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COMMENSURATE-INCOMMENSURATE PHASE TRANSITIONS

V.L. Pokrovsky, Landau Institute of Theoretical Physics,
Chernogolovka 142432, USSR

1. Soliton interaction

Phase transitions from commensurate to incommensurate state(CIT) were

observed in numerous physical systems (see Table 1; for a recent review see

table l
*******

The physical systems displaying
the incommensurability

Incommensurate
subsystems Examples

1 Helimagnets Spins and ions Ce,ErPb3,HoPb],ErTE,3
HoTl3

2 Helical ferroelectrics The polarization and a
fundamental lattice K2Se0llfRb2znC)l1,

3 Chiral smectics C Director orientation
and density

DOBAMBC

(in the magn. field)

4 charge density waves
The Peierls charge
modulation and a fundamental
lattice

TTFTCNQ
Hg3-XASF6 Id
K0.30 «o Os 1

TaSe2 2d

5 Spin density waves
The Peierls spin modulation

and a fundamental
lattice

Nio.s2Zno.oaBt2

6 Submonolayers of adsorbed
atoms on crystal faces

A lattice of an overlayer
and a lattice of substrate

Ar,Kr,Xe,H2,N2 etc
on graphite :

Na,K,Ba,Sr,02,Xe
on W,Mo,Cu,Ni

7
Atoms and molecules intercalated

into graphite
A lattice of intercalated
atoms and a matrix lattice Br2

a
Reconstructed faces of
crystal, interfaces Surface and bulk lattices

9
Superconducting films with the
modulated thickness in the
transverse magn. field

The vortex lattice and
the modulation Al films

10 Electrons on the liquid Ne
surface over a periodic electrode

The Wigner electron
lattice and modulation
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[1-2]). The incommensurate structures arise as a result of competition of two

different periods fixed by different forces, e.g. a substrate and an over-
layer periodicity in a system of adsorbed atoms on a crystal surface,or a

lattice and exchange forces periodicity in helimagnets etc.

A misfit is localized in a set of topological defects : domain walls
or solitons. The dimensionality of these defects is less by unity than the

dimensionality of a system. At zero temperature solitons form a periodic
superstructure as it was predicted by Frank and Van der Merwe [2]. According to
continuum theory,soliton interaction decreases at large distances exponentially.

Continuum theory is invalid at large distances due to contribution of
nonlocal powerlike interactions [3],[4].

As a result.the mechanical interaction between solitons decreases

always powerlike at large distances. Assuming solitons provide compression or

rarification of particles, the powerlike interaction is

where a is the exponent corresponding to the interaction between particles,
d is the real space dimensionality and SL is the distance between solitons.
For d=3 and for direct Coulomb and multipole interaction the constant turns
to zero,and effective interaction is exponentially decreasing. However, at
least Van der Waals forces always give a nonzero contribution to the powerlike

interaction in 3 dimensions resulting in the law const • &_l* with a negative

constant. Dipole and multipole forces are effective in 2-dimensional
systems.

If a soliton lattice has crossing points they contribute extra energy

approximately indendently if they are sufficiently far distanced [5].
Heat fluctuations strongly affect the soliton interaction in one and two

dimensions. They totally destroy any long-range order in one dimension. In two

idimensions they give rise to the soliton bending and collisions implying
an additional effective repulsion between solitons which can be evacuated as

Z

Here T is the temperature, K is the effective elastic constant of an individual

soliton lines, connected with an effective elastic constant of particles
À and a renormalized amplitude of periodic potential V and the lattice constant
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a by the relationship

K= t/ZVcl. (3)

The result (2) was first obtained in the works [6,7] and then it was redire-

ved by many authors [8]. Normally the fluctuation-induced interaction plays

the main role at large distances.
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Fig. 1 Bragg reflections of Xe on (110)Cu face. V-peaks of diffraction
by diffraction by copper, »-peaks of diffraction by Xe, a and b

coalesce in the commensurate phase. Experiment was made

by LEED method [9].
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Fig. 2a Arrangement of the commensurate structure molecules N2 adsorbed on
graphite [10].

Fig. 2b The LEED diffraction pattern for the incommensurate phase. It cor¬
responds to striped phase. The hexagonal symmetry would result in
six-fold splitted sattelite lines. A seeming hexagonal symmetry is
due to polycrystal [10].
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2. Soliton structures in anisotropic systems

When one or both of twocompeting periodic structures is highly
anisotropic, theory predicts a striped soliton structure [7]. This prediction was

experimentally confirmed for Xe atoms adsorbed by the anisotropic surface

(110) of Cu [9], for N2 molecules adsorbed on graphite [10] and for Br2 molecules

intercalated in graphite [11] (see Figs 1 and 2).

Minimizing the energy per unit area of a soliton system the density
of solitonjnear CIT, proportional to the shift of Bragg reflexes can be shown

to be proportional to (<5-8 J*5, where 6 is a parameter governing the incom-

mensuracy [6,7]. For the case of adsorbed atoms 6 can be identified with the

chemical potential of the gas in equilibrium with the overlayer, while for
the intercalated system 6 is the temperature, and for superconducting film
and helical magnets 6 is the external magnetic field. This theoretical
prediction was convincingly confirmed by the experiments [10] and [11] (see

Figs 3 and 4

Ad a

79 k

_--.-.

77 k

4.-.--Ï—-.

