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Locked and unlocked phases of a two-
dimensional lattice of superconducting vortices

By P. Martinoli, M. Nsabimana, G. A. Racine and H. Beck,
Institut de Physique, Université de Neuchâtel,
CH-2000 Neuchâtel, Switzerland
J. R. Clem, Ames Laboratory-USDOE and Department of
Physics, Iowa State University, Ames, Iowa 50011, USA

(23. XI. 1982)

Abstract. The flux lattice in a thin film of a type II superconductor, whose thickness is
periodically modulated, allows for an investigation of various phase transitions typical of two-
dimensional systems. We present a continuum approach in which the mismatch S between the
equilibrium lattice structure and the spacial period of the modulation plays a major role. In the ground
state the lattice is locked by the modulation potential when <5 is small, whereas for large enough 5 the
lattice is freely floating, its structure showing periodic discommensurations. A phase diagram in the
(S, T)-plane can be established by taking into account thermal fluctuations. Critical current data at
various temperatures show good agreement with the theoretical predictions.

I. Introduction

Phase transitions in two-dimensional (2D) systems have received considerable

attention recently. In several experiments the 2D crystal under consideration
is exposed to the force field created by a periodic substrate. Among other
situations, this is the case of a 2D lattice of superconducting vortices interacting
with a periodic pinning potential. As pointed out by Martinoli and coworkers [1]
some years ago, thin superconducting films, whose thickness is periodically
modulated in one direction, provide such a system. In this paper we show how
critical current measurements in thickness modulated layers can be used to probe
a locking-unlocking phase transition of the 2D vortex lattice occurring when the
conditions of flux line density and/or temperature are changed in this particular
physical system. Some aspects of the locking-unlocking transition were reported
in a recent letter [2]. Here we describe it in more detail.

The phase diagram of 2D crystals in a periodic potential has been studied by
a number of authors [3]. Dealing with situations where the periodic substrate is,
as in our case, anisotropic, a recent theory by Pokrovsky and Talapov [4] (PT) is
particularly relevant to the understanding of our experiments, where the 2D
vortex lattice experiences the ID periodic force field created by the thickness
modulation. At absolute zero (T 0), PT predict the existence of stable locked
(L)-phases when the degree of mismatch between the natural (undistorted) lattice
and the underlying periodic pinning structure does not exceed some critical value.
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In an L-phase the vortex lattice is a 2D epitaxial (or commensurate) solid in
registry with the substrate periodicity. At the critical mismatch PT predict a
second order transition from a registered L-phase to an incommensurate unlocked
(U)-phase. In the U-phase the vortex lattice is â "floating" 2D solid characterized
by the presence of a superstructure consisting in a ID periodic sequence of
domain wall dislocations. These and other interesting features of the LU-phase
transition at T 0 are discussed in Section H.A.

At finite temperatures thermal fluctuations of the vortices in the L-phase
tend to unlock the vortex lattice from the periodic pinning structure, thereby
driving the transition to the U-phase at a sufficiently high temperature. As a

consequence of Brownian motion of the vortices, the critical degree of mismatch
tolerated by an L-phase becomes smaller and smaller as the temperature rises and
finally vanishes at a critical temperature TLU, above which an L-phase can no
longer exist. The corresponding LU-phase boundary has been calculated by PT
using a renormalization-group technique [4]. In Section II.B we propose an
alternative approach based on the more transparent Self-Consistent Harmonic
Approximation (SCHA). The expression for TLU deduced from this model agrees
with that obtained by PT but the shape of our LU-phase boundary differs
considerably from that of PT. For instance, our phase diagram does not show the
rather surprising reentrant behaviour which one deduces by inspection of the
PT-theory. It is further argued that, above TLU, the vortex lattice is a 2D floating
solid exhibiting topological order [5] or a liquid according to whether TLU is lower
or higher than TM, the temperature at which the vortex lattice is expected to melt
through thermal dissociation of bound pairs of dislocations [5-7].

