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MAGNETIC PROPERTIES OF SUPERCONDUCTING OR NORMAL NETWORKS

AND RANDOM WALKS ON PERCOLATING CLUSTERS

G. Toulouse, R. Rammal

Laboratoire de Physique de l'E.N.S.,
24 rue Lhomond, 75231 Paris (France)

A scaling theory for the diamagnetic susceptibility and the
upper critical field of random mixtures of superconducting and

insulating elements is presented The resulting predictions
for the critical field are compared with experiments on InGe

films and numerical simulation data. One important critical
exponent in the theory is related to the spectral dimensionality
of a fractal structure, which governs also the diffusion
properties We suggest that the number S of distinct sites
visited during an N-step random walk on an infinite cluster at

2/ta

percolation threshold varies asymptotically as : S ^ N' in
any dimension d < 6

For more regular networks, such as periodic lattices (with a

strip geometry) and fractal structures we have determined
the spectrum of Landau levels. The contribution of the edge

states to the quantized Hall conductance is explained in a way
which clarifies the role of the geometry in the derivations of
this effect
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I - Superconducting diamagnetism near the percolation threshold

The percolation problem has played a leading role in
the study of disordered systems. During the past 25 years,
considerable progress has been achieved, specially concerning the
properties around the percolation threshold (for a recent review,
see [l]) As in ordinary phase transitions, one defines critical
exponents, associated with static and dynamic properties. One

important issue, during the last decade, has been to determine
the list of independent exponents characterizing the percolation
transition and, more precisely, whether the dynamic exponent t
of the conductivity is related to static exponents, such as 3

and v, associated with the infinite-cluster density and with the
correlation length.

Random mixtures of superconducting and insulating
elements, such as in Ge films, have been recently investigated in
Tel-Aviv [2]. In particular, the upper critical field Hc2 was

measured close to Tc, the superconducting transition temperature,
on the metallic side of the percolation threshold. If p is the
concentration of In and pc the critical percolation concentration,
the slope dHC2/dT was found to diverge, for p ¦+ pc, as :

dHc2 g
1

dT (p-pc)k

with k 0.6 ± 0.05. The authors of [2] proposed a theoretical
interpretation leading to a relation k t + 3 - 31, where 31 is
the backbone-density exponent [l]. Using presently accepted values
for t, 3, 3', this theory predicts : k - 0.87.

On the insulating side of the transition (p < pc), a

quantity of interest is the diamagnetic susceptibility x- It was

suggested by de Gennes [3] that this quantity might provide a

sensitive test of the topology of percolation clusters (more

sensitive than the conductivity). The slope of the susceptibility
close to Tc, dx/dT, was predicted to vary, for p •+ pc, as some

inverse power of (pc - p) but no definite prediction appeared in
the published version of his letter. Bolder was the analysis of
M. Stephen [4], predicting dx/dT ^ (pc - p)~ with b --0.77,
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negative in two dimensions. To our knowledge, no experimental
data for the susceptibility are available yet.

We have presented [5] a different approach to these
diamagnetic superconducting properties near the percolation
threshold. It is based on scaling arguments relating the
behaviour of various physical quantities in different regions of the
phase diagram (T, p) around the multicritical point at T Tc,
p pc. In dimension two, with some simple-looking assumptions,
one obtains, for the exponents introduced above,

k 4p and b v(2 - ~&)

Exponents k and b are expressed in terms of one unknown exponent
6. The exponent v is the correlation-length exponent, which is
now generally believed to be exactly 4/3 in two dimensions [6].

In a second stage of the argument, the exponent ô is
related to other percolation exponents, namely

v 6" t - 3

where the exponents t and 3 are those mentioned in the beginning.
The argument is based on the recognition that the infinite
percolation cluster at threshold is a self-similar object. Using
relations derived [4,7] for a model self-similar structure called
the Sierpinski gasket, and the value of the fractal dimensionality

of the percolating cluster, one obtains the preceding equation,
whose validity thus assumes a universality of some sort for self-
similar objects.

From the knowledge of the exponents 3 and t, which are
known with increasing accuracy [l,6], one derives

~5 0.85 k - 0.57 b - 1.53

This value for k is in good accord with the published data [2].
Note that the susceptibility slope is predicted to diverge, in
contrast with [4].

This theory has been submitted to numerical test [8].
In a bond-percolation model, the diamagnetic susceptibility of
finite samples has been computed. With available precision,



736 Toulouse and Rammal H.P.A.

the scaling form of [5] appears well supported. Quantitatively,
a value for exponent b is obtained

b 1.55 ± 0.04

in good accord with the prediction of [5].
However more data, experimental and numerical have to

be collected before a compelling picture emerges. Indeed, our
expression for exponent b,

b 2v - t + 3

is presently questioned. Some good experts [9J suggest a different
expression :

b 2v - t
Note firstly that this is now a 10% controversy, not any longer
a controversy over sign [4,5]. Note also that present numerical
data [8], in the absence of experimental data, seem to favor the
first expression.

There have been other controversies in the past,
concerned with such presence or absence of a 3 term (de Gennes,

Stauffer). Here the physical issue seems to be whether the
susceptibility near the percolation threshold is dominated by the
contribution of the largest clusters or whether clusters of all
sizes contribute significantly.

This controversy should act as a healthy stimulus for
experimentalists. In addition, everything remains to be done in
three dimensions, where a marginal divergence for x nas been

suggested [3].

