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INCOMMENSURATE CRYSTAL PHASES

A. Janner and T. Janssen

Institute for Theoretical Physics, University of Nijmegen

Toernooiveld, 6525 ED NIJMEGEN, The Netherlands

1.Introduction
The aim of the present paper is to explore how the superspace description

of an incommensurate modulated crystal can be used for investigating
crystal phase transitions.

The superspace group approach is explained briefly in section 2. For

more details the reader is referred to the references given there. Then,

the relevant ideas and results of two specific one-dimensional microscopic
models leading to phase diagrams involving incommensurate crystal structures

are briefly reviewed. Subsequently the same models are considered

again but now in a superspace-adapted formulation, the advantage of the

approach being more that of a symmetry-adapted formulation than that of a

group - theoretical use of the crystallographic superspace symmetry occuring
in these models.

In order to investigate the latter aspect as well, the classical theory
of Landau for continuous phase transitions is considered and extended to
allow the use of superspace symmetry as present in incommensurate crystals.
In the last part of this paper such an extension is presented, which indeed

allows to characterize second-order phase transitions involving incommensurate

phases as well. This even when different modulation dimensionalities
(the so-called internal dimensions) or when commensurate phases occur As

one intuitively expects, in these phase transitions the Lifshitz condition
plays an important role. One can show that the existence of Lifshitz
invariants is required in second-order phase transitions between crystal
phases of different internal dimension. The present treatment has necessarily

a sketchy character and more details will be given in another paper.
2.The Symmetry of Incommensurate Crystal Phases

The fundamental structural property of an ideal incommensurate crystal
is to have a density p whose Fourier wave vectors span a Z-module M* of
dimension 3 and of rank 3 + d :



666 Janner and Janssen H.P.A.

P(r) ^2 P(k) eikr (2.1)
k«M*

-».

This means that the wave vectors k are of the general form :

k ha* + kb* + le* + m q + +
mdq (2.2)

where h,k,l,m.,...,m. are integral coefficients (the indices). The basis

vectors appearing in (2.2) are linearly independent over the rational
-* •¥ •*¦

numbers. We suppose that a*, b* and c* span the 3-dimensional reciprocal
lattice A* of a basic crystal structure, and that q1,...,q, are modulation

wave vectors. This is not necessary but useful.
The 3-dimensional space V is then extended to a (3+d)-dimensional one by

considering the above basis of M* in V as a 1-to-1 orthogonal projection of
a basis of a so-called superspace V Then the Fourier wave vectors k are

projections of reciprocal lattice vectors k :

k hc* + kb* + lc* + m.d * + + m.d.* e 2*. (2.3)
s 11 da

The (3+d)-dimensional vector k (k,k_) has an internal component denoted
-? s l

by k_. In terms of the indices we can write :

k (h,k,l,m.,... ,m.) as well as k (h,k,l,m.,... ,m.) (2.4)

but of course those (same) components refer to different bases. This
allows to interpret P(k) as a Fourier component P(k of a function P

defined in the superspace (the supercrystal) by :

P (r î P(k e1 s s (2.5)
k £Z*

s
with

rs (r.t), kgrs îc? + 5-,-t and p(kg) p(k). (2.6)
Note that

p(?) ps(?,t)|* 0 (2.7)

The symmetry of the incommensurate crystal is then the Euclidean symmetry
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group G of p i.e. a (3+d)-dimensional space group called superspaces s

group. In terms of the Fourier components the symmetry condition takes the

form :

iR k .v
p(k) p(Rk) e

S s S (2.8)

for ga { R= | v,, } e Ga and R =(R,RT), with R and RT orthogonal transfor-
S S S S S 1 1

mations in 3 and d dimensions, respectively, and v the translational
component. The theory of superspace groups and their application to
crystallographic problems are discussed in refs.[l] and [2j.

3.One-Dimensional Model for Thiourea

Thiourea, SC(NH„)„ (and also the deuterated one), shows [3] a high tem-
16

perature paraelectric phase (P) with space group D„, Prima ; it has

between T- 201 K (and 212 K respectively) and T 169 K (and 185 K

respectively) an incommensurate displacively modulated phase (i) with
superspace group Pnma(0,ß,0)(0,0,s) P .7 (see [4] and for the notation [5]lis
where this superspace group is listed as 62b.2 and has a temperature-

Ar ¦+• •*¦ -*•

dependent modulation wave vector q along the b direction (q Bb*), the

modulation wave being transversal. Finally at low temperature (T < T it
becomes ferroelectric (F). The modulation can be described in terms of a

rotation angle of the polar thiourea molecules. This is the basis of a

one-dimensional model investigated by Parlinski and Michel [6] having the

following expression for the free energy :

F 1 Z {*(? Z W -? + W -? )} (3.1)
n p r r r r

at molecular positions na (n any integer) with local potential V(<t> given
by :

V(*n) a<t£ + h*^ + b*£ (3.2)