Pinning phenomena in thickness modulated superconducting films prove to
be a sensitive probe of the LU-phase transition. Since in an L-phase the vortex
lattice is obviously pinned by the periodic film structure while in a U-phase it is
free to slide under the influence of an arbitrarily small driving force, characteristic
peaks reflecting the presence of various L-phases show up in the critical current
curves IC(B) [1]. As the magnetic field B governs the vortex density, the width of
the peaks is a measure of the critical mismatch at which the LU-phase transition
takes place. With rising temperature the intensity of the Ic -maxima decreases and
finally undergoes a relatively rapid degradation as one approaches a critical
temperature which we identify with TLU. For T> TLU the structures in IC(B) are
completely washed out indicating that the vortex lattice is no longer locked to the
periodic substrate. These and other features of our Ic-data are discussed in
Section III in the light of the theoretical predictions of the previous section.

II. Theoretical considerations

(A) Phase transition at zero temperature

Let us first briefly recall some of the basic concepts and results of the PT-theory
[4]. To this purpose we consider a 2D triangular lattice of superconducting
vortices, with lattice parameter a, in static interaction with a ID harmonic
potential of amplitude A and wave vector q (q 2ir/Ag). We shall focus our
attention on situations where q is very close to one of the vectors, g, of the
reciprocal vortex lattice, the condition q g defining a configuration of perfect
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matching between the (undistorted) lattice and the sinusoidal pinning potential. It
is assumed that the lattice of Abrikosov vortices is incompressible [8] and, further,
that the pinning is weak when compared to the lattice stiffness, i.e. A < p, where p
is the shear modulus of the vortex lattice [9]. Under these conditions only long
wavelength shear deformations turn out to be relevant and, as a consequence, the
vortex lattice can be treated as an elastic continuum. Then, the energy of the
system can be written as the sum of an elastic contribution and of the potential
energy due to the periodic pinning force

In writing this expression we have jumped ahead to the conclusion of PT asserting
that the lowest energy configuration of the vortex lattice is characterized by a
quasi ID deformation field w which, in an x' — y' reference frame with x' pointing
in the q-direction, has components of the form

u' -8x' + tp(x), v' 8y'-tp(x), (1)

where S l-(g/q) measures the degree of mismatch. These expressions clearly
show that there are two distinct contributions to w. The first one is an area
conserving deformation resulting from a uniform compression (8 > 0) or expansion

(<5>0)-Sx' along x' combined with a uniform expansion (S>0) or compression

(8<0) Sy' along y'. This deformation is chosen such that the potential energy
contribution to ~ê vanishes: the vortices are forced to lie in the valleys of the
cosine-potential. Superposed to this uniform field is a ID deformation d>(x)
which, for an incompressible lattice, is found to propagate in a direction x forming
an angle of 45° with q [4, 8]. Thus, in the x-y coordinate system rotated by 45°
with respect to x' — y' the deformation field w has the components

u 8y, v 8x-y/ltf>(x). (3)

As it clearly emerges from these expressions, in the new reference system the
uniform deformation described in connection with equation (2) results from the
superposition of two uniform shear deformations, one along x and the other along
y. By inserting u and v, as given by equation (3), into the general form of the
elastic energy of an isotropic 2D continuum [4] one immediately obtains equation
(1).

To determine cp(x), we simply minimize the functional té[tp(x)] with respect
to tf>(x), thereby obtaining the following sine-Gordon equation [10] for the
"phase" field <£>(*) qtp(x)

dx2

.2__i..;a„2

sin<D-PT^ 0, (4)

where I 2p/Aq Its solution in terms of elliptic functions

Q>(x) iT + lam(x/kl) (5)

is a stair-shaped function representing a regular sequence of kinks (discom-
mensurations), whose period L is related to k by

L lklK(k), (6)
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where K(k) is a complete elliptic integral of the first kind. Using equations (5) and
(6), the potential energy (1) can be expressed as a function of the variational
parameter k. Minimization of «§(k) with respect to k leads to the condition

2 /A\1/2E(k)
-77 © (7)

where E(k) is a complete elliptic integral of the second kind. From the properties
of E(k) it follows that there are solutions of equation (7) satisfying the condition
0=sk=£l only if 8 is larger than a critical mismatch Sc given by

rr \p,/
For |ô|s=Sc <3>(jc) is of the form (5) and, as a consequence, the vortex lattice is in
the incommensurate U-phase. This is shown in Fig. 1, where we have assumed
that the starting matching configuration is that corresponding to q gx, gx being
one of the six nearest-neighbour reciprocal lattice vectors (gx 4ir/aV3). Since
S>0 for the configuration shown in Fig. 1, large portions of the lattice appear to
be uniformly compressed along x' and expanded along y' and are essentially

