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BLOCH ELECTRONS IN RATIONAL AND IRRATIONAL MAGNETIC FIELDS.

Gustav M. Obermair, Fak. für Physik, Universität Regensburg,
D 8400 Regensburg

PACS 71.25, 75.20

Abstract : States of crystal electrons in a homogenous magnetic
field are of considerable practical and theoretical interest :

they are the basis of the magneto-oscillatory effects which

yield in turn most informations on Fermi surfaces provided a

theory connecting zero and finite magnetic field Bloch states
exists. This is achieved by the semiclassical Peierls-Onsager
theory which explains experimental results at least for
nondegenerate bands. However, this method lacks a rigorous first
principle derivation. Recently such a rigorous treatment has

been developed; the obtained electronic spectra are in agreement

with semiclassical results for simple bands; they show,

moreover the splitting of degenerate bands and the detailed
structure of magnetic breakdown.

Another intriguing aspect of the problem is the
coexistence of two pace lengths : lattice constant and Landau

orbit diameter, which are almost always incommensurate
("irrational" versus "rational" magnetic fields). As a consequence
the spectrum exhibits an extremely complicated fine structure,
related to the "chaotic" properties of certain maps.

This is largely a theoretical talk about recent advances in the
theory of crystal electrons in magnetic fields, apparently a

problem in the trivial class of one particle quantum mechanics ;

so I feel obliged to point out our motivation for this work:
why is it nontrivial, amusing, maybe even important?
1. Geometrical considerations: Let me start with some remarks
on the geometry or the kinematics of electrons in a periodic
potential and a magnetic field and explain the terms rational
and irrational fields, which, in geometrical terms, denotes
commensurate and incommensurate pace lengths.
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Fig.1 illustrates the point: the crystal lattice is the pavement

on which the electrons have to walk. Without a magnetic
field, they can freely adjust
their pace to the lattice
constant; as a result there is a

continuum of energies, but whenever

electron wavevectors and

reciprocal lattice are commensurate

there is the energy
stationarity and splitting
characteristic of a band edge.

><*
electron pace
-\ 1 f I-

-6--e- lattice pace
Fig.1: "Don't step on a crack"

Now in a homogenous magnetic field the crystal
electrons meet with two characteristic lengths, or rather two
characteristic areas: the quantized areas of the cyclotron
orbits ir<r2> it n tic/eB, where n denotes the Landau quantum
numbers, and the areas of the lattice mesh projected onto the
plane perpendicular to the field. Fig.2 shows such a projection

and the first 3 cyclotron orbits;
if the two shaded areas are
commensurate, one calls such

fields rational; the general
rationality condition was first
formulated by Brown /1/ and

Fischbeck /2/ 20 years ago:

Fig.2: Projection 0f a lattice
mesh onto the plane perpendicular

to B, quantised cyclotron orbits.

7

eB/Tic 2*(1/N) (R/n) (1)
where il is the volume of the unit cell, R a lattice vector and

1, N integers.
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The authors just mentioned have then constructed the
group of symmetry operations of the problem, the magnetic
translation group, a generalisation of the ordinary lattice
translations that includes phase factors to account for the
vector potential. In the case of rational magnetic fields in
the sense of eq.(1) this group is finite (though nonabelian)
and has irreducible representations of dimension N,where N ist
the denominator of the rational number in (1). Hence Fischbeck
and Brown could do all the usual group theoretical classifications

of states; in particular as a result of strictly
geometrical arguments one recognizes that for a rational field
1/N there must be N-fold degeneracy of the eigenstates
according to the dimension of the irreducible symmetry group
representation.
But this result, beautiful, because based only on symmetry
considerations, gives rise to a serious puzzle: the degeneracy g

jumps erratically as we go from one rational field to another
one nearby. So, e.g. for a typical solid, B 1T (10kG)

corresponds to 1/N ~ 1/105 g 105 ; but B' (1+10*12)T

corresponds to l'/N' 107/(1012-1) and hence to a g' 1012-1.
To avoid this "degeneracy catastrophe" one must

speculate that - as we go from B' to B - the spectrum is bunched

together in such a way that observable quantities show a

less erratic behaviour. This is in fact the case, as I will
show in the next section; but to replace speculation by
calculation, one needs dynamics in addition to geometry.
2. Semiclassical dynamics: Let us look at the Hamiltionian for
the problem

H (p-eA/c)2/2m + Vper>(r) (2)

For A 0 it has plane-wave-like Blochfunctions as
eigenfunctions, for V 0 it has squareintegrable Landau

functions. The latter, in momentum representation, look like
exp (-p2/B); i.e. they exhibit an essential singularity at
B 0 and do not go over into S(p-p that is into plane
waves.
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For these reasons a perturbation treatment of either A or V
peris problematic.