(where & describes the hannonic term and li and tj the anhamonic ones) and

an intermolecular potential (essentially due to the dipole-dipole interactions)
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W (+ -* a. a -* )2 + 8 -i> )4 (3.3)
pv n nip' p n n±p p n n±p

From this model, by numerical calculation and by adjusting a number of
parameters, the authors have been able to describe phonon dispersion curves

in the paraelectric phase leading through softening of phonon branches to
the modulated phase, to derive a phase diagram (as a function of h and a.)

involving commensurate as well as incommensurate regions and to get also
information on the form of the modulation wave. The main ideas can be

illustrated on the basis of the simple harmonic modulation :

<t>n (-l)np cos(nqa). (3-4)

One then gets the free energy (3.1) in the form :

v, A 2 B 4 i-, r-\
2" p

4 (3.5)

from which by extremalization with respect to the amplitude of the modulation

the different crystallographic phases follow :

U= p (A+ p2B) 0, (3-6)

2i.e. the P-phase for p 0 and the I and the F phases for p -A/B. The

phonons in the P phase are then, obtained from:

^|lp=0= - -2(q) (3.7)
3p

and the modulation wave vector a from :

3F
-^- 0 (in the I and F phases). (3.8)
3q

4.An Elastic Chain Model

The one-dimensional model proposed by Janssen and Tjon [7] for studying
dynamical (and thermodynamical) properties of incommensurate crystal phases

driven by elastic forces, involves competing harmonic interaction terms

between first, second and third nearest-neighbours and a (stabilizing)
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anharmonic fourth-order term. Starting from atomic positions at

r na + u n any integer (4.1)
n n

the Hamiltonian is given by :

2
p

H Z JL.+ V (4.2)
n

with

V lz ia(un-un_1)2+ß(un-un.2)2+«(un-un_3)2+l(un-un_1)4i. (4.2a)
n

The equilibrium positions u then follow from the condition :

¦5— 0 any n (4.4)
n

and one gets the vibrational modes by considering the dynamical equations

for u u + e :
n n n

v
82V 2 .-xZ -—-— e - mue. (4.5)3e 3e m n

m n m

This eventually leads to soft modes and to a modulated phase for the

appropriate values of the parameters. Describing the l-phase in terms of a

one-dimensional modulation function u u (nqa) one gets the modulation

wave vector q from :

|I=0 and ^>0 (4.6)
3q 3q2

and by comparing the corresponding values of the energy. In this way, by

numerical calculation a phase diagram in the a,S parameter plane has

been obtained. Analytical expressions have also been derived in the

continuum limit, for which the potential energy takes the form :
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v= ;tI r*2 + K + ^ç'2 }- (4-7)

The extremality condition for V leads by the Euler-Lagrange formula to the

equation :

P V o Ç + ç3. (4.8)

The solutions are Jacobi elliptic functions whose type depends on the

values of the parameters. The potential energy is then expressible in terms

of complete elliptic integrals. From all that follows also the wave—length
and the form of the modulation. A thermodynamical treatment (in the mean-

field approximation) allows to derive further properties [8J, but the

essential features appear to be already correctly described by the simple
Hamiltonian approach discussed above.

5.Superspace adapted formulation of the models

The reformulation of the microscopic models presented above will be done

now for the Janssen-Tjon model. The same can be done for the Parlinski-
Michel model as well.

The first step is a restriction of the considerations to modulated

displacements u which are periodic (but not necessarily incommensurate with
the underlaying basic structure) with wave vector q,and involves thus a

phase variable t according to :

un(x) u (nqa + t) un(x+ 2tt (5.1)

for any t real. Introducing that dependency in eq. (4.2) one gets a family
of T-dependent Hamiltonians :

2

H (t) Z { ^+ Ja[u (t) - Uta^T)]2 + ...} (5.2)
n

showing two-dimensional lattice translational invariance in the superspace,

i.e. in the space which extends the space of positions of the chain mass

points with an extra dimension associated with the phase of the modulation.
The generators of these lattice translations are given by the following
transformations :
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(a,Aa) : n ¦* n + 1 and t * t - qa (5.3a)

(0,b) : n + n and t -»¦ t + 2ir (5-3b)

Incommensurability occurs for :

q v— v irrational). (5-4)

The potential energy (4-3) can be expressed by the integral :

V i /
*

dr { iax(r)2 + 1b[x(t) - x(t-t )]2 + (5.5)
0

+ 1«[x(t) - x(t-2t1)]2+ Ix(t)4 }

for x x(nqa) and t qa. In order to investigate (5.5) let us first
consider x(t-t. and x(t-2t in Taylor expansion at x( t) up to the first
order. One gets :

V Ì/ *
dx { i*x2+ ix4+ i<ß+ 2«)t2x'2}. (5.6)