IMIIIIIIIIIIIIMIMIIIIIII MIMI I

• •-•..•• _• •-•!•-• •T« • - •_••:•_.••

&**;*;&*:*&_:*

I I I I 1 I I I I II I M I I I I I II II I I II I I II I I I

Figure 1

Incommensurate U-phase for S 0.13 (B/B10 0.76). Discommensurations (DC) form a periodic ID
sequence propagating at 45° with respect to q.
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Figure 2
Three different deformation states of the fundamental commensurate L10-phase.

commensurate to the underlying ID periodic pinning structure. These regions are
separated from each other by a ID periodic sequence of domain wall discommen-
surations propagating at 45° with respect to q. At the discommensuration sites the
phase field <I>(x), which is essentially constant in the nearly commensurate regions
between successive kinks, changes by Irr over distances of the order of ~k.. The
period L of the superstructure diverges logarithmically (see equation 6) as 8

approaches ôé (fc —» 1).
For |ta5|<Sc there are no solutions of equation (7) and, consequently, <l>(x) is

no longer given by equation (5). In this case <§ has its minimum value when the
potential energy term associated with the ID pinning field on the right-hand side
of equation (1) vanishes, i.e. when <I>(x) 0 everywhere. Obviously, this
corresponds to the commensurate L-phase shown schematically in Fig. 2 for 8 0

(matching configuration q gx) and for vortex densities lower and higher than
that corresponding to q gx.

The areal potential energy density, Fn, of the vortex lattice can be written in
the form

Fn 2|L,ô2-2A{[Ô/ÔcE(k)]2-l}0(|ô|-6c), (9)

where 6(z) is the Heaviside function: 0(z) l for z>0, d(z) 0 for z<0. The
first term on the right-hand side of Eq. (9) is the elastic energy density associated
with the uniform deformations characterizing both the L- and the U-phase,
whereas the second one arises from the phase field 4>(x) and, consequently,
contributes to Fa only in the U-phase. Fa(8) is plotted in Fig. 3 together with the
result of a calculation based on a discrete lattice model [8] where, however, only
harmonic shear deformations of the vortex lattice were considered. With this
important restriction the LU-phase transition occurs for 8 0, but other features
turn out to be identical to those predicted by the PT-model. In particular, the
U-phase is characterized by the presence of a sinusoidal transverse deformation of
the lattice propagating in a direction at 45° with respect to q. A more detailed
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Figure 3

Areal energy density of a 2D lattice in a ID periodic force field as a function of the mismatch 8. The
full curve is based on equation (9). The dashed curve follows from a discrete lattice model allowing
only for harmonic deformations. In this case the LU-transition occurs at S 0.

account of the discrete lattice model, which proves to be very useful in the
description of vortex lattice dynamics at high frequencies, will be published
elsewhere.

(B) Phase transition at finite temperatures

To study the LU-phase transition at finite temperatures, we first consider the case
of perfect matching (8 0), which is particularly simple. For q g the vortices
execute a Brownian motion around the equilibrium positions they would assume
at the bottom of the potential wells at T 0. Accordingly, the Langevin equation
of motion for a vortex at the lattice site I can be written as

TJU, -1' G(l - l')Ûi: -qA' sin (q • u,) + FL(t), (10)

where the four terms represent, successively, the viscous damping force, the
lattice restoring force, the harmonic pinning force and the fluctuating Langevin
force acting on the vortex at j. ¦n~1 Ra/Btp0, where RD is the sheet flux-flow
resistance of the superconducting film, is the mobility of a free vortex, G(l-l')
the elastic matrix and A' is related to A by A (B/tp0)A'. Fi(t) is assumed to have a
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white noise spectrum defined by the correlation function

<Fr(t)Ff(t') lrikBT8aß8ll,8(t-t') (11)

stating that the Langevin force is uncorrelated in direction, space and time. To
solve equation (10) for the mean square fluctuation (u2) of the vortices it is
convenient to expand w,(t) in normal modes of the vortex lattice