The effective Hamiltonian or Peierls-Onsager method
avoids this problem; instead of the full Hamiltonian (2) one
considers electrons in one particular Bloch band only and treats
the effect of a (weak) Lorentz-force semiclassically:

-a. -A _» __. _ip=evxB=evx rotA (3)
But for electrons in a band with dispersion E (k) one has the
wellknown result <v> V, E (k) and one obtains from (3) thek n
textbook arguments summarized in fig.3:

under the influence of the
magnetic field the state of the
electron moves on the energy
surface in planes normal to the
field. For closed orbits one

applies Bohr-Sommerfeld quantization

and arrives at the band

cyclotron orbits that are in
fact observed in all kinds of
magneto oscillatory effects and

form the basis of much of our
knowledge of Fermi surfaces.
Harper /3/, Azbel /4/ and others
have formalized this argument
and introduced a semiclassical
effective Hamiltionoperator

(4)

v„e.

£

Brillouin zone boundary

Fig.3: Semiclassical
dynamics in a twodimensional
Brillouin zone.

Heff En((p-eA(r))/1i)
where E takes the functional form of the dispersion E (k) withn -a -i _v n
the operators p and A(r) in the argument. It is easy to show

3Heff/3r leads backthat the classical Hamilton equation p

to (3); in that sense (4) is a consistent semiclassical ansatz.
Hofstadter /5/ has made an exhaustive study of the

spectrum of (4) in the simple case that E (k) is a twodimensional
quadratic tight binding band, lattice constant a, of the form

E (k) 2 cosk a + 2 cosk a (5)n x y
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The problem can then be reduced to a onevariable eigenvalue
equation in the form of a difference equation

a + 2 cos(2iran-v) a + a ea (6)n+1 n n-1 n
a a2B/2ir (nc/e) is precisely the dimensionless ratio of flux
through the unit cell a2 to flux quantum which occured already
in the rationality condition (1) and, for rational fields,
takes on the value 1/N.
Hofstadters numerical results for the spectrum for rationals up
to N 50 is shown in fig.4. "This graph", to quote Hofstadter,

.' <l"...,~..<//l\ta.S,.ta., »>----/l\W>-«//l \\-:.:.yn.\.
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FIG. If : Spectrum Inside
a unit cell. t is the
horizontal variable, ranging
between +4 and — 4, and
fi"{a} is the vertical variable,

ranging from 0 to 1.

"has some very unusual properties. The large gaps form a very
striking pattern somewhat resembling a butterfly; perhaps
equally striking are the delicacy and beauty of the
finegrained structure. These are due to a very intricate scheme,
by which bands cluster into groups, which themselves may cluster
into larger groups, and so on." This nesting structure can
roughly be described as follows: subareas of the graph are
reduced and slightly distorted replicas of the entire graph and

can be decomposed themselves into an (infinite) sequence of ever
finer self-replicas.

As a result for irrational, that is almost all
fields, one concludes that the spectrum is singular continuous/
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it consists of uncountably many points, between any pair of
which there is a finite gap: this is homeomorphic to the Cantor
set. We do not know, however, the fractal dimension of the
graph, because we don't have an analytical expression for the
distortion and reduction of the graph in each of the subsequent
nesting steps; all we know is that for a given denominator N

there are N bands in the spectrum, which become ever narrower as
N increases.

So now we have degeneracy and number of subbands

growing with N, band width shrinking with N. What do observable
quantities look like? As an example we have looked at the density

of states g(A) and the integrated density of states n(X);
fig.5 from Wannier, Ray, Obermair /6/.

\4
3 3
Cn

2

1

0

t

05

L

Fig. 5. Density of states g{/.) and integrated
density of states n(A) for a rational magnetic
field represented by the denominator 3. (/(1) is

typical of "erratic" behavior: three pagoda-like
energy bands (p/q J). In the integrated
density of states nß) this "erratic" aspect
recedes. The integral of the upper curve (dotted

outline, p/q 3
does not differ much

numerically from the integral for p/q 11/34
(solid line) although the analytic structure of
the two curves is totally different

Two features, I hope, are evident: (a) The degeneracy
catastrophe drops out. (b) The density of states g(X) is still
dramatically dependent on N; for 1/N 11/34 (not shown for
g(A) there would be 34 logarithmic singularities instead of
the 3 shown in the figure. Thermodynamic quantities, however,
which are integrals like n(X), are dominated by the "large"
structures (3 high steps); the 34 small steps are only a finer
detail hard to resolve in practice. The large structures are
determined by the leading term in a continued fraction expansion
of the quantity a; e.g. here a 11/34 1/(3 + 1/11); i.e.
3 high steps.
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Three remarks to conclude this section:
(a) The difference equation (6) can also be interpreted as a

description of electrons on a linear chain with a (commensurate

or noncommensurate) periodic substrate underlaid, which brings
us back to the naive geometric pictures of section 1 but also
shows the close relationship to commensurate - incommensurate
phase transitions, (b) The existence of finite gaps in the
spectrum is essential for an understanding of the quantum Hall
effect, cf. Thouless et al. /7/. Such gaps are in fact a

consistent feature of the spectrum shown in fig.4. (c) Eq. (6)
can be transformed to a twodimensional discrete mapping and

studied in this context.
3. First principle calculation. In spite of the obvious success
of the semiclassical methods just described, there are some

serious deficiencies: (a) A rigorous derivation from first
principle quantum mechanics is lacking. (b) The method does not
work for degenerate bands, in the magnetic breakdown region and

in the socalled Landau regime, i.e. weak periodic potential,
strong magnetic field. (c) The widths of the magnetic subbands

obtained semiclassically may be an artefact of the method (these
widths might be accessible to an experimental test in de Haas-van