II - Spectrum of the Schrödinger equation on a self-similar
structure

As discussed above, the Sierpinski gaskets [lO] are
self-similar structures which can be viewed as qualitative models

for other fractal objects. They are regular structures with a

dilation symmetry instead of a translation symmetry. An infinite
percolation cluster is not a regular object, but it is presently
believed that for some properties (to be precised by future study)
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the fractal character dominates and the disorder is not relevant.
Anyway, the regular structure of the gaskets lends itself
conveniently to renormalization approaches and it is probably possible
to derive a wealth of exact results on them. In this respect,
they may be compared to Bethe lattices, except that they have
a much richer physics because of their multiple-connectedness.

One of us has obtained a complete description of the
spectrum and of the eigenmodes of the harmonic vibrations (or
tight-binding) problem on Sierpinski gaskets in any Euclidean
dimension d [ll]. The spectrum consists of two entangled parts :

a pure point component, corresponding to local modes, and another
pure point component, whose support is a Cantor set of
zero measure, corresponding to hierarchical states.

Such a complete picture has not yet been achieved for
the Landau levels (Schrödinger equation in the presence of a

magnetic field) on a Sierpinski gasket in two dimensions. The

difficulty lies in obtaining the spectrum in the asymptotic limit
of arbitrary large sizes. However, by studying the iteration of
finite-size gaskets, we have been able to observe and derive some

remarkable Nesting Properties of the spectrum [l2] These Nesting
Properties are reminiscent but different from those observed on

translation-invariant lattices [l3] The low-field behaviour of
the edges of the spectrum is governed by the exponent 6 introduced

in Section I.

Ill - Random walks on fractal structures and percolation clusters

Self-similar spaces with a dilation symmetry, such as

Sierpinski gaskets, are characterized by at least three dimensions

: d, the dimension of the embedding Euclidean space ; d,
the fractal (Hausdorff) dimension [lO] ; d, the spectral dimension.

A lot of attention has been devoted to the fractal
dimensionality in the past. However, it is only recently that the
importance of the spectral dimension has been recognized by
S. Alexander and R. Orbach [l4] (they called it fracton dimension)

after some earlier insights [l5].
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The spectral dimension governs the behaviour of the low-
frequency density of states p(w) on a fractal structure :

\ r. d_1
p (to) <\/ us

As a consequence, it governs also many diffusion properties. For
instance, the mean-squared displacement from the origin after N

steps, during a random walk, behaves asymptotically as

<R2> * M N2/2+«

The previously introduced exponent <5 appears as a combination of
the fractal and spectral dimensions. This combination enters into
the mean-squared displacement because the measure of distances
brings with it the fractal dimension.

In order to obtain "pure" quantities, where the spectral
dimension enters alone, one has to consider [l6] other random

walk properties such as the probability of return to the origin
after N steps P0 :

Po ^ -x^—
N<V2

or the average number of distinct sites visited during an N-step
random walk Sh :

SN % Nd/2 (provided d < 2)

This law has been checked numerically [l7] on a

Sierpinski gasket in dimension d 2, for which d is easily cal-% £n3culated : d 2 -.—=-. The numerically determined value of the£n5 J %

exponent is 0.682 ± 0.005, to be compared with d/2 0.68260.
For a percolating cluster at threshold, the expression

for the spectral dimension can be derived from the previously
o

given expression of 6 in Section I, and from d d - —. One

obtains :

d 2 dv - e

t - 3 + 2v
•x,

It has been observed in [l4] that d, so determined with known

estimates of t, 3 and v, appears to be numerically close to 4/3
for all dimensions 1 < d ^ 6. This leads to the remarkably simple
prediction
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SN "i. N^3

on a percolating cluster. Actually, an argument has been presented
[l6], which suggests that perhaps the 2/3 exponent might be an

exact and not only approximate value. Define the "open frontier"
as the number of fresh sites adjacent to the visited sites during
an N-step random walk. It is given [l6] by SN(dSN/dN) and it
behaves asymptotically as :

^ 0 for p < pc
^ SN for p > pc

If one assumes that, at the threshold p pc, the open frontier
is marginally equal to the gaussian fluctuation in the number of
accessible sites, due to the random-percolation process, then
SN(dSN/dN) % /s^ and the 2/3 law follows.

The 2/3 law has also been checked numerically [l7] on a

percolating cluster in two dimensions. The exponent has been
determined as :

0.65 ± 0.01

to be compared with 2/3.
At stake is the existence of an exact relation between

dynamic and static percolation exponents. If d 4/3 is an exact
result for the infinite percolation cluster at threshold, then
the dynamic exponent t is not independent from the static exponents

3 and v.

IV - Landau levels on strips and the quantized Hall effect
We have recently studied the Landau levels on regular

two-dimensional networks with a strip geometry, infinite in one

direction, finite in the other [l8,19]. We have shown that the
bulk formula giving the quantized Hall conductance can be explained

in terms of a special gauge-invariance property of the edge

states. We have thus clarified the role of the geometry in the
derivations of the quantized Hall effect. As a bonus, it is
possible to generalize and to prove, by a gauge-invariance argument

à la Laughlin [20], a conjecture of Wannier [2l]for the
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density of states of Landau levels in the presence of a two-
dimensional periodic potential.
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