1 f +0°
-» -

•%(*) r- I ^WV*'1"-' àa, (12)
irr J..» tp

where the uk(to) ate the normal mode amplitudes and the êkp aie polarization
vectors for longitudinal (p I) and transverse (p t) deformations. Linearizing
the equation of motion (10) in the so-called Self-Consistent Harmonic
Approximation (SCHA) and considering, as in Section ILA, only transverse
modes of the vortex lattice, from equations (10) and (12) the following expression
for the t-component, ukt(to), of uk(to) is deduced

I \ F\aW) ,a~sukt(to)= - .— (13)
£>kt+AR(q-efe,) -ir\to

where Dfet is the matrix element of the (diagonal) dynamical matrix associated
with transverse modes and Fkt(to) is the transverse Fourier component of the
Langevin force. Within the framework of SCHA the effective strength, AR, of the
pinning potential experienced by the vortices is given by

AR Ae^^y (14)

where (ufx) is the mean square transverse fluctuation along the direction x parallel
to q. Equation (14) shows very clearly how the renormalization effect of the
thermal fluctuations, which is the essential feature leading to the LU-phase
transition, enters our problem: through a Debye-Waller factor which reduces the
amplitude of the periodic force field acting on the vortices. To calculate the mean
square transverse fluctuation

<u?) -lim^f Xl"-c(o))|2da>, (15)
rr t^=o i Jo fc "

we assume a Debye model, for which Dk( pfc2, and replace the sum over fc in
equation (15) by an integral over a smooth density of states. In the weak pinning
limit A« p considered here we then deduce from equations (11), (13) and (15)

<M?) j2^1n(p/AR). (16)
4rrp,

This expression shows quite clearly that the L-phase, which for the case of perfect
matching (8 0) under consideration is stable as long as AR is finite, is a 2D solid
with conventional long range order. As expected for 2D systems, (u2) diverges
logarithmically as AR vanishes. Since, by equipartition, <u«)«=2<uf) in the limit
A« p, from equations (14) and (16) one obtains

AR/A (A/p)T«T^T)) (17)
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Figure 4
Temperature dependence of the effective pinning potential amplitude.

where TLU is implicitly defined by

kBTLU (4/7r)p(TLU)A2. (18)

From Fig. 4, where AR/A is plotted as a function of T/Tw for a set of
(A/pt)-values, it clearly results that at TLU the vortex lattice undergoes a transition
from a perfectly matched L-phase (AR # 0) to a "floating" U-phase (AR =0). It
should be noticed that the expression (18) for TLU, as deduced in our SCHA-
scheme, is the same as that obtained with a renormalization-group technique by
PT.

For a moderately dense lattice of vortices in dirty superconducting films p
can be written in the form [9]

p,=2-nrj,(tp0/4rry
1

A'
(19)

where na B/tf>0 is the areal vortex density and A l\2/d an effective penetration

depth for 2D superconducting layers (d is the film thickness), whose
temperature dependence is given by [11]

A-\T) l.ll(4rr/tp0)2(RJRna)kBTc[^ TSh(^f) (20)

In Eq. (20) A(T) is the BCS-energy gap, RnD the normal state sheet resistance of
the film and Ru the universal resistance h/e2. Since p is a function of nn, equation
(18) shows that TLU depends upon the matching configuration under considera-
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tion. For a triangular lattice such configurations are defined by [8]

B v 3 tf>0

ni"2 2 À2

663

(21)

where Wl and n2 are integers. Then, in the limit of low sheet resistances R n«Rfrom equations (18)-(21) one obtains for the transition temperature TLU of the
fundamental matching configuration q gt (nx 1, n2 0)

2^=1-0.31^, (22)

where Tc is the BCS-transition temperature of the film. The LU-transition
temperatures corresponding to configurations defined by higher values of n, and
n2 he below that given by equation (22).