Alphen or similar experiments).
A rigorous calculation of the spectrum of the full

Hamiltonian (2) appeared highly desirable, cf. Schellnhuber
and Obermair /8/. To show the essence of our approach let me

return briefly to the Landau problem: no periodic potential,
free electrons in a homogenous magnetic field. The motion along
the field, assumed in z-direction, will be neglected in all
that follows. We then have a classical phase space of 4 dimensions,

spanned by the veriables x,y;p ,p The Hamiltonian
reduces to the kinetic energy

H m/2 v2 (7)
which, written in terms of the canonical momenta, becomes

Ho(x'Y'px'Py)= 1/2m [(Px"eAx)2 + (Py"eV^ (8)
The functional dependence of H on x and y is obviously dependent
on the gauge chosen for A. The classical circular orbits are,
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of course, gauge independent, but the wavefunctions representing
eigenstates of (8) depend critically on the gauge. Moreover,
the two degrees of freedom, x and y, are coupled in a gauge
dependent way.

A number of authors /8/9/10/ have therefore lately
proposed a purely algebraic formulation of the problem: technically

it can be described as a canonical transformation from
x- Yi P ' P to a new set of 2 pairs of conjugate operatorsx y _*
q> Q/ P/ P- If one writes A 1/2 B(-y,x,0) in the symmetric
gauge, the terms of H are (p + eBy/2)2 and (p - eBx/2)2
Defining a eB/tic and

P +a*l/2p /ti + a1/2y/2 ; p +... -
Q -a"1/2p /tS + al/2x/2 ; q +... + (9)

one easily checks that [Q,P] i ; [q,p] i, all other commutators

vanish and H readso
Ho ^c/2 (p2 + q2) (10)

This is a onedimensional harmonic oscillator; the (q,p) degree
of freedom has dropped out altogether; this gives rise to the
continous degeneracy of the Landau levels.
If one now introduces a periodic potential V (x,y) again, the
simplest possible ansatz being V 2v (cosGx + cosGy),
G 2ir/a, then one has, in. the new variables, a coupling of the
2 degrees of freedom in the potential. For rational magnetic
fields it is possible to decouple again (for technical details
cf. /8/) with two separation constants (k,X) that span the
magnetic Brillouin zone and one obtains a set of Hamiltonians

H(k,X) =1itüc/2(P2 + Q2) + 2vQ(cos/n(Q+X) +

+ cos/n (P-X) (11)
n is now the inverse of the rationality parameter a in eq.(6)
and takes on values n 2ir N/1
Let me summarize the results of our extensive numerical studies
in the last two figures: Fig.6 shows the spectrum at the r-point
of the magnetic B.Z. for N/1 4/3 as a function of the amplitude

v of the periodic potential. For small v one sees the
3fold splitting of the Landau levels in full agreement with
group theory predictions for 1 3. On the other hand for large
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v the magnetic subbands are bunched together in groups of
4 (N 4) within the limits of the zero field bands in

accordance with the semi-
classical theory for
a 1/N 3/4 Notice
also that the second

lowest and third lowest
group of 4 states arise
from one, twofold degenerate

zero field band.

The excellent agreement

between first principle

and semiclassical
calculations is seen in
fig.7a for the lowest
zero field band for N=5,
1=1 and a fixed, large
value of v : positionso
and linewidths are nearly
identical. Fig.7 shows

the splitting of the
degenerate second lowest
band into 2 groups of N=5

magnetic subbands; this
is an exact result, where
the semiclassical method
breaks down.

4. Conclusion. The different pieces of theory for Bloch electrons
in magnetic fields, some fundamental, some ad hoc, begin to form
a coherent picture. Predictions from group theory and from the
semiclassical approach are, within the limits of their
applicability, confirmed by first principle calculations for rational
fields. For irrational fields the spectrum goes to a Cantor set.
Experimental tests for the new predictions (intrinsic line widths,
gap structure, splitting of degenerate bands) remain to be
developed.
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Fig.6: Evolution of the r-point spec-
spectrum of the magnetic B. Z.
with growing lattice potential v
For v =0,i.e. on the e-axis, one°
recognizes the Landau levels, for
large v the fully developed magnetic

sußband centers,from /11/
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Upper Mathieu Band Edge

Upper

Mathieu Band Edge

Lower

Mathieu Bond Edge

Lower Mathieu Band Edge

7a

7b

Fig.7a (left): First principle and semiclassical spectrum in the
lowest band, N=5. Fig.7b (right): First principle spectrum for
degenerate 2nd lowest band shows splitting.
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