75 k

ApkT.LnP/p,,
Joule/atome («io")

"~T

Fig. 3 The dependence of the inter-satellite distance (soliton density)
on chemical potential for Xe on Cu(110). Chemical potential is
fixed with the temperature and pressure of the gaseous Xe in
equilibrium with the overlayer [9].
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Fig. 4a Schematic picture of Bragg reflexes for Br2 intercalated into gra¬
phite (X-ray diffraction pattern). Arrows show the direction of
motion of reflexes in the incommensurate phase. Here the governing
parameter is the temperature. [11]

Fig. 4b The dependence of the satellites splitting (shift) on the tempera¬
ture for different commensurate Bragg reflexes. Solid curves
correspond to the square-root dependence [11].

The value 6C is associated with the amplitude V of an effective
periodic potential and an effective elastic constant X by the equation

t-W*-
Theory [6,7] predicts a strong decrease of effective periodic potential with
the temperature and turning it into zero at critical temperature^

T. =-4^*\c IT
The dependence V(T) is defined by equation

V(f> VW [V(o)/x] <-z

&
(6)

So the phase diagram in a vicinity of some definite commensurate phase has a

form depicted in Fig. 5. The existence of the critical temperature was confirmed

in the experiments by Martinoli et al.[12]. Martinoli et al. [13]
established the form of CIT curve which fits very well the Eq, (6). Details can

be found in the report by Martinoli at this conference. It should be noted

that the superconducting films with modulated thickness represent a unique
realization of a two-dimensional Sine-Gordon field.
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Fig. 5 Phase diagram in the vicinity of a commensurate phase

3. Soliton structures in the isotropic case

These systems are much less investigated theoretically. For the case

of zero temperature two alternative possibilities are predicted by the

theory [ 5 ]; first-order CIT into a hexagonally-symmetric soliton structure
or second-order CIT into a striped soliton structure. This conclusion agrees

with recent experiments (Kr adsorbed on graphite at T ~ 50 k [14])and direct
observations of a striped soliton structure in electronic microscope in
Ta Se2 [15,16,17 ]
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The thermodynamics of these systems is not yet clear, though some

preliminary semiqualitative arguments have been presented [18,19]. Experiments

[20,21] with Kr on graphite at T s 90 k give the value 1/3 for the

critical exponent |3, the same as for 3-state Potts model. It gives rise to
some theoretical speculations on the possible analogy between these systems

[22].

4. Points defects in commensurate and striped soliton structures
in two dimensions

Effects of dislocation on a striped incommensurate structure were

studied theoretically in the works [19,23-25]. The stability of a soliton
system with respect to the spontaneous creation of dislocations depends

substantially on the number p of equivalent states (sublattices) accessible

for an overlayer in the commensurate phase. In the works [24,19] the soliton
system was shown to be unstable at low temperatures and sufficiently low

distances for p < /8, i.e. for p 1.2. For p 2 the liquid phase separates
commensurate and incommensurate crystals up to zero temperature. The

commensurate-to-liquid phase transition is of the Ising type [26] CIT is as always,

similar to that in XY-model. For p 1 the long-range commensurate order can

not be destroyed by heat fluctuations [27]. For p > 2 the commensurate phase

transits only into incommensurate phase, and this last transits into liquid
[27].

Experimentally there exist systems with p 1 [12], p 2 [9], p 3

[10] and p 7 [12]. However the detailed experimental phase diagram of these

systems is not yet available.

5. Effects of discretness

The most important is effect of a soliton-pinning by the lattice
[28,29]. It results in existence of pinned soliton structures in some region
of governing parameter 6. In one dimension all the pinned structures are regular.

The soliton concentration corresponding to a pinned structure is always

a rational number c m/£, where £ is the period of structure and m bhe number

of solitons per elementary cell. Concentration represents a Cantor function

of 6. The set of commensurate soliton phases at T 0 can be also
described as a branching sequence, in which between any two phases with
elementary cells A and B a phase with elementary cell AB exists [30]. The
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geometric construction of an elementary cell by the expansion of concentration

C into a continuous fraction was indicated earlier [31,32]. The

sequence of commensurate soliton phases has an explicitly pronounced scaling
character as it is shown in Fig. 5 [30].

For two-dimensional anisotropic case each commensurate soliton structure

persists up to a finite temperature Tc(l) ~ [&n(V" (Î,))]-1 where VOL) is
the effective potential interaction between solitons. Considering three phases

only A,B and AB, it is possible to prove that the incommensurate phase is
stable in the interval of temperature between the critical temperatures of
phases A or B and that for the phase AB and in the interval of ô between

critical curves for CIT at the fixed temperature. The heat fluctuation creates

kinks on solitons interchanging neighbouring cells A and B. If z is the fuga-

city of a kink, then the critical point of existence of any commensurate soliton

phase is defined by equation :

* !/'(€) (V
where Jl is the period of the phase under consideration. The property of the
system near any critical point can be described by XYZ model [33]. The phase

diagram in two dimensions represents also the scaling picture (Fig. 6).
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Fig 6. Phase diagram for two-dimensional anisotropic case
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All the commensurate soliton phases are situated in the region of an

incommensurate phase. The schematic phase diagram for p 2 is shown in Fig.7.

T

ICc L

\h
ÌMm r

Fig. 7 Schematic phase diagram for p

Though there is no experimental evidence of existence of such a phase,

something similar has been found recently for Ising-like layered magnets

CeSb and CeBi [34,35].! do not see any principal objection for the existance of
commensurate soliton phases. Most probably, they can be found for not very
small values V/X in such a system as Br2 intercalated into graphite [12] or
Sodium and Potassium atoms on the surface of W,Mo,Cu,Zn [1].
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