The case of finite mismatch (S#0) is more delicate. It has been recentlystudied in a slightly different context (the 2D classical sine-Gordon system) byFuga et al. [12] using a renormalization-group approach, where, for the first timeò is considered as a new renormalizable parameter. Although several aspects ofthe LU-transition emerging from their calculation turn out to be quite differenttrom those following from the much simpler SCHA-scheme, the shape of the
phase boundary 8C(T) resulting from their approach is very similar to that
predicted by SCHA. In the latter approximation 8C(T) simply follows from
equation (8) by replacing A with its renormalized value AR given by equation (17)The resulting phase diagram is shown in Fig. 5, where, instead of 8C(T), we have

T/T

Alp. IB 0.1

RD/RU 0.1

1.5

U

LIQUID)

1.0

FLOATING

SOLID

0.5

"21 ^20 B.1

Figure 5

Phase diagram in the (B, T)-plane of a 2D vortex lattice interacting with a ID periodic potential.
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plotted the related quantity BC(T) Bni„Jl-SC(T)]2. Since, for convenience, Bc is

reported on a logarithmic scale, the phase boundary delimiting a given L-phase,
which would be symmetric about Bnitl2 on a linear plot, appear asymmetrical.
Assuming A independent of B, in constructing Fig. 5 A/p was kept constant, for
simplicity, within each of the different L-phases, but was scaled according to
equations (19) and (21) from L-phase to L-phase. In Fig. 5 temperatures are
conveniently measured in units of TM, the melting temperature of the 2D vortex
lattice [5-7], which, as shown by the following equation, is independent of B at
moderate vortex densities

fcBTM -^-p(TM)a2. (23)
4-ÎT

With this additional aspect of the problem in mind, it is argued that, if the
LU-transition takes place for T > TM, it is a transition from a solid L-phase to a
fluid-like U-phase. This is the case for the L-phases of lower order (nx and n2
small) of Fig. 5, where TLU is larger than TM. With a straightforward calculation
based on equations (18), (21) and (23) it can be shown, however, that there is a
particular commensurate phase, the L22-phase, for which TLU becomes equal to
TM. For L-phases of higher order TLU is always lower than TM and, consequently,
the LU-transition is from a solid epitaxial L-phase to a solid floating U-phase.

III. Critical currents

To test some of the theoretical ideas put forward in the previous section,
critical current (Ic) measurements were performed on thickness modulated granular

Al-films as a function of magnetic field and temperature. A combined
holographic photolithographic technique was used to fabricate grating-like film
profiles with Ag < 1 pm. To meet the condition, A < p., for weak pinning, the
relative thickness modulation Ad/d was kept below —20-25%. The most relevant
superconducting and normal state properties of the two Al-films studied in this
paper are summarized in Table 1.

Since a registered L-phase is pinned by the periodic film structure, a finite
force is required to depin the vortex lattice and, subsequently, to sustain vortex
motion in the dissipative flux-flow régime. In our experiments such a force is

provided by a uniform transport current flowing parallel to the grooves of the
grating-like film profile. A U-phase, on the other hand, is not pinned by the
periodic substrate, its energy being independent, at least within the framework of

Table 1

Film d[Â] Adld^ \g[p.m] R^JO} TC[K] (|0.)1/2[Â](W KL(0) {&) [Â](b)

All 200 -0.2 0.79 15 1.89 365 4300
A12 200 -0.2 0.77 35 2.16 223 6140

a Determined by combined optical and electrical methods.
b Calculated using pi 4x 10^12flcm2 and AL(0)=157Â for Al. |0 was scaled from the

bulk Al value (1, 6 p.m) according to our Tc.
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Figure 6
Critical current vs. magnetic field curves of a thickness modulated film (A12) for different reduced

temperatures t T/Tc.

the continuum approximation, of the relative position of the vortex lattice with
respect to the pinning potential. Therefore, the critical current for entering the
flux-flow régime vanishes in this case.

In Fig. 6 Zc(B)-curves of the film A12 are shown for different temperatures.
One can easily verify, using equation (21), that the peak at B~ 30 gauss is the
signature of the fundamental L10-configuration shown in the insert of Fig. 6.

According to our previous discussion, the width of this peak, taken in the limit of
vanishing critical current, is a measure of the critical mismatch 8C(T) and,
consequently, could in principle be used to determine the L10U-phase boundary.
For two reasons, however, this appears to be, in practice, a problem of difficult
solution. The first and most important one is that in our films, as we shall show
later on, A is of the order of p, typically A/jx 0.9. Under this condition
considerable overlapping of the L10-phase with the Ln-phase is expected (in Fig.
5 overlapping of the different L-phases is enhanced as A/p increases). This is at
the origin of the relatively high shoulder on the low field side of the Zc-peak in
Fig. 6. Additional evodence for substantial overlapping effects is also provided by
the fact that the Lu and L^o-œiifigurations were hard to resolve in our experiments.