Extremalization using the Euler-Lagrange equations leads to the following
condition for the equilibrium positions :

p x" o x + x5 (5.7)

with exactly the same parameter values as found in (4.9) for the continuum

limit.
Taking now the full Taylor expansion into account, extremalization

requires instead of the usual Euler-Lagrange equation the condition :

oo m

U+ z (-1)m -i--7^Y= 0 (5.8)
3X

m=1 dTB 3x(m)

with x 3 x/3t An alternative possibility is to take into account eq.
(4.4) first and only then to go over to the phase-dependent description.
One then gets an expression for the potential which depends on t. qa in
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the form :

2ir

Vo V|
o / dT f(T(Tl). (5.9)

x 0
n

A condition for q follows from the extremalization :

3V

^=0 (5.10)
3T1

which leads to the equation

i__.,y'( 2t _£-y'( t (5.11)
2«

for
2ir

y (t /dT x(t) x(t-t (5.12)
0

For getting a better feeling of these equations let us consider the

sinusoidal modulation case :

xn p sin (nqa), x(t) p sin (t) (5.13)

then eq. (5-9) becomes :

2lt
2 2 2

Vq / dT f(T,T A+ p B+ Cp cost. + Dp cos2Tl (5.14)

and condition (5-10) leads to :

(8+ 4« cost^ sinT1 0, (5.15)

i.e. to the non-modulated case (for sin t. =0) and to the modulated one

(for cos(qa) -8/4«), a result which has been discussed in the paper of
Janssen and Tjon as well.
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Note that in the present case we have y(T.) % cos t and equation
(5.11) leads also to (5.15)

6.Landau Theory for Continuous Phase Transitions
What follows simply recalls the basic ideas of Landau's theory and fixes

the notation. One starts from a high temperature (T > T crystal density
p (r) having space group G as symmetry :

Gopo=po. (6.1)

Then the low-temperature (T < T phase is described by a density p with
symmetry group G and one supposes that G is a subgroup of G :

G p p and G c G (6.2)
o

The difference density i|> is expressed in terms of irreducible representations

D of G with basis functions <fr.(r) :

p p + * (6.3)
o

and

*(r) Z ca (6.4)
aj ° 3

As a first simplification, Landau restricts the considerations to a single
irreducible representation. Writing the free-energy density F as a function
of and Vi|) one has due to continuity) invariance of F with respect to
the group G So one expands F in iith order (homogeneous) G -invariant
terms :

F(*,V*)=Fo+ Z A^**.....^ (6.5)
Us

where F is the high-temperature free-energy term and s labels the various
invariants. Minimalization of F requires vanishing of second-order terms at
T T :
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Ai2) (Tc) ° ' (6'6)

Stability of T requires absence of third-order invariant terms, i.e. :

Dj5) I D1 0, (6.7)

where D/,\ is the third-order tensor product of D and D is the identity
representation. Homogeneity, i.e. the condition that the low temperature

phase is a (commensurate) crystal leads to the Lifshitz condition:

D^-j ® Dv | D1 0, (6.8)

where Dr_-i is the antisymmetric tensor product of D with itself and D is
the vector representation. As is well known, the presence of Lifshitz
invariants is connected with incommensurate phase transitions [9J [10], and

in what follows we briefly discuss its role in the superspace-adapted

formulation.

7.Superspace Extension of Landau Theory

One embeds the crystal density (the high- and the low-temperature ones)

in the superspace as soon as one of the two phases involved describes an

incommensurate crystal. In the case that the internal dimension is
different, one extends (possibly in a trivial way the structure in order to

have both crystals described in a same superspace. Then the conditions
(6.1) to (6.4) are again verified for the appropriate superspace expressions.

In particular for T < T and in the notation of section 2 one has :
c

Ps(r,t) Pos(r\t) + *s(?,t) (7.1)

with Gp=p,Gp =p and G <= G Then the free- energy densityS S S' OS OS OS S OS OJ J

is considered as a function of the internal variable t

Fs(r\t) F8(*8,**B) (7.2)

where V =-r*-« Then the group-theoretical steps indicated in eqs. (6.4) to

(6.8) can be performed again.



Vol. 56, 1983 Incommensurate Crystal Phases 675

As it will be shown in more detail in another paper, it follows that the

transitions between crystal phases having the same internal dimension

(commensurate * commensurate, 1-dimensional modulated * 1-dimensional
modulated, and so on) requires :

Dj?2] « Dv | D1 0, (7.3)

i.e. absence of Lifshitz invariant terms. Note that in equation (7.3), D

is the 3-dimensional vector representation involving the positional and

not the internal space.
The presence of Lifshitz invariants leads to terms in the superspace

free-energy density of the form :

F(?,t) A;2)*"(?,t) ?¦(?,*)+ (7.4)

VV CL. -*• -*\ OL* ¦*¦ "*\+ B[2]ij ?i(r't)Vj(r't)+ '•

from which by extremalization using the Euler-Lagrange equation one gets
superspace-periodic solutions, and in general thus incommensurate modulated

crystal structures.
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