fields h. Typical results are given on
the Figs. 13,14 and 15 for magnetic fields of 0.3,0.5 and 0.6. Two different
regimes have to be distinguished:

a. Irreversible regime

This regime corresponds to the following situation. Starting in zero field, one
reaches the ground state of the system. Once the ground state is reached, one
switches on the magnetic field and then one increases the temperature step by
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Figure 13
Monte-Carlo magnetization versus temperature at h =0.3 (JV 48). The dotted line corresponds to a
field heating experiment and the full line to a field cooling one.
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Figure 14
Monte-Carlo magnetization versus temperature at h =0.5.
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Figure 15
Monte-Carlo magnetization versus temperature at fi 0.6.
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step. The magnetization (or the susceptibility x which is just M/h) is then given by
the dotted line on the figures. The magnetization increases smoothly till T 3
where its shows a slight, but systematic bump; as T increases, the magnetization
remains approximatively constant until T 5 where it starts to decrease again.

b. Reversible regime (or field cooling)

Here, the procedure is different. Starting from the high temperature state in
the field h, one decreases step by step the temperature, i.e., one proceeds to a
field cooling type of experiment. In this case, the behaviour of the magnetization,
shown by the full line in the Figs. 13 to 15, is quite different. Until a temperature
of about T 2, the magnetization follows the plateau type behaviour observed in
Case a. But, for T below 2, the magnetization remains about constant to reach a

ground state with finite magnetization. Thus we see indeed a plateau like structure
for the magnetization.

The reason of this irreversible behaviour is essentially the following. When
the field is switched on at low temperatures, the systems lies in its zero field
ground state tp0. For fields not to large, this state remains a relative minimum of
the energy but is no longer the true ground state <poh. Moreover the states tp0 and
<Poh are separated by large energy barriers in the phase space [15]. Accordingly, at
low temperatures, the system remains close to the state <p0 in the phase space, and
thus the behaviour of the system is governed only by the states in the vicinity of
this "wrong" ground state. There is breaking of the ergodicity. Only when the
temperature is high enough, the system is able to jump the energy barriers and
reach the portion of phase space to which <poh belongs. This irreversible line is
clearly metastable. On the other hand, when the system is cooled in the presence
of a field, it may return to its "correct" ground state tpoh. It could also, in
principle, return to a metastable state, but we have observed that within the
number of MCS/spin used, the system was always returning to its "correct"
ground state <p0h. Moreover, the behaviour of the system was perfectly reversible,
thus, the field cooling line must be interpreted as the equilibrium line.

Note finally that due to the important fluctuations in the Monte-Carlo
simulation, we were not able to locate precisely the critical temperature Tc, above
which the system behaves paramagnetically.

V. Conclusions

The study of this long range Ising model with positional disorder has shown
that its qualitative properties are similar to the one found for the SK model. Thus
positional disorder with deterministic interactions or random interactions on an
ordered lattice lead to the same qualitative features.

The exact numerical study of small chains has shown that the specific heat
exhibits a maximum at a temperature Tcm. The study of the magnetization in a
field exhibited the presence of two regimes: a low temperature one, with a
susceptibility more or less independent of the field, and a high temperature
regime with a Curie-Weiss type of susceptibility. The transition from one regime
to the other occurs at a rather well defined temperature Tc. This picture agrees
qualitatively with the Parisi-Toulouse projection hypothesis, which validity does
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not seem to be restricted to the SK model. Moreover, we found systematically
that Tcm > Tc, results observed in all experiments on spin-glass [1].

The extrapolation of the finite size results to the thermodynamic limit has
shown that the transition is well described by the order parameter Q, which
scaling form allowed us to extract the critical exponents ß and y. However, due to
the imprécisions resulting from the restricted number of samples used in the
averages, we do not think that such subtle quantitative results are meaningful.

The Monte-Carlo study of the 48 spins chain, has shown the crucial role played
by the metastable states and the breaking of ergodicity in a spin-glass. Moreover,
the results for the reversible susceptibility have qualitatively confirmed the
behaviour observed for small chains.
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