The second reason is that in real films one is dealing with unavoidable
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pinning effects due to randomly distributed inhomogeneities, which result in a
finite contribution to Ic even in the U-phase. Clearly, both overlapping and
random pinning effects render a determination of the peak width quite uncertain.
In the rest of the paper, therefore, we shall concentrate on a much more
accessible experimental quantity: the temperature dependent strength IcM(T) of a
critical current peak.

For perfect matching the equilibrium position of a ^vortex is determined
[13,14] by balancing the Lorentz driving force FL d(j X <f>0) against the pinning
force experienced by the vortex in the effective cosine-potential AR(1 — cosqtp),
where AR AR/nn. This results in the following expression for the transport
current density

/ ^fsin<ï> (24)
tp0d

Obviously, the critical current density jcM is reached for $ rr/1, a condition
corresponding to vortices located halfway between the bottom and the top of the
potential wells. Thus, using equation (17), jcM can be written as

qA' /A\T/(T^_T)Lm~ (-) • (25)
tp0a \/li/

In order to analyse our /c-data with equation (25) we need a model for A' (or A),
the characteristic energy scale of the pinning mechanism operating in our thickness

modulated films. In the thin film limit (d« A.) the potential energy e(r) of a
vortex located at r can be expressed by the convolution [15]

e(r)=^f(f'-f)d(r')d2r', (26)

where d(r') d + Ad cosqx is the thickness modulation and f(f'-f) the free
energy density distribution within the flux line. There are three major contributions

to /: an electromagnetic contribution fem arising from the field and supercur-
rent distributions in the vortex, a contribution fk representing the kinetic energy
cost to produce the vortex and a contribution fc due to the condensation energy
paid in creating its normal core. In our case /em is expected to contribute very
little to the integral in equation (26), its characteristic scale of variation, the
effective penetration depth A, being much larger than Ag (qA»l). Varying over
distances of the order of the coherence length £, which is much smaller than Ag in
the temperature region of interest here, fk and fc provide the dominant contributions

to e. Using Clem's model [16] for fk and fc, from equation (26) one obtains
in the limit q£ < 1 and of large GL-parameters k A/|

e(x) ~l(Ad/d)(tp0/4rr)2 ^ (1 + cos qx). (27)

Accordingly, A is identified as

A~lnu(Ad/d)(tp0/4rr)2^. (28)

This expression shows that A has the same temperature dependence as p, a
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considerable simplification in the analysis of the Ic-data. By combining equations
(25) and (28), IcM can finally be written in the form

IcM(T) _A(Q) /A\T/TL

WO) A(T)V
-T)

(29)

where A/p,~4(Ad/d). This result shows very clearly that with rising temperature
thermal fluctuations further reduce IcM(T) with respect to the "BCS"-value
Icm(T) Icm(0) [A(0)/A(T)]. After substraction of the background due to random
pinning, which was deduced from a flat but otherwise identical reference film, the
critical currents IçmCT) of All and A12 were fitted to equation (29) using IcM(0),
A/p and Txjj/Tc as fitting parameters. The result of this analysis is shown in Fig. 7

where, for comparison, theoretical curves calculated by neglecting the effect of
thermal fluctuations are also shown. Good agreement with equation (29) is found
for a reasonable choice of the parameters. TLU/TC, in fact, scales with RnCi

approximately as predicted by equation (22) where, however, the numerical
coefficient (0.31) is found to be about an order of magnitude too small to account
for the experimental values of Fig. 7. At the present stage of our investigations,
however, it is not possible to attribute this discrepancy to an intrinsic weakness of
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Figure 7

Temperature dependence of the critical currents of thickness modulated films for the fundamental
matching configuration q gv Theoretical curves are calculated from equation (29) with (full lines)
and without (dashed lines) the effect of thermal fluctuations.
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the model discussed in Section II.B. As for A/p., there is good agreement between
the values deduced from the fit and those estimated with A/p=4(Ad/d) using
values of Ad/d (see Table 1) determined by combined optical and electrical
methods. On the basis of these results, we conclude that the concept of a pinning
force field renormalized by thermal fluctuations provides a good description of
our experiments.
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